Skip to main content

Cross Talk Between Apoptosis and Autophagy in Regulating the Progression of Heart Disease

  • Chapter
  • First Online:
Biochemistry of Apoptosis and Autophagy

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 18))

  • 861 Accesses

Abstract

Apoptosis, the programmed cell death is prominent in multiple cardiac pathologies eventually resulting in heart failure. Autophagy, on the other hand plays an important role in recycling nutrients by causing the degradation of intracellular components not required by the cardiomyocytes, during cellular stress. Both apoptosis and autophagy play significant roles in cardiac development and disease. Absence of apoptosis in the developing embryo results in various congenital heart defects; however, excessive apoptosis in heart has been linked to negative ventricular remodeling. Similarly, desired levels of cellular proteins are maintained by basal levels of autophagy, and abnormal changes in the autophagic pathway have detrimental effects on myocytes. Though the mechanisms of each of these pathways differ, there is some dialogue that is always active amongst these two processes through common signaling pathways. Therefore, the interaction of proteins specific to autophagy with the apoptotic proteins might result in activation or inactivation of the process. This chapter summarizes mechanisms of both the pathways in cardiomyocytes and the molecules that link these pathways to regulate cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whelan RS, Kaplinskiy V, Kitsis RN (2010) Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 72(1):19–44. https://doi.org/10.1146/annurev.physiol.010908.163111

    Article  CAS  PubMed  Google Scholar 

  2. Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V (2012) Role of apoptosis in disease. Aging 4(5):330–349

    Article  CAS  Google Scholar 

  3. Chiong M et al (2011) Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis 2(12):e244. doi: https://doi.org/10.1038/cddis.2011.130

  4. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. https://doi.org/10.1146/annurev-genet-102808-114910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duprez L, Wirawan E, Berghe TV, Vandenabeele P (2009) Major cell death pathways at a glance. Microbes Infect 11(13):1050–1062. https://doi.org/10.1016/j.micinf.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  6. Nakatogawa H (2020) Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol 1–20. https://doi.org/10.1038/s41580-020-0241-0

  7. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue Kinetics. Br J Cancer 26(4):239–257

    Article  CAS  Google Scholar 

  8. Itoh G et al (1995) DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am J Pathol 146(6):1325–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Takemura G, Kanoh M, Minatoguchi S, Fujiwara H (2013) Cardiomyocyte apoptosis in the failing heart—A critical review from definition and classification of cell death. Int J Cardiol 167(6):2373–2386. https://doi.org/10.1016/j.ijcard.2013.01.163

    Article  PubMed  Google Scholar 

  10. Qin F, Liang MC, Liang C (2005) Progressive left ventricular remodeling, myocyte apoptosis, and protein signaling cascades after myocardial infarction in rabbits. Biochem Biophys Acta BBA Mol Basis Dis1740(3):499–513. https://doi.org/10.1016/j.bbadis.2004.11.007

  11. Park M et al (2009) Apoptosis predominates in nonmyocytes in heart failure. Am J Physiol Heart Circ Physiol 297(2):H785–H791. https://doi.org/10.1152/ajpheart.00310.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim N-H, Kang PM (2010) Apoptosis in cardiovascular diseases: mechanism and clinical implications. Korean Circ J 40(7):299–305. https://doi.org/10.4070/kcj.2010.40.7.299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee Y, Gustafsson ÅB (2009) Role of apoptosis in cardiovascular disease. Apoptosis 14(4):536–548. https://doi.org/10.1007/s10495-008-0302-x

    Article  PubMed  Google Scholar 

  14. Galluzzi L et al (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death. Cell Death Differ 19(1):107–120. https://doi.org/10.1038/cdd.2011.96

    Article  CAS  PubMed  Google Scholar 

  15. Tsipis A (2012) Heart muscle and apoptosis. In: Veselka J (ed) Cardiomyopathies—From basic research to clinical management. InTech

    Google Scholar 

  16. Bryant D et al (1998) Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-α. Circulation 97(14):1375–1381. https://doi.org/10.1161/01.CIR.97.14.1375

    Article  CAS  PubMed  Google Scholar 

  17. Fan Q et al (2013) Inhibition of fas-associated death domain-containing protein (FADD) protects against myocardial ischemia/reperfusion injury in a heart failure mouse model. PLoS ONE 8(9). https://doi.org/10.1371/journal.pone.0073537

  18. Bhuiyan MdS, Takada Y, Shioda N, Moriguchi S, Kasahara J, Fukunaga K (2008) Cardioprotective effect of vanadyl sulfate on ischemia/reperfusion-induced injury in rat heart in vivo is mediated by activation of protein Kinase B and induction of FLICE-inhibitory protein. Cardiovasc Drug Rev 26(1):10–23. https://doi.org/10.1111/j.1527-3466.2008.00039.x

    Article  CAS  Google Scholar 

  19. Marín-García J (2016) Cell death in the pathogenesis and progression of heart failure. Heart Fail Rev 21(2):117–121. https://doi.org/10.1007/s10741-016-9538-7

