Skip to main content

Evolution of Wafer Bonding Technology and Applications from Wafer-Level Packaging to Micro/Nanofluidics-Enhanced Sensing

  • Chapter
  • First Online:
Advanced MEMS/NEMS Fabrication and Sensors

Abstract

In this chapter, we outline the revolution of wafer bonding technologies in microelectromechanical systems (MEMS) packaging and their applications in the emerging field of micro/nanofluidics-enhanced sensing. With the rapid development of device miniaturization, high-density assembly technologies have become one of the most important research topics in three-dimensional (3D) integration. The role of packaging has also shifted from initial physical protection and electrical interconnection to a multifunctional platform and/or interfaces. Hence, wafer bonding-based packaging technologies also benefit from diversified applications, e.g., micro/nanofluidics, optoelectronic integration, and biological/chemical sensing. Based on the aforementioned aspects, we summarize the development of wafer bonding technology to enable researchers to know the recent progress of homo−/heterogeneous integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adato, R., & Altug, H. (2013). In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nature Communications, 4, 2154.

    Article  Google Scholar 

  • Ahn, S. Y., & Lee, N. Y. (2015). Solvent-free thermoplastic-poly(dimethylsiloxane) bonding mediated by UV irradiation followed by gas-phase chemical deposition of an adhesion linker. Journal of Micromechanics and Microengineering, 25, 75007. https://doi.org/10.1088/0960-1317/25/7/075007

    Article  Google Scholar 

  • Alam, A. U., Howlader, M. M. R., & Deen, M. J. (2013). Oxygen plasma and humidity dependent surface analysis of silicon, silicon dioxide and glass for direct wafer bonding. ECS Journal of Solid State Science and Technology, 2, P515–P523.

    Article  Google Scholar 

  • Anantha, P., & Tan, C. S. (2015). UV/O3 assisted InP/Al2O3–Al2O3/Si low temperature die to wafer bonding. Microsystem Technologies, 21, 1015–1020.

    Article  Google Scholar 

  • Brand, O., & Baltes, H. (2002). Microsensor packaging. Microsystem Technologies, 7, 205–208.

    Article  Google Scholar 

  • Chang, Y., Wei, J., & Lee, C. (2020). Metamaterials-from fundamentals and MEMS tuning mechanisms to applications. NANO, 9, 3049–3070.

    Google Scholar 

  • Chuang, R. W., & Lee, C. C. (2002). Silver-indium joints produced at low temperature for high temperature devices. IEEE Transactions on Components and Packaging Technologies, 25, 453–458.

    Article  Google Scholar 

  • Chuang, T. H., Lin, H. J., & Tsao, C. W. (2006). Intermetallic compounds formed during diffusion soldering of au/cu/Al2O3 and cu/Ti/Si with Sn/in interlayer. Journal of Electronic Materials, 35, 1566–1570.

    Article  Google Scholar 

  • Chung, T. R., Yang, L., Hosoda, N., & Suga, T. (1997). Room temperature GaAs-Si and InP-Si wafer direct bonding by the surface activated bonding method. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 121, 203–206.

    Article  Google Scholar 

  • Dong, B., Ma, Y., Ren, Z., & Lee, C. (2020). Recent progress in nanoplasmonics-based integrated optical micro/nano-systems. Journal of Physics D: Applied Physics, 53, 213001.

    Article  Google Scholar 

  • Dragoi, V., Mittendorfer, G., Thanner, C., & Lindner, P. (2008). Wafer-level plasma activated bonding: New technology for MEMS fabrication. Microsystem Technologies, 14, 509–515.

    Article  Google Scholar 

  • Esser, R. H., Hobart, K. D., & Kub, F. J. (2003). Improved low-temperature Si-Si hydrophilic wafer bonding. Journal of the Electrochemical Society, 150, G228.

    Article  Google Scholar 

  • Fengwen, M., Kenichi, I., Haruo, N., et al. (2016). Room-temperature wafer bonding of SiC-Si by modified surface activated bonding with sputtered Si nanolayer. Japanese Journal of Applied Physics, 55, 04EC09.

