Skip to main content

Flowering and Juvenility in Apple

  • Chapter
  • First Online:
The Apple Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Flowering and juvenility are important traits for the cultivation and breeding of apples (Malus spp.). As apples are reported to have been cultivated long before ancient Greek civilization, many findings related to morphological and physiological traits, and well-developed cultivation techniques have been accumulated for many cultivated, ornamental, and rootstock apples. During the first half of the 1990s, elucidation of the molecular mechanism(s) of flower development in model plants has received much attention leading to major advances. This is followed by determinations of genetic sequences and functional analyses of genes controlling flowering and juvenility in these plants using genetic transformation technologies during the latter half of the 1990s. Subsequently, genes involved in floral organ development and genes involved in either flower induction or suppression of the apple, such as MdFT1 and MdTFL1, respectively, have been identified. Over the past decade, either stable or transient gene expression systems have been developed to control the flowering time in apple. These advances have had significant impacts on functional analysis of various genes of interest controlling fruit quality traits and pursuing apple breeding efforts with significantly reduced generation cycles. Future efforts should pursue functional analyses of genes, such as TFL1/FT-like genes; moreover, it is necessary to investigate and delineate relationships between plant hormones/sugars and flowering in apples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Aldwinckle HS (1975) Flowering of apple seedlings 16–20 months after germination. HortScience 10(2):124–126

    Article  Google Scholar 

  • Bowman JL (2012) The ABC model of flower development: then and now. Development 139:4095–4098

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    Article  CAS  PubMed  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    Article  CAS  PubMed  Google Scholar 

  • Brown SK, Maloney KE (2003) Genetic improvement of apple: breeding, markers, mapping and biotechnology. In: Ferree DC, Warrington IJ (eds) Apples: botany, production, and uses. CAB International Publisher, Oxon, pp 31–59

    Chapter  Google Scholar 

  • Buban T, Faust M (1982) Flower bud induction in apple trees: Internal control and differentiation. Hortic Rev 4:174–203

    CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  • Coen ES, Romero JM, Doyle S, Elliott R, Murphy G, Carpenter R (1990) floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63(6):1311–1322

    Article  CAS  PubMed  Google Scholar 

  • Chailahyan MK (1968) Internal factors of plant flowering. Annu Rev Plant Physiol 19:1–37

    Article  Google Scholar 

  • Chevreau E, Lespinasse Y, Gallet M (1985) Inheritance of pollen enzymes and polyploidy origin of apple (Malus × domestica Borkh.). Theor Appl Genet 71:268–277

    Article  CAS  PubMed  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  CAS  PubMed  Google Scholar 

  • Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro EA, Gouzy J, Rees DJG, Guérif P, Muranty H, Durel CE, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, van de Weg E, Troggio M, Bucher E (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Dennis FG Jr (2003) Flowering, pollination and fruit set and development. In: Ferree DC, Warrington IJ (eds) Apples: botany, production, and uses. CAB International Publisher, Oxon, pp 153–166

    Chapter  Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliate L. Raf.). Transgenic Res 14:703–712

    Article  CAS  PubMed  Google Scholar 

  • Esumi T, Tao R, Yonemori K (2005) Isolation of LEAFY and TERMINAL FLOWER1 homologues from six fruit tree species in the subfamily Maloideae of the family Rosaceae. Sex Plant Reprod 17:277–287

    Article  CAS  Google Scholar 

  • Flachowsky H, Le Roux PM, Peil A, Patocchi A, Richter K, Hanke MV (2011) Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol 192:364–377

    Article  CAS  PubMed  Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula) in apple (Malus × domestica) induces early flowering. Plant Breed 126:137–145

    Article  CAS  Google Scholar 

  • Foster T, Johnston R, Seleznyova A (2003) A morphological and quantitative characterization of early floral development in apple (Malus × domestica Borkh.). Ann Bot 92:199–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasic K, Gonzales DO, Thimmapuram J, Liu L, Malnoy M, Gong G, Han Y, Vodkin LO, Liu L, Aldwinckle H, Carroll N, Orvis L, Goldsbrough P, Clifton S, Fulton L, Dante M, Theising B, Martin J, Pape D, Wisniewski ME, Fazio G, Feltus FA, Korban SS (2009) Comparative analysis and functional annotation of an expressed sequence tag collection of apple. Plant Genome 2:23–38

    Article  CAS  Google Scholar 

  • Giakountis A, Coupland G (2008) Phloem transport of flowering signals. Curr Opin Plant Biol 11:687–694

    Article  CAS  PubMed  Google Scholar 

  • Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96(8):1069–1076

    Article  CAS  Google Scholar 

  • Hackett WP (1985) Juvenility, maturation, and rejuvenility in woody plants. Hortic Rev 7:109–155

    Google Scholar 

  • Hanke M-V, Flachowsky H, Peil A, Hättasch C (2007) No flower no fruit—Genetic potentials to trigger flowering in fruit trees. Genes Genomes Genomics 1:1–20

    Google Scholar 

  • Hokanson S, Szewc-McFadden A, Lamboy W, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97(5–6):671–683

    Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    Article  CAS  PubMed  Google Scholar 

  • Huijser P, Klein J, Lonnig W, Meijer H, Saedler H, Sommer H (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J 11:1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ireland HS, Yao J-L, Tomes S, Sutherland PW, Nieuwenhuizen N, Gunasee-lan K, Winz RA, David KM, Schaffer RJ (2013) Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. Plant J 73:1044–1056

    Article  CAS  PubMed  Google Scholar 

  • Irish VF, Sussex IM (1990) Function of the apetala-1gene during Arabidopsis floral development. Plant Cell 2:741–753

    CAS  PubMed  PubMed Central  Google Scholar 

  • James DJ, Passey AJ, Barbara DJ, Bevan M (1989) Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Rep 7:658–661

    Article  CAS  PubMed  Google Scholar 

  • Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moor JN (eds) Fruit Breeding. John Wiley & Sons Inc., New York, pp 1–77

    Google Scholar 

  • Jin S, Jung HS, Chung KS, Lee JH, Ahn JH (2015) FLOWERING LOCUS T has higher protein mobility than TWIN SISTER OF FT. J Exp Bot 66(20):6109–6117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Han Y, Zhao YF, Korban SS (2012) A high-throughput apple SNP genotyping platform using the GoldenGateTM assay. Gene 494:196–201

    Article  CAS  PubMed  Google Scholar 

  • Kitahara K, Ohtsubo T, Soejima J, Matsumoto S (2004) Cloning and characterization of apple class B MADS-box genes including a novel AP3 homologue MdTM6. J Jpn Soc Hortic Sci 73:208–215

    Article  CAS  Google Scholar 

  • Klocko AL, Borejsza-Wysocka E, Brunner AM, Shevchenko O, Aldwinckle H, Strauss SH (2016) Transgenic suppression of AGAMOUS genes in apple reduces fertile and increases floral attractiveness. PLoS ONE 11:e0159421. https://doi.org/10.1371/journal.pone.0159421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M. Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Google Scholar 

  • Koornneef M, Alonso-Blanco C, Peeters AJM, Soppe W (1998) Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 49:345–370

    Article  CAS  PubMed  Google Scholar 

  • Kotoda N, Wada M (2005) MdTFL1, a TFL1-like gene of apple, retards the transition from the vegetative to reproductive phase in transgenic Arabidopsis. Plant Sci 168:95–104

    Article  CAS  Google Scholar 

  • Kotoda N, Wada M, Komori S, Kidou S, Abe K, Masuda T, Soejima T (2000) Expression pattern of homologues of floral meristem identity genes LFY and AP1 during flower development in apple. J Am Soc Hortic Sci 125:398–403

    Article  CAS  Google Scholar 

  • Kotoda N, Wada M, Kusaba S, Kano-Murakami Y, Masuda T, Soejima J (2002) Overexpression of MdMADS5, an APETALA1-like gene of apple, causes early flowering in transgenic Arabidopsis. Plant Sci 162:679–687

    Article  CAS  Google Scholar 

  • Kotoda N, Wada M, Masuda T, Soejima J (2003) The break-through in the reduction of juvenile phase in apple using transgenic approaches. Acta Hortic 625:337–343