    Article  PubMed  Google Scholar 

  20. O’Neill KL, Huang K, Zhang J, Chen Y, Luo X (2016) Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev 30(8):973–988. https://doi.org/10.1101/gad.276725.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carrington EM et al (2017) Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo. Cell Death Differ 24(5):878–888. https://doi.org/10.1038/cdd.2017.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuan S, Akey CW (2013) Apoptosome structure, assembly, and procaspase activation. Structure 21(4):501–515. https://doi.org/10.1016/j.str.2013.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG (2008) IAP-targeted therapies for cancer. Oncogene 27(48):6252–6275. https://doi.org/10.1038/onc.2008.302

    Article  CAS  PubMed  Google Scholar 

  24. Reeve JL et al (2007) Distinct mechanisms of cardiomyocyte apoptosis induced by doxorubicin and hypoxia converge on mitochondria and are inhibited by Bcl-xL. J Cell Mol Med 11(3):509–520. https://doi.org/10.1111/j.1582-4934.2007.00042.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu L et al (2014) MicroRNA-15b enhances hypoxia/reoxygenation-induced apoptosis of cardiomyocytes via a mitochondrial apoptotic pathway. Apoptosis Int J Program Cell Death 19(1):19–29. https://doi.org/10.1007/s10495-013-0899-2

    Article  CAS  Google Scholar 

  26. Sharma AK, Dhingra S, Khaper N, Singal PK (2007) Activation of apoptotic processes during transition from hypertrophy to heart failure in guinea pigs. Am J Physiol Heart Circ Physiol 293(3):H1384–H1390. https://doi.org/10.1152/ajpheart.00553.2007

    Article  CAS  PubMed  Google Scholar 

  27. Kubli DA, Quinsay MN, Huang C, Lee Y, Gustafsson ÅB (2008) Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 295(5):H2025–H2031. https://doi.org/10.1152/ajpheart.00552.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chaanine AH, Gordon RE, Kohlbrenner E, Benard L, Jeong D, Hajjar RJ (2013) Potential role of BNIP3 in cardiac remodeling, myocardial stiffness, and endoplasmic reticulum mitochondrial calcium homeostasis in diastolic and systolic heart failure. Circ Heart Fail 6(3):572–583. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dhingra R et al (2014) Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proc Natl Acad Sci 111(51):E5537–E5544. https://doi.org/10.1073/pnas.1414665111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagoor Meeran MF, Laham F, Azimullah S, Tariq S, Ojha S (2019) α-Bisabolol abrogates isoproterenol-induced myocardial infarction by inhibiting mitochondrial dysfunction and intrinsic pathway of apoptosis in rats. Mol. Cell. Biochem 453(1):89–102. https://doi.org/10.1007/s11010-018-3434-5

  31. Scull CM, Tabas I (2011) Mechanisms of ER stress-induced apoptosis in atherosclerosis. Arterioscler Thromb Vasc Biol 31(12):2792–2797. https://doi.org/10.1161/ATVBAHA.111.224881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gorman AM, Healy SJM, Jäger R, Samali A (2012) Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther 134(3):306–316. https://doi.org/10.1016/j.pharmthera.2012.02.003

    Article  CAS  PubMed  Google Scholar 

  33. Bae S, Yalamarti B, Kang PM (2008) Role of caspase-independent apoptosis in cardiovascular diseases. Front Biosci J Virtual Libr 13:2495–2503

    Article  CAS  Google Scholar 

  34. Cheung ECC et al (2006) Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J 25(17):4061–4073. https://doi.org/10.1038/sj.emboj.7601276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Penaloza C, Lin L, Lockshin RA, Zakeri Z (2006) Cell death in development: shaping the embryo. Histochem Cell Biol 126(2):149. https://doi.org/10.1007/s00418-006-0214-1

    Article  CAS  PubMed  Google Scholar 

  36. Kunapuli S, Rosanio S, Schwarz ER (2006) ‘How Do Cardiomyocytes Die?’ apoptosis and autophagic cell death in cardiac myocytes. J Card Fail 12(5):381–391. https://doi.org/10.1016/j.cardfail.2006.02.002

    Article  CAS  PubMed  Google Scholar 

  37. Bento CF et al (2016) Mammalian autophagy: how does it work? Annu Rev Biochem 85(1):685–713. https://doi.org/10.1146/annurev-biochem-060815-014556

    Article  CAS  PubMed  Google Scholar 

  38. Li W, Li J, Bao J (2011) Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69(7):1125–1136. https://doi.org/10.1007/s00018-011-0865-5

    Article  CAS  PubMed  Google Scholar 

  39. Noda NN, Inagaki F (2015) Mechanisms of autophagy. Annu Rev Biophys 44(1):101–122. https://doi.org/10.1146/annurev-biophys-060414-034248

    Article  CAS  PubMed  Google Scholar 

  40. Sciarretta S, Hariharan N, Monden Y, Zablocki D, Sadoshima J (2010) Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatr Cardiol 32(3):275–281. https://doi.org/10.1007/s00246-010-9855-x