    Article  Google Scholar 

  • Fu, W., Shigetou, A., Shoji, S., & Mizuno, J. (2016). Low temperature bonding between polyether ether ketone (PEEK) and Pt through vapor assisted VUV surface modification. In Proceedings—Electron. Components Technol. Conf. 2016-August (pp. 2541–2546).

    Google Scholar 

  • Gooch, R., & Schimert, T. (2003). Low-cost wafer-level vacuum packaging for MEMS. MRS Bulletin, 28, 55–59.

    Article  Google Scholar 

  • Hasan, D., & Lee, C. (2018). Hybrid metamaterial absorber platform for sensing of CO2 gas at mid-IR. Advancement of Science, 5, 1700581.

    Google Scholar 

  • Hasan, D., Pitchappa, P., Wang, J., et al. (2017a). Novel CMOS-compatible Mo-AlN-Mo platform for metamaterial-based mid-IR absorber. ACS Photonics, 4, 302–315.

    Article  Google Scholar 

  • Hasan, D., Pitchappa, P., Pei Ho, C., & Lee, C. (2017b). High temperature coupling of IR inactive C=C mode in complementary metal oxide semiconductor metamaterial structure. Advanced Optical Materials, 5, 00778.

    Article  Google Scholar 

  • He, R., Fujino, M., Yamauchi, A., et al. (2016). Combined surface activated bonding technique for low-temperature cu/dielectric hybrid bonding. ECS Journal of Solid State Science and Technology, 5, P419–P424.

    Article  Google Scholar 

  • He, R., Yamauchi, A., & Suga, T. (2018). Sequential plasma activation methods for hydrophilic direct bonding at sub-200 ° C. Japanese Journal of Applied Physics, 57, 02BD03.

    Article  Google Scholar 

  • Higurashi, E., Sasaki, Y., Kurayama, R., et al. (2015). Room-temperature direct bonding of germanium wafers by surface-activated bonding method. Japanese Journal of Applied Physics, 54, 030213.

    Article  Google Scholar 

  • Higurashi, E., Okumura, K., Kunimune, Y., et al. (2017). Room-temperature bonding of wafers with smooth au thin films in ambient air using a surface-activated bonding method. IEICE Transactions on Electronics, E100C, 156–160.

    Article  Google Scholar 

  • Howlader, M. M. R., Suehara, S., & Suga, T. (2006a). Room temperature wafer level glass/glass bonding. Sensors and Actuators A: Physical, 127, 31–36.

    Article  Google Scholar 

  • Howlader, M. M. R., Suga, T., & Kim, M. J. (2006b). Room temperature bonding of silicon and lithium niobate. Applied Physics Letters, 89, 1–4.

    Article  Google Scholar 

  • Howlader, M. M. R., Suga, T., & Kim, M. J. (2007). A novel bonding method for ionic wafers. IEEE Transactions on Advanced Packaging, 30, 598–604.

    Article  Google Scholar 

  • Howlader, M. M. R., Suga, T., Itoh, H., et al. (2009). Role of heating on plasma-activated silicon wafers bonding. Journal of the Electrochemical Society, 156, H846.

    Article  Google Scholar 

  • Howlader, M. M. R., Kibria, M. G., Zhang, F., & Kim, M. J. (2010a). Hybrid plasma bonding for void-free strong bonded interface of silicon/glass at 200 °C. Talanta, 82, 508–515.

    Article  Google Scholar 

  • Howlader, M. M. R., Zhang, F., & Kibria, M. G. (2010b). Void nucleation at a sequentially plasma-activated silicon/silicon bonded interface. Journal of Micromechanics and Microengineering, 20, 065012.

    Article  Google Scholar 

  • Howlader, M. M. R., Kaga, T., & Suga, T. (2010c). Investigation of bonding strength and sealing behavior of aluminum/stainless steel bonded at room temperature. Vacuum, 84, 1334–1340.

    Article  Google Scholar 

  • Howlader, M. M. R., Zhang, F., & Kim, M. J. (2011a). Annealing temperature-dependent interfacial behavior of sequentially plasma-activated silicon bonded wafers. Journal of Microelectromechanical Systems, 20, 17–20.

    Article  Google Scholar 

  • Howlader, M. M. R., Selvaganapathy, P. R., Deen, M. J., & Suga, T. (2011b). Nanobonding technology toward electronic, fluidic, and photonic systems integration. IEEE Journal of Selected Topics in Quantum Electronics, 17, 689–703.

    Article  Google Scholar 

  • Howlader, M. R., Itoh, H., Suga, T., & Kim, M. (2019). Sequential plasma activated process for silicon direct bonding. ECS Transactions, 3, 191–202.

    Article  Google Scholar 

  • Hsu, C., Chen, G., Lin, Y. H., & Cheng, M. M. C. (2017). Anodic bonding using Gorilla glasses. In 2017 IEEE 12th Int. Conf. Nano/micro Eng. Mol. Syst. NEMS 2017 (pp. 566–569).

    Google Scholar 

  • Ikku, Y., Yokoyama, M., Iida, R., et al. (2011). ALD Al2O3 activated direct wafer bonding for 111-V CMOS photonics platform. In Conf proc-Int. Conf. Indium phosphide Relat. Mater (pp. 7–10).

    Google Scholar 

  • Kikkawa, T., Hirose, K., & Chikaki, S. (2000). Authors would like to thank Dr. M. Kamoshida, Dr. M. Ogawa, Dr. K. Okada, Dr. M. Kikuchi, Dr. A. Ishitani, 143, 1773–1779.

    Google Scholar 

  • Kim, T. H., Howlader, M. M. R., Itoh, T., & Suga, T. (2003). Room temperature cu–cu direct bonding using surface activated bonding method. Journal of Vacuum Science & Technology, A: Vacuum, Surfaces, and Films, 21, 449–453.

    Article  Google Scholar 

  • Kondou, R., & Suga, T. (2011). Si nanoadhesion layer for enhanced SiO2-SiN wafer bonding. Scripta Materialia, 65, 320–322.

    Article  Google Scholar 

  • Kondou, R., Wang, C., Shigetou, A., & Suga, T. (2012). Nanoadhesion layer for enhanced Si-Si and Si-SiN wafer bonding. Microelectronics and Reliability, 52, 342–346.

    Article  Google Scholar 

  • Le, T. H. H., & Tanaka, T. (2017). Plasmonics–nanofluidics hydrid metamaterial: An ultrasensitive platform for infrared absorption spectroscopy and quantitative measurement of molecules. ACS Nano, 11, 9780–9788.

    Article  Google Scholar 

  • Le, T. H. H., Morita, A., Mawatari, K., et al. (2018). Metamaterials-enhanced infrared spectroscopic study of nanoconfined molecules by plasmonics-nanofluidics hybrid device. ACS Photonics, 5, 3179–3188.

    Article  Google Scholar 

  • Le, T. H. H., Morita, A., & Tanaka, T. (2020). Refractive index of nanoconfined water reveals its anomalous physical properties. Nanoscale Horizons, 5, 1016–1024.

    Article  Google Scholar 

  • Lee, C. C., & Choe, S. (2002). Fluxless in-Sn bonding process at 140 °C. Materials Science and Engineering A, 333, 45–50.

    Article  Google Scholar 

  • Lee, C., & Xie, J. (2009). Design and optimization of wafer bonding packaged microelectromechanical systems thermoelectric power generators with heat dissipation path. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 27, 1267.

    Article  Google Scholar 

  • Lee, C. C., Wang, C. Y., & Matijasevic, G. (1993). Au–in bonding below the eutectic temperature. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 16, 311–316.

    Article  Google Scholar 

  • Lee, C., Huang, W. F., & Shie, J. S. (2000). Wafer bonding by low-temperature soldering. Sensors and Actuators A: Physical, 85, 330–334.

    Article  Google Scholar 

  • Lee, C., Yu, D., Yu, A., et al. (2008). Bonding interface materials evolution of intermediate in/ag layers for low temperature fluxless solder based MEMS wafer level packaging. In 2008 10th Int. Conf. Electron. Mater. Packag. EMAP 2008 2 (pp. 216–219).

    Google Scholar 

  • Lee, C., Yu, A., Yan, L., et al. (2009). Characterization of intermediate in/ag layers of low temperature fluxless solder based wafer bonding for MEMS packaging. Sensors and Actuators A: Physical, 154, 85–91.

