Skip to main content

Muscle Deformation Using Position Based Dynamics

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2020)

Abstract

This paper describes an approach to personalized musculoskeletal modelling, in which the muscle represented by its triangular mesh is subject to deformation, based on a modified position-based dynamic (PBD) method, followed by decomposition of its volume into a set of muscle fibres. The PBD was enhanced by respecting some muscle-specific features, mainly its anisotropy. The proposed method builds no internal structures and works only with the muscle surface model. It runs in real-time on commodity hardware while maintaining visual plausibility of the resulting deformation. For decomposition, the state-of-the-art Kukačka method is used. Experiments with the gluteus maximus, gluteus medius, iliacus and adductor brevis deforming during the simulation of the hip flexion and decomposed into 100 fibres of 15 line segments show that the approach is capable of achieving promising results comparable with those in the literature, at least in the term of muscle fibre lengths.

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic, project SGS-2019-016 and project PUNTIS (LO1506).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://zivadynamics.com/.

References

  1. Arnold, E.M., Ward, S.R., Lieber, R.L., Delp, S.L.: A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38(2), 269–279 (2009). https://doi.org/10.1007/s10439-009-9852-5. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903973/

  2. Audenaert, A., Audenaert, E.: Global optimization method for combined spherical-cylindrical wrapping in musculoskeletal upper limb modelling. Comput. Methods Programs Biomed. 92(1), 8–19 (2008). https://doi.org/10.1016/j.cmpb.2008.05.005. http://www.ncbi.nlm.nih.gov/pubmed/18606476

  3. Bolsterlee, B., Veeger, D.H.E.J., Chadwick, E.K.: Clinical applications of musculoskeletal modelling for the shoulder and upper limb. Med. Biol. Eng. Comput. 51(9), 953–963 (2013). https://doi.org/10.1007/s11517-013-1099-5

    Article  Google Scholar 

  4. Carbone, V., van der Krogt, M., Koopman, H., Verdonschot, N.: Sensitivity of subject-specific models to errors in musculo-skeletal geometry. J. Biomech. 45(14), 2476–2480 (2012). https://doi.org/10.1016/j.jbiomech.2012.06.026

    Article  Google Scholar 

  5. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: MeshLab: an open-source mesh processing tool. Computing 1, 129–136 (2008). https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

    Article  Google Scholar 

  6. Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37(8), 757–767 (1990). https://doi.org/10.1109/10.102791

    Article  Google Scholar 

  7. Delp, S.: Three-dimensional representation of complex muscle architectures and geometries 1. Ann. Biomed. Eng. 33, 1134 (2005). https://doi.org/10.1007/s10439-005-1433-7

    Article  Google Scholar 

  8. Delp, S.L., Loan, J.P.: A computational framework for simulating and analyzing human and animal movement. Comput. Sci. Eng. 2(5), 46–55 (2000)

    Article  Google Scholar 

  9. Červenka, M., Kohout, J.: Fast and realistic approach to virtual muscle deformation. In: Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies. SCITEPRESS - Science and Technology Publications (2020). https://doi.org/10.5220/0009129302170227

  10. Fukuda, N., et al.: Estimation of attachment regions of hip muscles in CT image using muscle attachment probabilistic atlas constructed from measurements in eight cadavers. Int. J. Comput. Assist. Radiol. Surg. 12(5), 733–742 (2017). https://doi.org/10.1007/s11548-016-1519-8

    Article  Google Scholar 

  11. Garner, B., Pandy, M.: The obstacle-set method for representing muscle paths in musculoskeletal models. Comput. Methods Biomech. Biomed. Eng. 3(1), 1–30 (2000)

    Article  Google Scholar 

  12. Herteleer, M., et al.: Variation of the clavicle’s muscle insertion footprints - a cadaveric study. Sci. Rep. 9(1), 1–8 (2019). https://doi.org/10.1038/s41598-019-52845-8

    Article  Google Scholar 

  13. Hong, M., Jung, S., Choi, M.H., Welch, S.: Fast volume preservation for a mass-spring system. IEEE Comput. Graph. Appl. 26, 83–91 (2006). https://doi.org/10.1109/MCG.2006.104

    Article  Google Scholar 

  14. Janák, T., Kohout, J.: Deformable muscle models for motion simulation. In: Proceedings of the 9th International Conference on Computer Graphics Theory and Applications. pp. 301–311. SCITEPRESS - Science and and Technology Publications (2014). https://doi.org/10.5220/0004678903010311

  15. Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24(3), 561–566 (2005). http://portal.acm.org/citation.cfm?doid=1073204.1073229

    Article  Google Scholar 

  16. Kellnhofer, P., Kohout, J.: Time-convenient deformation of musculoskeletal system. In: ALGORITMY 2012, 19th Conference on Scientific Computing, Vysoke Tatry, Slovakia, 09–14 Sep 2012, pp. 239–249. Slovak Univ Technology, Bratislava (2012)

    Google Scholar 

  17. Kohout, J., et al.: Patient-specific fibre-based models of muscle wrapping. Interface Focus 3(2), 20120062 (2013). https://doi.org/10.1098/rsfs.2012.0062

    Article  Google Scholar 

  18. Kohout, J., Kukačka, M.: Real-time modelling of fibrous muscle. Comput. Graph. Forum 33(8), 1–15 (2014). https://doi.org/10.1111/cgf.12354

    Article  Google Scholar 

  19. Kohout, J., Kukačka, M.: Real-time modelling of fibrous muscle. In: Computer Graphics Forum [18], pp. 1–15. https://doi.org/10.1111/cgf.12354

  20. Kohout, J., Cholt, D.: Automatic reconstruction of the muscle architecture from the superficial layer fibres data. Comput. Methods Programs Biomed. 150, 85–95 (2017). https://doi.org/10.1016/j.cmpb.2017.08.002

    Article  Google Scholar 

  21. Kohout, J., Cholt, D.: Automatic reconstruction of the muscle architecture from the superficial layer fibres data. In: Computer Methods and Programs in Biomedicine [20], pp. 85–95. https://doi.org/10.1016/j.cmpb.2017.08.002

  22. Kohout, J., Clapworthy, G.J., Martelli, S., Viceconti, M.: Fast realistic modelling of muscle fibres. In: Csurka, G., Kraus, M., Laramee, R.S., Richard, P., Braz, J. (eds.) VISIGRAPP 2012. CCIS, vol. 359, pp. 33–47. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38241-3_3

    Chapter  Google Scholar 

  23. Kojic, M., