Skip to main content
Log in

Promotion of flowering and reduction of a generation time in apple seedlings by ectopical expression of the Arabidopsis thaliana FT gene using the Apple latent spherical virus vector

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Tree crops have a long juvenile period which is a serious constraint for genetic improvement and experimental research. For example, apple remains in a juvenile phase for more than five years after seed germination. Here, we report about induction of rapid flowering in apple seedlings using the Apple latent spherical virus (ALSV) vector expressing a FLOWERING LOCUS T (FT) gene from Arabidopsis thaliana. Apple seedlings could be flowered at 1.5–2 months after inoculation to cotyledons of seeds just after germination with ALSV expressing the FT gene. A half of precocious flowers was normal in appearance with sepals, petals, stamens, and pistils. Pollen from a precocious flower successfully pollinated flowers of ‘Fuji’ apple from which fruits developed normally and next-generation seeds were produced. Our system using the ALSV vector promoted flowering time of apple seedlings within two months after germination and shortened the generation time from seed germination to next-generation seed maturation to within 7 months when pollen from precocious flowers was used for pollination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056. doi:10.1126/science.1115983

    Article  PubMed  CAS  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043. doi:10.1126/science.1126038

    Article  PubMed  Google Scholar 

  • Bulley SM, Malnoy M, Atkinson RG, Aldwinckle HS (2007) Transformed apple: traits of significance to growers and consumers. Transgenic Plant J 1:267–279

    Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033. doi:10.1126/science.1141752

    Article  PubMed  CAS  Google Scholar 

  • Crosby JA, Janick J, Pecknold PC, Korban SS, O’Connon PA, Ries SM, Goffreda J, Voordeckers A (1992) Breeding apples for scabe resistance: 1945–1990. Fruit Var J 46:145–166

    Google Scholar 

  • Crosby JA, Janick J, Pecknold PC (1994) ‘GoldRush’ apple. HortSci 29:827–828

    Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliate L Raf). Transgenic Res 14:703–712. doi:10.1007/s11248-005-6632-3

    Article  PubMed  CAS  Google Scholar 

  • Fischer C (1994) Shortening of the juvenile period in apple breeding. In: Schmidt H, Kellerhals M (eds) Developments in plant breeding: progress in temperate fruit breeding. Kluwer Academic Publishers, London, pp 161–164

    Google Scholar 

  • Flachowsky H, Peil T, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADSA4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh.). Plant Breed 126:137–147. doi:10.1111/j.1439-0523.2007.01344.x

    Article  CAS  Google Scholar 

  • Flachowsky H, Hanke M-V, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226. doi:10.1111/j.1439-0523.2008.01591.x

    Article  CAS  Google Scholar 

  • Gasic K, Hernandez A, Korban SS (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Rep 22:437a–437g. doi:10.1007/BF02772687

    Article  Google Scholar 

  • Gosalvez-Bernal B, Genoves A, Navarro JA, Pallas V, Sanchez-Pina A (2008) Distribution and pathway for phloem-dependent movement of Melon necrotic spot virus in melon plants. Mol Plant Pathol 9:447–461. doi:10.1111/j.1364-3703.2008.00474.x

    Article  PubMed  Google Scholar 

  • Hackett WP (1985) Juvenility, maturation and rejuvenation in woody plants. Hortic Rev 7:109–155

    Google Scholar 

  • Hanke M-V, Flachowsky H, Peil A, Hättasch C (2007) No flower no fruit–genetic potentials to trigger flowering in fruit trees. Genes, Genomes, Genomics 1:1–20

    Google Scholar 

  • Hsu CY, Liu Y, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18:1846–1861. doi:10.1105/tpc.106.041038

    Article  PubMed  CAS  Google Scholar 

  • Igarashi A, Yamagata K, Sugai T, Takahashi Y, Sugawara E, Tamura A, Yaegashi H, Yamagishi N, Takahashi T, Isogai M, Takahashi H, Yoshikawa N (2009) Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386:407–416. doi:10.1016/j.virol.2009.01.039