    Article  CAS  Google Scholar 

  • Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci 131:74–81

    Article  CAS  Google Scholar 

  • Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi S, Iwanami H, Moriya S, Abe K (2010) Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.) Plant Cell Physiol 51(4):561–575

    Google Scholar 

  • Le Roux PM, Flachowsky H, Hanke MV, Gessler C, Patocchi A (2012) Use of a transgenic early flowering approach in apple (Malus × domestica Borkh.) to introgress fire blight resistance from cultivar Evereste. Mol Breed 30:857–874

    Article  Google Scholar 

  • Levy YY, Dean C (1998) The transition to flowering. Plant Cell 10:1973–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhang D, Zhang X, Xing L, Fan S, Ma J, Zhao C, Du L, Han H (2018) A transcriptome analysis of two apple (Malus × domestica) cultivars with different flowering abilities reveals a gene network module associated with floral transitions. Sci Hortic 239(2018):269–281

    Article  CAS  Google Scholar 

  • Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11:1007–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770

    Article  CAS  PubMed  Google Scholar 

  • Luby JJ (2003) Taxonomic classification and brief history. In: Ferree DC, Warrington IJ (eds) Apples: botany, production, and uses. CAB International Publisher, Oxon, pp 1–29

    Google Scholar 

  • Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5:484–495

    Article  CAS  PubMed  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    Article  CAS  PubMed  Google Scholar 

  • Melzer R, Theissen G (2009) Reconstitution of ‘floral quartets’ in vitro involving class B and class E floral homeotic proteins. Nucl Acids Res 37:2723–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimida N, Kotoda N, Ueda T, Igarashi M, Hatsuyama Y, Iwanami H, Moriya S, Abe K (2009) Four TFL1/ CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus × domestica Borkh.). Plant Cell Physiol 50:394–412

    Article  CAS  PubMed  Google Scholar 

  • Mimida N, Kidou S, Iwanami H, Moriya S, Abe K, Voogd C, Varkonyi-Gasic E, Kotoda N (2011) Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development. Tree Physiol 31:555–566

    Article  PubMed  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y-K (2005) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    Article  Google Scholar 

  • Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M (2007) Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). J Exp Bot 54:2439–2448

    Article  Google Scholar 

  • Ohshima S, Murata M, Sakamoto W, Ogura Y, Motoyoshi F (1997) Cloning and molecular analysis of the Arabidopsis gene Terminal Flower 1. Mol Gen Genet 254:186–194

    Article  CAS  PubMed  Google Scholar 

  • Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88

    Article  CAS  PubMed  Google Scholar 

  • Poethig RS (1990) Phase change and the regulation of shoot morphogenesis in plants. Science 250(4983):923–930

    Article  CAS  PubMed  Google Scholar 

  • Poethig RS (2003) Phase change and the regulation of developmental timing in plants. Science 301(5631):334–336

    Article  CAS  PubMed  Google Scholar 

  • Putterill J, Varkonyi-Gasic E (2016) FT and florigen long-distance flowering control in plants. Curr Opin Plant Biol 33:77–82

    Article  CAS  PubMed  Google Scholar 

  • Riechmann JL, Krizek BA, Meyerowitz EM (1998) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci USA 93:4793–4798

    Google Scholar 

  • Sadamori S, Yoshida Y, Murakami H, Ishizuka S (1963) New apple variety ‘Fuji’. Bull Hortic Res Station. Jpn Ser (C) 1:1–6

    Google Scholar 

  • Sax K (1933) The origin of the Pomoideae. Proc Am Soc Hortic Sci 30:147–150

    Google Scholar 

  • Scorza R (1982) In vitro flowering. Hortic Rev 4:106–127

    CAS  Google Scholar 

  • Sung S-K, An G (1997) Molecular cloning and characterization of a MADS-box cDNA clone of the Fuji apple. Plant Cell Physiol 38:484–489

    Article  CAS  PubMed  Google Scholar 

  • Sung S-K, Yu GH, An G (1999) Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiol 120:969–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung S-K, Yu G-H, Nam J, Jeong D-H, An G (2000) Developmentally regulated expression of two MADS-box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta 210:519–528

    Article  CAS  PubMed  Google Scholar 

  • Tränkner C, Lehmann S, Hoenicka H, Hanke M-V, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H (2010) Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309–1324