    Article  Google Scholar 

  • Li, D. L., Shang, Z. G., Wang, S. Q., & Wen, Z. Y. (2013). Low temperature Si/Si wafer direct bonding using a plasma activated method. Journal of Zhejiang University Science C, 14, 244–251.

    Article  Google Scholar 

  • Ma, Y., Dong, B., & Lee, C. (2020a). Progress of infrared guided-wave nanophotonic sensors and devices. Nano Convergence, 7, 12.

    Article  Google Scholar 

  • Ma, Y., Dong, B., Wei, J., et al. (2020b). High-responsivity mid-infrared black phosphorus slow light waveguide photodetector. Advanced Optical Materials, 8, 1–12.

    Article  Google Scholar 

  • Made, R. I., Gan, C. L., Yan, L. L., et al. (2009). Study of low-temperature thermocompression bonding in ag-in solder for packaging applications. Journal of Electronic Materials, 38, 365–371.

    Article  Google Scholar 

  • Mai, C., Li, M., & Yang, S. (2015). Low temperature direct bonding of silica glass via wet chemical surface activation. RSC Advances, 5, 42721–42727.

    Article  Google Scholar 

  • Mai, C., Sun, J., Chen, H., et al. (2016). Silicon direct bonding: Via low-temperature wet chemical surface activation. RSC Advances, 6, 37079–37084.

    Article  Google Scholar 

  • Masteika, V., Kowal, J., Braithwaite, N. S. J., & Rogers, T. (2014). A review of hydrophilic silicon wafer bonding. ECS Journal of Solid State Science and Technology, 3, Q42–Q54.

    Article  Google Scholar 

  • Matsumae, T., Fengwen, M., Fukumoto, S., et al. (2021). Heterogeneous GaN-Si integration via plasma activation direct bonding. Journal of Alloys and Compounds, 852, 156933.

    Article  Google Scholar 

  • Mawatari, K., Kazoe, Y., Shimizu, H., et al. (2014). Extended-nanofluidics: Fundamental technologies, unique liquid properties, and application in chemical and bio analysis methods and devices. Analytical Chemistry, 86, 4068–4077.

    Article  Google Scholar 

  • Mu, F., He, R., & Suga, T. (2018). Room temperature GaN-diamond bonding for high-power GaN-on-diamond devices. Scripta Materialia, 150, 148–151.

    Article  Google Scholar 

  • Mu, F., Cheng, Z., Shi, J., et al. (2019). High thermal boundary conductance across bonded heterogeneous GaN-SiC interfaces. ACS Applied Materials and Interfaces, 11, 33428–33434.

    Article  Google Scholar 

  • Okada, A., Shoji, S., Nimura, M., et al. (2013). Vacuum ultraviolet irradiation treatment for reducing gold-gold bonding temperature. Materials Transactions, 54, 2139–2143.

    Article  Google Scholar 

  • Pasquariello, D., Hedlund, C., & Hjort, K. (2000). Oxidation and induced damage in oxygen plasma in situ wafer bonding. Journal of the Electrochemical Society, 147, 2699.

    Article  Google Scholar 

  • Phan, H. P., Cheng, H. H., Dinh, T., et al. (2017). Single-crystalline 3C-SiC anodically bonded onto glass: An excellent platform for high-temperature electronics and bioapplications. ACS Applied Materials and Interfaces, 9, 27365–27371.

    Article  Google Scholar 

  • Plach, T., Hingerl, K., Tollabimazraehno, S., et al. (2013). Mechanisms for room temperature direct wafer bonding. Journal of Applied Physics, 113, 4794319.

    Article  Google Scholar 

  • Qian, W., Kyudong, J., Minseog, C., et al. (2007). Low temperature, wafer level Au-In bonding for ISM packaging. In 2006 7th International Conference on Electronic Packaging Technology ICEPT 06 (p. 7).

    Google Scholar 

  • Reiche, M., Gösele, U., & Wiegand, M. (2000). Modification of Si(100)-surfaces by SF6 plasma etching-application to wafer direct bonding. Crystal Research and Technology, 35, 807–821.