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Yoshida K (1997) The etiology of apple russet ring disease. Ann Phytopath Soc Jpn 63:487 Abstract in Japanese

    Google Scholar 

  • Koganezawa H, Yanase H, Ochiai M, Sakuma T (1985) An isometric viruslike particle isolated from russet ring-diseased apple. Ann Phytopath Soc Jpn 51:363 Abstract in Japanese

    Article  Google Scholar 

  • Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1, a TFL1-like gene, reduce the juvenile phase in apple. J Am Soc Hort Sci 131:74–81

    Google Scholar 

  • Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi S, Iwanami H, Moriya S, Abe K (2010) Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.). Plant Cell Physiol 51:561–575. doi:10.1093/pcp/pcq021

    Article  PubMed  CAS  Google Scholar 

  • Le Gall O, Sanfaçon H, Ikegami M, Iwanami T, Jones T, Karasev A, Lehto K, Wellink J, Wetzel T, Yoshikawa N (2007) Cheravirus and Sadwavirus: two unassigned genera of plant positive-sense single-stranded RNA viruses formerly considered a typical members of the genus Nepovirus (family Comoviridae). Arch Virol 152:1767–1774

  • Li C, Yoshikawa N, Takahashi T, Ito T, Yoshida K, Koganezawa H (2000) Nucleotide sequence and genome organization of Apple latent spherical virus: a new virus classified into the family Comoviridae. J Gen Virol 81:541–547

    PubMed  CAS  Google Scholar 

  • Li C, Sasaki N, Isogai M, Yoshikawa N (2004) Stable expression of foreign proteins in herbaceous and apple plants using Apple latent spherical virus RNA2 vectors. Arch Virol 149:1541–1558. doi:10.1007/s00705-004-0310-2

    PubMed  CAS  Google Scholar 

  • Li C, Zhang K, Zeng X, Jackson S, Zhou Y, Hong Y (2009) A cis element within FLOWERING LOCUS T mRNA determines its mobility and facilitates trafficking of heterologous viral RNA. J Virol 83:3540–3548. doi:10.1128/JVI.02346-08

    Article  PubMed  CAS  Google Scholar 

  • Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci USA 103:6398–6403. doi:10.1073/pnas.0601620103

    Article  PubMed  CAS  Google Scholar 

  • Lin M-K, Belanger H, Lee Y-J, Varkonyi-Gasic E, Taoka K, Miura E, Xoconostle-Cazares B, Gendler K, Jorgensen RA, Phinney B, Lough TJ, Lucas WJ (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the Cucurbits. Plant Cell 19:1488–1506. doi:10.1105/tpc.107.051920

    Article  PubMed  CAS  Google Scholar 

  • Lodhi MA, Ye G-N, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13. doi:10.1007/BF02668658

    Article  CAS  Google Scholar 

  • Matsuda N, Ikeda K, Kurosaka M, Takashina T, Isuzugawa K, Endo T, Omura M (2009) Early flowering phenotype in transgenic pears (Pyrus communis L.) expressing the CiFT gene. J Japan Soc Hort Sci 78:410–416

    Article  CAS  Google Scholar 

  • Muruganantham M, Moskovitz Y, Haviv S, Horesh T, Fenigstein A, du Preez J, Stephan D, Burger JT, Mawassi M (2009) Grapevine virus A-mediated gene silencing in Nicotiana benthamiana and Vitis vinifera. J Virol Methods 155:167–174. doi:10.1016/j.jviromet.2008.07.034

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Yamagishi N, Isogai M, Komori S, Ito T, Yoshikawa N (2010) Seed and pollen transmission of Apple latent spherical virus in apple. J Gen Plant Pathol (in press)

  • Németh M (1986) virus, mycoplasma and rickettsia diseases of fruit trees. Akadémiai, Kaidó

    Google Scholar 

  • Takagi H, Nagashima K, Inoue M, Sakata I, Sakai T (2008) Detailed analysis of formation of chicken pituitary primordium in early embryonic development. Cell Tissue Res 333:417–426. doi:10.1007/s00441-008-0647-z

