Skip to main content

Advertisement

Log in

MicroRNA-15b enhances hypoxia/reoxygenation-induced apoptosis of cardiomyocytes via a mitochondrial apoptotic pathway

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Myocardial ischemia reperfusion (I/R) can induce altered expression of microRNAs (miRNAs). The miRNAs—miR-15a, miR-15b and miR-16 have been shown to play a role in apoptosis, although not in cardiac-related models. We investigated the roles of miR-15b in hypoxia/reoxygenation (H/R)-induced apoptosis of cardiomyocytes. Quantitative real time polymerase chain reaction results showed that the expression of miR-15a and miR-15b were up-regulated in Sprague–Dawley rat hearts subjected to I/R. Expression levels of miR-15b increased more than four fold above basal levels. Similar results were obtained for cardiomyocytes exposed to H/R. Recombinant adenoviral vectors were generated to explore the functional role of miR-15b in cultured cardiomyocytes exposed to H/R. Overexpression of miR-15b enhanced cell apoptosis and the loss of mitochondrial membrane potential, as determined by flow cytometric analysis. Conversely, down-regulated expression was cytoprotective. The effects of miR-15b can by mimicked by Bcl-2 short-interfering RNAs. The inhibition of miR-15b increased expression levels of the Bcl-2 protein without affecting Bcl-2 mRNA levels, suppressed the release of mitochondrial cytochrome c to the cytosol and decreased the activities of caspase-3 and 9. It is possible that miR-15b is the upstream regulator of a mitochondrial signaling pathway for H/R induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2012) Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation 125(1):e2–e220

    Article  PubMed  Google Scholar 

  2. Cannon RR (2005) Mechanisms, management and future directions for reperfusion injury after acute myocardial infarction. Nat Clin Pract Cardiovasc Med 2(2):88–94

    Article  CAS  PubMed  Google Scholar 

  3. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357(11):1121–1135

    Article  CAS  PubMed  Google Scholar 

  4. Braunwald E, Kloner RA (1985) Myocardial reperfusion: a double-edged sword? J Clin Invest 76(5):1713–1719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Prech M, Marszalek A, Schroder J, Filas V, Lesiak M, Jemielity M, Araszkiewicz A, Grajek S (2010) Apoptosis as a mechanism for the elimination of cardiomyocytes after acute myocardial infarction. Am J Cardiol 105(9):1240–1245

    Article  PubMed  Google Scholar 

  6. Freude B, Masters TN, Robicsek F, Fokin A, Kostin S, Zimmermann R, Ullmann C, Lorenz-Meyer S, Schaper J (2000) Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J Mol Cell Cardiol 32(2):197–208

    Article  CAS  PubMed  Google Scholar 

  7. Abbate A, Bussani R, Amin MS, Vetrovec GW, Baldi A (2006) Acute myocardial infarction and heart failure: role of apoptosis. Int J Biochem Cell Biol 38(11):1834–1840

    Article  CAS  PubMed  Google Scholar 

  8. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  9. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Latronico MV, Catalucci D, Condorelli G (2007) Emerging role of microRNAs in cardiovascular biology. Circ Res 101(12):1225–1236

    Article  CAS  PubMed  Google Scholar 

  12. Small EM, Frost RJ, Olson EN (2010) MicroRNAs add a new dimension to cardiovascular disease. Circulation 121(8):1022–1032

    Article  PubMed Central  PubMed  Google Scholar 

  13. van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103(48):18255–18260

    Article  PubMed  Google Scholar 

  14. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 105(35):13027–13032

    Article  PubMed  Google Scholar 

  15. Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ, Sen CK (2009) MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 82(1):21–29

    Article  CAS  PubMed  Google Scholar 

  16. Ren XP, Wu J, Wang X, Sartor MA, Qian J, Jones K, Nicolaou P, Pritchard TJ, Fan GC (2009) MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119(17):2357–2366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Liu LF, Liang Z, Lv ZR, Liu XH, Bai J, Chen J, Chen C, Wang Y (2012) MicroRNA-15a/b are up-regulated in response to myocardial ischemia/reperfusion injury. J Geriatr Cardiol 9(1):28–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA, Hare JM, Olson EN, van Rooij E (2012) Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110(1):71–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Condorelli G, Latronico MV, Dorn GN (2010) MicroRNAs in heart disease: putative novel therapeutic targets? Eur Heart J 31(6):649–658

    Article  CAS  PubMed  Google Scholar 

  20. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102(39):13944–13949

    Article  CAS  PubMed  Google Scholar 

  21. Guo CJ, Pan Q, Li DG, Sun H, Liu BW (2009) miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: an essential role for apoptosis. J Hepatol 50(4):766–778

    Article  CAS  PubMed  Google Scholar 

  22. Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D (2008) miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 123(2):372–379

    Article  CAS  PubMed  Google Scholar 

  23. Wang C, Li YZ, Wang XR, Lu ZR, Shi DZ, Liu XH (2012) Panax quinquefolium saponins reduce myocardial anoxia-reoxygenation injury by inhibiting excessive endoplasmic reticulum stress. Shock 37(2):228–233

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, Ge X, Liu X (2009) The cardioprotective effect of postconditioning is mediated by ARC through inhibiting mitochondrial apoptotic pathway. Apoptosis 14(2):164–172

    Article  CAS  PubMed  Google Scholar 

  25. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  26. Yue J, Tigyi G (2010) Conservation of miR-15a/16-1 and miR-15b/16-2 clusters. Mamm Genome 21(1–2):88–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Buja LM, Weerasinghe P (2010) Unresolved issues in myocardial reperfusion injury. Cardiovasc Pathol 19(1):29–35

    Article  PubMed  Google Scholar 

  28. Chinnaiyan AM, O’Rourke K (1995) A novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81(4):505–512

    Article  CAS  PubMed  Google Scholar 

  29. Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B, Brandt GS, Iwakoshi NN, Schinzel A, Glimcher LH, Korsmeyer SJ (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312(5773):572–576

    Article  CAS  PubMed  Google Scholar 

  30. Chen LH, Jiang CC, Watts R, Thorne RF, Kiejda KA, Zhang XD, Hersey P (2008) Inhibition of endoplasmic reticulum stress-induced apoptosis of melanoma cells by the ARC protein. Cancer Res 68(3):834–842

    Article  CAS  PubMed  Google Scholar 

  31. Kim H, Rafiuddin-Shah M, Tu HC, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH (2006) Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8(12):1348–1358

    Article  CAS  PubMed  Google Scholar 

  32. Borutaite V, Brown GC (2003) Mitochondria in apoptosis of ischemic heart. FEBS Lett 541(1–3):1–5

    Article  CAS  PubMed  Google Scholar 

  33. Nishi H, Ono K, Iwanaga Y, Horie T, Nagao K, Takemura G, Kinoshita M, Kuwabara Y, Mori RT, Hasegawa K, Kita T, Kimura T (2010) MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat cardiac myocytes. J Biol Chem 285(7):4920–4930

    Article  CAS  PubMed  Google Scholar 

  34. Chien CT, Chang TC, Tsai CY, Shyue SK, Lai MK (2005) Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis. Am J Transplant 5(6):1194–1203

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang.

Additional information

Lifeng Liu and Guoming Zhang authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Zhang, G., Liang, Z. et al. MicroRNA-15b enhances hypoxia/reoxygenation-induced apoptosis of cardiomyocytes via a mitochondrial apoptotic pathway. Apoptosis 19, 19–29 (2014). https://doi.org/10.1007/s10495-013-0899-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0899-2

Keywords

Navigation