    Article  Google Scholar 

  • Ren, Z., Chang, Y., Ma, Y., et al. (2020). Leveraging of MEMS technologies for optical metamaterials applications. Advanced Optical Materials, 8, 1–20.

    Article  Google Scholar 

  • Rodrigo, D., Tittl, A., Ait-bouziad, N., et al. (2018). Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nature Communications, 9, 2160.

    Article  Google Scholar 

  • Shi, Q., Dong, B., He, T., et al. (2020). Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of things. InfoMat, 1–32.

    Google Scholar 

  • Shigetou, A., Itoh, T., & Suga, T. (2005). Direct bonding of CMP-cu films by surface activated bonding (SAB) method. Journal of Materials Science, 40, 3149–3154.

    Article  Google Scholar 

  • Shigetou, A., Itoh, T., & Suga, T. (2006). Bumpless interconnect of ultrafine cu electrodes by surface activated bonding (SAB) method. Electron. Commun Japan, part II Electron. (English Transl Denshi Tsushin Gakkai Ronbunshi), 89, 34–42.

    Article  Google Scholar 

  • Shigetou, A., Itoh, T., Matsuo, M., et al. (2006). Bumpless interconnect through ultrafine Cu electrodes by means of surface-activated bonding (SAB) method. IEEE Transactions on Advanced Packaging, 29, 218–226.

    Google Scholar 

  • Shigetou, A., Mizuno, J., & Shoji, S. (2015). Vacuum ultraviolet (VUV) and vapor-combined surface modification for hybrid bonding of SiC, GaN, and Si substrates at low temperature and atmospheric pressure. In Proceedings—Electron. Components Technol. Conf. 2015-July (pp. 1498–1501).

    Google Scholar 

  • Shih, K., Ren, Z., Wang, C., & Lee, C. (2019). MIR plasmonic liquid sensing in nano-metric space driven by capillary force. Journal of Physics D: Applied Physics, 52, 394001.

    Article  Google Scholar 

  • Shimatsu, T., Uomoto, M., & Kon, H. (2014). (Invited) room temperature bonding using thin metal films (bonding energy and technical potential). ECS Transactions, 64, 317–328.

    Article  Google Scholar 

  • Shinohara, H., Mizuno, J., & Shoji, S. (2011). Studies on low-temperature direct bonding of VUV, VUV/O3 and O2 plasma pretreated cyclo-olefin polymer. Sensors and Actuators A: Physical, 165, 124–131.

    Article  Google Scholar 

  • Suga, T., Takahashi, Y., Takagi, H., et al. (1992). Structure of A1-A1 and A1-Si3N4 interfaces bonded at room temperature by means of the surface activation method. Acta Metallurgica et Materialia, 40, 133–137.

    Article  Google Scholar 

  • Suga, T., Mu, F., Fujino, M., et al. (2015). Silicon carbide wafer bonding by modified surface activated bonding method. Japanese Journal of Applied Physics, 54, 030214.

    Article  Google Scholar 

  • Suni, T., Henttinen, K., Lipsanen, A., et al. (2005). Wafer scale packaging of mems by using plasma activated wafer bonding. Proceedings of the Electrochemical Society PV, 2005-02, 173–183.

    Google Scholar 

  • Sunkara, V., & Cho, Y. K. (2012). Investigation on the mechanism of aminosilane-mediated bonding of thermoplastics and poly(dimethylsiloxane). ACS Applied Materials and Interfaces, 4, 6537–6544.

    Article  Google Scholar 

  • Takagi, H., Kikuchi, K., Maeda, R., et al. (1996). Surface activated bonding of silicon wafers at room temperature. Applied Physics Letters, 68, 2222–2224.

    Article  Google Scholar 

  • Takagi, H., Maeda, R., Chung, T. R., et al. (1998). Effect of surface roughness on room-temperature wafer bonding by Ar beam surface activation. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes, 37, 4197–4203.

    Article  Google Scholar 

  • Takagi, H., Maeda, R., Hosoda, N., & Suga, T. (1999a). Transmission electron microscope observations of Si/Si interface bonded at room temperature by Ar beam surface activation. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes, 38, 1589–1594.