    Article  PubMed  CAS  Google Scholar 

  • Tränkner C, Lehmann S, Hoenicka H, Hanke M-V, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malnoy M, Flachowsky H (2011) Note added in proof to: Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 233:217–218

    Article  CAS  Google Scholar 

  • van der Linden CG, Vosman B, Smulders MJM (2002) Cloning and characterization of four apple MADS box genes isolated from vegetative tissues. J Exp Bot 53:1025–1036

    Article  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo1 M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne1 G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42(10):833–841

    Google Scholar 

  • Visser T (1964) Juvenile phase and growth of apple and pear seedlings. Euphytica 13:119–129

    Article  Google Scholar 

  • Wada M, Kotoda N (2003) Flowering genes of apple. Flower News Lett 35:18–27

    Google Scholar 

  • Wada M, Cao Q, Kotoda N, Soejima J, Masuda T (2002) Apple has two orthologues of FLORICAULA/ LEAFY involved in flowering. Plant Mol Biol 49:567–577

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Oshino H, Tanaka N, Mimida N, Moriya-Tanaka Y, Honda C, Hanada T, Iwanami H, Komori S (2018) Expression and functional analysis of apple MdMADS13 on flower and fruit formation. Plant Biotechnol. https://doi.org/10.5511/plantbiotechnology.18.0510a

    Article  Google Scholar 

  • Wada M, Nishitani C, Komori S (2020) Stable and efficient transformation of apple. Plant Biotechnol 37(2):163–170. https://doi.org/10.5511/plantbiotechnology.20.0602a

    Article  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500

    Article  CAS  PubMed  Google Scholar 

  • Wenzel S, Flachowsky H, Hanke M-V (2013) The Fast-track breeding approach can be improved by heat-induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus × domestica Borkh.). Plant Cell Tiss Organ Cult 115:127–137

    Article  CAS  Google Scholar 

  • Xing L-B, Zhang D, Li Y-M, Shen Y-W, Zhao C-P, Ma J-J, An N, Han M-Y (2015) Transcription profiles reveal sugar and hormone signaling pathways mediating flower induction in apple (Malus domestica Borkh.). Plant Cell Physiol 56(10):2052–2068

    Google Scholar 

  • Yamagishi N, Sasaki S, Yamagata K, Komori S, Nagase M, Wada M, Yamamoto T, Yoshikawa N (2011) Promotion of flowering and reduction of a generation time in apple seedlings by ectopical expression of the Arabidopsis thaliana FT gene using the Apple latent spherical virus vector. Plant Mol Biol 75:193–204

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi N, Kishigami R, Yoshikawa N (2014) Reduced generation time of apple seedlings to within a year by means of a plant virus vector: a new plant-breeding technique with no transmission of genetic modification to the next generation. Plant Biotech J 12:60–68

    Article  CAS  Google Scholar 

  • Yao J-L, Dong Y-H, Kvarnheden A, Morris B (1999) Seven MADS-box genes in apple are expressed in different parts of the fruit. J Am Soc Hortic Sci 124:8–13

    Article  CAS  Google Scholar 

  • Yao J-L, Dong Y-H, Morris BAM (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA 98:1306–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao J-L, Xu J, Tomes S, Cui W, Luo Z, Deng C, Ireland HS, Schaffer RJ, Gleave AP (2018) Ectopic expression of the PISTILLATA homologous MdPI inhibits fruit tissue growth and changes fruit shape in apple. Plant Direct 2018:1–11. https://doi.org/10.1002/pld3.51

    Article  CAS  Google Scholar 

  • Zeevaart JA (2008) Leaf-produced floral signals. Curr Opin Plant Biol 11:541–547

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Harry DE, Ma C, Yuceer C, Hsu C-Y, Vikram V, Shevchenko O, Etherington E, Strauss SH (2010) Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. J Exp Bot 61(10):2549–2560

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman RH (1972) Juvenility and flowering in woody plants: a review. HortScience 7:447–455

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiro Kotoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kotoda, N. (2021). Flowering and Juvenility in Apple. In: Korban, S.S. (eds) The Apple Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-74682-7_11

Download citation

Publish with us

Policies and ethics