    Article  PubMed  Google Scholar 

  • Takahashi T, Sugawara T, Yamatsuta T, Isogai M, Natsuaki T, Yoshikawa N (2007) Analysis of the spatial distribution of identical and two distinct virus populations differently labeled with cyan and yellow fluorescent proteins in coinfected plants. Phytopathology 97:1200–1206

    Article  PubMed  CAS  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036. doi:10.1126/science.1141753

    Article  PubMed  CAS  Google Scholar 

  • Tan F-C, Swan SM (2006) Genetics of flower initiation and development in annual and perennial plants. Physiol Plant 128:8–17. doi:10.1111/j.1399-3054.2006.00724.x

    Article  CAS  Google Scholar 

  • Tränkner C, Lehmann S, Hoenicka H, Hanke M-V, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malony M, Flachowsky H (2010) Over-expression of an FT-homologous gene of apple induces early flowering in animal and perennial plants. Planta (published online). doi: 10.1007/s00425-010-1254-2

  • Visser T (1970) The relation between growth, juvenile period and fruiting of apple seedlings and its use to improve breeding efficiency. Euphytica 19:293–302. doi:10.1007/BF01904206

    Article  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059. doi:10.1126/science.1114358

    Article  PubMed  CAS  Google Scholar 

  • Wilkie JD, Sedgley M, Olesen T (2008) Regulation of floral initiation in horticultural trees. J Exp Bot 59:3215–3228. doi:10.1093/jxb/ern188

    Article  PubMed  CAS  Google Scholar 

  • Yaegashi H, Yamatsuta T, Takahashi T, Li C, Isogai M, Kobori T, Ohki S, Yoshikawa N (2007) Characterization of virus-induced gene silencing in tobacco plants infected with apple latent spherical virus. Arch Virol 152:1839–1849. doi:10.1007/s00705-007-1011-4

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi N, Yoshikawa N (2009) Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with Apple latent spherical virus vectors. Plant Mol Biol 71:15–24. doi:10.1007/s11103-009-9505-y

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi N, Sasaki S, Yoshikawa N (2010) Highly efficient method for inoculation of apple viruses to apple seedlings. Julius-Kuhn-Archiv. 427: 226–229. (http://icvf.jki.bund.de)

  • Yamamoto T, Kimura T, Soejima J, Sanada T, Ban Y, Hayashi T (2004) Identification of quince varieties using SSR markers developed from pear and apple. Breed Sci 54:239–244. doi:10.1270/jsbbs.54.239

    Article  CAS  Google Scholar 

  • Yanase H, Yamaguchi A, Mink GI, Sawamura K (1979) Back transmission of apple chlorotic leafspot virus (type strain) to apple and production of apple topworking disease symptoms in Maruba Kaido (Malus prunifolia Borkh var. ringo Asami). Ann Phytopath Soc Japan 46:369–374

    Article  Google Scholar 

  • Yoshikawa N, Okada K, Asanuma K, Watanabe K, Igarashi A, Li C, Isogai M (2006) A movement protein and three capsid proteins are all necessary for the cell-to-cell movement of apple latent spherical cheravirus. Arch Virol 151:837–848. doi:10.1007/s00705-005-0689-4

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Harry DE, Ma C, Yuceer C, Hsu C-Y, Vikram V, Shevchenko O, Etherington E, Strauss SH (2010) Precocious flowering in trees: the FLOERING LOCUS T gene as a research and breeding tool in Poplus. J Expt Botany 61:2549–2560. doi:10.1093/jxb/erq092

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grant-in-Aids for Research and Development Projects for Application in Promoting New Policy of Agriculture, Forestry and Fisheries from the Ministry of Agriculture, Forestry and Fisheries and KAKENHI (no. 20380025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Yoshikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamagishi, N., Sasaki, S., Yamagata, K. et al. Promotion of flowering and reduction of a generation time in apple seedlings by ectopical expression of the Arabidopsis thaliana FT gene using the Apple latent spherical virus vector. Plant Mol Biol 75, 193–204 (2011). https://doi.org/10.1007/s11103-010-9718-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9718-0

Keywords

Navigation