    Article  Google Scholar 

  • Takagi, H., Maeda, R., Hosoda, N., & Suga, T. (1999b). Room-temperature bonding of Si wafers to Pt films on SiO2 or LiNbO3 substrates using Ar-beam surface activation. Japanese Journal of Applied Physics, Part 2: Letters, 38, 126–129.

    Google Scholar 

  • Takagi, H., Maeda, R., Hosoda, N., & Suga, T. (1999c). Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation. Applied Physics Letters, 74, 2387–2389.

    Article  Google Scholar 

  • Takagi, H., Maeda, R., & Suga, T. (2017). Room-temperature wafer bonding of Si to LiNbO3 , LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation. Journal of Micromechanics and Microengineering, 348, 11–16.

    Google Scholar 

  • Takigawa, R., Higurashi, E., Suga, T., & Kawanishi, T. (2011). Air-gap structure between integrated LiNbO3 optical modulators and micromachined Si substrates. Optics Express, 19, 15739.

    Article  Google Scholar 

  • Takigawa, R., Higurashi, E., & Asano, T. (2018). Room-temperature wafer bonding of LiNbO3 and SiO2 using a modified surface activated bonding method. Japanese Journal of Applied Physics, 57, 06HJ12.

    Article  Google Scholar 

  • Tang, Z., Peng, P., Shi, T., et al. (2009). Effect of nanoscale surface topography on low temperature direct wafer bonding process with UV activation. Sensors and Actuators A: Physical, 151, 81–86.

    Article  Google Scholar 

  • Tang, J., Cai, C., Ming, X., et al. (2016). Morphology and stress at silicon-glass interface in anodic bonding. Applied Surface Science, 387, 139–148.

    Article  Google Scholar 

  • Tatar, E., Torunbalci, M. M., Alper, S. E., & Akin, T. (2012). A method and electrical model for the anodic bonding of SOI and glass wafers. In Proc IEEE Int. Conf. Micro Electro. Mech. Syst. (pp. 68–71).

    Google Scholar 

  • Tran, H. H., Wu, W., & Lee, N. Y. (2013). Ethanol and UV-assisted instantaneous bonding of PMMA assemblies and tuning in bonding reversibility. Sensors and Actuators B: Chemical, 181, 955–962.

    Article  Google Scholar 

  • Transactions ECS, Society TE. (2012). Room temperature wafer bonding by surface activated ALD- Al2O3. ECS Meeting Abstracts, 50, 303–311.

    Google Scholar 

  • Wang, C., & Suga, T. (2012). Investigation of fluorine containing plasma activation for room-temperature bonding of Si-based materials. Microelectronics and Reliability, 52, 347–351.

    Article  Google Scholar 

  • Wang, C., & Suga, T. (2016). Communication-fluorinated plasma treatments using PTFE substrates for room-temperature silicon wafer direct bonding. ECS Journal of Solid State Science and Technology, 5, P393–P395.

    Article  Google Scholar 

  • Wang, Q., Choa, S. H., Kim, W. B., et al. (2006). Reliability of hermetic RF MEMS wafer level packaging using au-Sn eutectic bonding. Key Engineering Materials, 326–328(I), 609–612.

    Article  Google Scholar 

  • Wang, C., Liu, Y., Li, Y., et al. (2017a). Mechanisms for room-temperature fluorine containing plasma activated bonding. ECS Journal of Solid State Science and Technology, 6, P373–P378.

    Article  Google Scholar 

  • Wang, C., Wang, Y., Tian, Y., et al. (2017b). Room-temperature direct bonding of silicon and quartz glass wafers room-temperature direct bonding of silicon and quartz glass wafers. Applied Physics Letters, 110, 221602.

    Article  Google Scholar 

  • Wang, C., Liu, Y., & Suga, T. (2017c). A comparative study: Void formation in silicon wafer direct bonding by oxygen plasma activation with and without fluorine. ECS Journal of Solid State Science and Technology, 6, P7–P13.

    Article  Google Scholar 

  • Wang, C., Xu, J., Zeng, X., et al. (2018a). Low-temperature wafer direct bonding of silicon and quartz glass by a two-step wet chemical surface cleaning. Japanese Journal of Applied Physics, 57, 02BD02.