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li M, Gao P, Zhang J (2016) Crosstalk between autophagy and apoptosis: potential and emerging therapeutic targets for cardiac diseases. Int J Mol Sci 17(3):332. https://doi.org/10.3390/ijms17030332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15(2):81–94. https://doi.org/10.1038/nrm3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hamacher-Brady A, Brady NR, Gottlieb RA (2006) The interplay between pro-death and pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets autophagy. Cardiovasc Drugs Ther 20(6):445. https://doi.org/10.1007/s10557-006-0583-7

    Article  CAS  PubMed  Google Scholar 

  44. Vacek TP, Vacek JC, Tyagi N, Tyagi SC (2011) Autophagy and heart failure: a possible role for homocysteine. Cell Biochem Biophys 62(1):1–11. https://doi.org/10.1007/s12013-011-9281-6

    Article  CAS  Google Scholar 

  45. Wu D, Zhang K, Hu P (2019) The role of autophagy in acute myocardial infarction. Front Pharmacol 10. https://doi.org/10.3389/fphar.2019.00551

  46. Lavandero S, Chiong M, Rothermel BA, Hill JA (2015) Autophagy in cardiovascular biology. J Clin Invest 125(1):55–64. https://doi.org/10.1172/JCI73943

    Article  PubMed  PubMed Central  Google Scholar 

  47. Oka T et al (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485(7397):251–255. https://doi.org/10.1038/nature10992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taneike M et al (2010) Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6(5):600–606. https://doi.org/10.4161/auto.6.5.11947

    Article  CAS  PubMed  Google Scholar 

  49. Zhang J, Liu J, Liu L, McKeehan WL, Wang F (2012) The fibroblast growth factor signaling axis controls cardiac stem cell differentiation through regulating autophagy. Autophagy 8(4):690–691. https://doi.org/10.4161/auto.19290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu H et al (2007) Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 117(7):1782–1793. https://doi.org/10.1172/JCI27523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kostin S et al (2003) Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92(7):715–724. https://doi.org/10.1161/01.RES.0000067471.95890.5C

    Article  CAS  PubMed  Google Scholar 

  52. Djavaheri-Mergny M, Maiuri MC, Kroemer G (2010) Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene 29(12):1717–1719. https://doi.org/10.1038/onc.2009.519

    Article  CAS  PubMed  Google Scholar 

  53. Galonek HL, Hardwick JM (2006) Upgrading the BCL-2 network. Nat Cell Biol 8(12):1317–1319. https://doi.org/10.1038/ncb1206-1317

    Article  CAS  PubMed  Google Scholar 

  54. Zalckvar E et al (2009) DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10(3):285–292. https://doi.org/10.1038/embor.2008.246

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lee J-S et al (2009) FLIP-mediated autophagy regulation in cell death control. Nat Cell Biol 11(11):1355–1362. https://doi.org/10.1038/ncb1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fortunato F et al (2009) Impaired autolysosome formation correlates with Lamp-2 depletion: role of apoptosis, autophagy, and necrosis in pancreatitis. Gastroenterology 137(1):350-360.e5. https://doi.org/10.1053/j.gastro.2009.04.003

    Article  PubMed  Google Scholar 

  57. Norman JM, Cohen GM, Bampton ETW (2010) The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 6(8):1042–1056. https://doi.org/10.4161/auto.6.8.13337

    Article  CAS  PubMed  Google Scholar 

  58. Pyo J-O et al (2005) Essential roles of Atg5 and FADD in autophagic cell death dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280(21):20722–20729. https://doi.org/10.1074/jbc.M413934200

    Article  CAS  PubMed  Google Scholar 

  59. Shi M et al (2013) Calpain, Atg5 and Bak play important roles in the crosstalk between apoptosis and autophagy induced by influx of extracellular calcium. Apoptosis 18(4):435–451. https://doi.org/10.1007/s10495-012-0786-2

    Article  CAS  PubMed  Google Scholar 

  60. Rubinstein AD, Eisenstein M, Ber Y, Bialik S, Kimchi A (2011) The Autophagy protein Atg12 Associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell 44(5):698–709. https://doi.org/10.1016/j.molcel.2011.10.014

    Article  CAS  PubMed  Google Scholar 

  61. Quinsay MN, Thomas RL, Lee Y, Gustafsson ÅB (2010) Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy 6(7):855–862. https://doi.org/10.4161/auto.6.7.13005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hamacher-Brady A, Brady NR, Gottlieb RA, Gustafsson AB (2006) Autophagy as a protective response to Bnip3-mediated apoptotic signaling in the heart. Autophagy 2(4):307–309

    Article  CAS  Google Scholar 

  63. You M et al (2013) TRAIL induces autophagic protein cleavage through caspase activation in melanoma cell lines under arginine deprivation. Mol Cell Biochem 374(1):181–190. https://doi.org/10.1007/s11010-012-1518-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv Dhingra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sareen, N., Kirshenbaum, L.A., Dhingra, S. (2022). Cross Talk Between Apoptosis and Autophagy in Regulating the Progression of Heart Disease. In: Kirshenbaum, L.A. (eds) Biochemistry of Apoptosis and Autophagy. Advances in Biochemistry in Health and Disease, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-78799-8_6

Download citation

Publish with us

Policies and ethics