    Article  Google Scholar 

  • Wang, C., Xu, J., Qi, X., et al. (2018b). Direct homo/heterogeneous bonding of silicon and glass using vacuum ultraviolet irradiation in air. Journal of the Electrochemical Society, 165, H3093–H3098.

    Article  Google Scholar 

  • Wang, C., Wang, T., Mawatari, K., & Kitamori, T. (2018c). Communication—Evaporation driven micro/Nanofluidic pumping device. Journal of the Electrochemical Society, 165, B184–B186.

    Article  Google Scholar 

  • Wang, C., Xu, J., Guo, S., et al. (2019). A facile method for direct bonding of single-crystalline SiC to Si, SiO2, and glass using VUV irradiation. Applied Surface Science, 471, 196–204.

    Article  Google Scholar 

  • Wei, J., & Lee, C. (2019). Anomalous plasmon hybridization in nanoantennas near interfaces. Optics Letters, 44, 6041.

    Article  Google Scholar 

  • Wei, J., Li, Y., Chang, Y., et al. (2019). Ultrasensitive transmissive infrared spectroscopy via loss engineering of metallic nanoantennas for compact devices. ACS Applied Materials and Interfaces, 11, 47270–47278.

    Article  Google Scholar 

  • Welch, W. C., Chae, J., & Najafi, K. (2005). Transfer of metal MEMS packages using a wafer-level solder transfer technique. IEEE Transactions on Advanced Packaging, 28, 643–649.

    Article  Google Scholar 

  • Wu, Z., Xanthopoulos, N., Reymond, F., et al. (2002). Polymer microchips bonded by O2-plasma activation. Electrophoresis, 23, 782–790.

    Article  Google Scholar 

  • Xu, Y. (2017). Nanofluidics: A new arena for materials science. Advanced Materials, 1702419, 1–17.

    Google Scholar 

  • Xu, Y., Wang, C., Li, L., et al. (2013). Bonding of glass nanofluidic chips at room temperature by a one-step surface activation using an O2/CF4 plasma treatment. Lab on a Chip, 13, 1048–1052.

    Article  Google Scholar 

  • Xu, J., Wang, C., Wang, T., et al. (2018a). Mechanisms for low-temperature direct bonding of Si/Si and quartz/quartz: Via VUV/O3 activation. RSC Advances, 8, 11528–11535.

    Article  Google Scholar 

  • Xu, J., Wang, C., Wu, B., et al. (2018b). Communication-defect-free direct bonding for high-performance glass-on-LiNbO3 devices. Journal of the Electrochemical Society, 165, B727–B729.

    Article  Google Scholar 

  • Xu, J., Wang, C., Tian, Y., et al. (2018c). Glass-on-LiNbO3 heterostructure formed via a two-step plasma activated low-temperature direct bonding method. Applied Surface Science, 459, 621–629.

    Article  Google Scholar 

  • Xu, J., Wang, C., Li, D., et al. (2019a). Fabrication of SiC/Si, SiC/SiO2, and SiC/glass heterostructures via VUV/O3 activated direct bonding at low temperature. Ceramics International, 45, 4094–4098.

    Article  Google Scholar 

  • Xu, J., Wang, C., Zhou, S., et al. (2019b). Low-temperature direct bonding of Si and quartz glass using the APTES modification. Ceramics International, 45, 16670–16675.

    Article  Google Scholar 

  • Xu, J., Wang, C., Zhang, R., et al. (2019c). VUV/O3 activated direct heterogeneous bonding towards high-performance LiNbO3-based optical devices. Applied Surface Science, 495, 1–11.

    Article  Google Scholar 

  • Xu, J., Wang, C., Kang, Q., et al. (2019d). Direct heterogeneous bonding of SiC to Si, SiO2, and glass for high-performance power electronics and bio-MEMS. In Proceedings—Electron. Components Technol. Conf. 2019-May (pp. 1266–1271).

    Google Scholar 

  • Xu, Y., Mu, F., Wang, Y., et al. (2019e). Direct wafer bonding of Ga2O3–SiC at room temperature. Ceramics International, 45, 6552–6555.

    Article  Google Scholar 

  • Xu, J., Wang, C., Ji, X., et al. (2020a). Direct bonding of high dielectric oxides for high-performance transistor applications. Scripta Materialia, 178, 307–312.

    Article  Google Scholar 

  • Xu, J., Ren, Z., Dong, B., et al. (2020b). Nanometer-scale heterogeneous interfacial sapphire wafer-bonding for enabling plasmonic-enhanced nanofluidic mid-infrared spectroscopy. ACS Nano, 14, 12159–12172.

    Article  Google Scholar 

  • Yamamoto, S. I., Higurashi, E., Suga, T., & Sawada, R. (2012). Low-temperature hermetic packaging for microsystems using AuAu surface-activated bonding at atmospheric pressure. Journal of Micromechanics and Microengineering, 22, 055026.

    Article  Google Scholar 

  • Yamamoto, M., Higurashi, E., Suga, T., et al. (2018). Properties of various plasma surface treatments for low-temperature au-au bonding. Japanese Journal of Applied Physics, 57, 1–6.

    Article  Google Scholar 

  • Yamamoto, M., Matsumae, T., Kurashima, Y., et al. (2019). Comparison of argon and oxygen plasma treatments for ambient room-temperature wafer-scale au-au bonding using ultrathin au films. Micromachines, 10, 0020119.

    Article  Google Scholar 

  • Yan, L. L., Lee, C. K., Yu, D. Q., et al. (2009). A hermetic seal using composite thin-film in/Sn solder as an intermediate layer and its interdiffusion reaction with cu. Journal of Electronic Materials, 38, 200–207.

    Article  Google Scholar 

  • Yang, L., Hosoda, N., & Suga, T. (1997). Investigations on the Interface microstructure of stainless steel/aluminum joints created by the surface activated bonding method. Interdisciplinary Sciences, 5, 279–286.

    Google Scholar 

  • Yazici, M. S., Dong, B., Hasan, D., et al. (2020). Integration of MEMS IR detectors with MIR waveguides for sensing applications. Optics Express, 28, 11524.

    Article  Google Scholar 

  • Yu, D., Yan, L., Lee, C., et al. (2008). Study on high yield wafer to wafer bonding using In/Sn and Cu metallization (pp. 1242–1245).

    Google Scholar 

  • Yu, D. Q., Lee, C., Yan, L. L., et al. (2009a). Characterization and reliability study of low temperature hermetic wafer level bonding using in/Sn interlayer and cu/Ni/au metallization. Journal of Alloys and Compounds, 485, 444–450.

    Article  Google Scholar 

  • Yu, D. Q., Yan, L. L., Lee, C., et al. (2009b). Wafer-level hermetic bonding using Sn/in and cu/Ti/au metallization. IEEE Transactions on Components and Packaging Technologies, 32, 926–934.

    Article  Google Scholar 

  • Yu, D. Q., Lee, C., Yan, L. L., et al. (2009c). The role of Ni buffer layer on high yield low temperature hermetic wafer bonding using in/Sn/cu metallization. Applied Physics Letters, 94, 3–5.

    Article  Google Scholar 

  • Zhou, H., Hui, X., Li, D., et al. (2020). Metal–organic framework-surface-enhanced infrared absorption platform enables simultaneous on-Chip sensing of greenhouse gases. Advancement of Science, 2001173, 1–11.

    Google Scholar 

Download references

Acknowledgments

This work is partly supported by research grant of CRP-15th (NRF-CRP15-2015-02) at the National University of Singapore (NUS), Singapore, and partly supported by the National Natural Science Foundation of China (grant no. 51975151) at Harbin Institute of Technology. Jikai Xu also thanks the China Scholarship Council (File No. 201906120176) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenxi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, J., Ren, Z., Dong, B., Wang, C., Tian, Y., Lee, C. (2022). Evolution of Wafer Bonding Technology and Applications from Wafer-Level Packaging to Micro/Nanofluidics-Enhanced Sensing. In: Yang, Z. (eds) Advanced MEMS/NEMS Fabrication and Sensors. Springer, Cham. https://doi.org/10.1007/978-3-030-79749-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79749-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79748-5

  • Online ISBN: 978-3-030-79749-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics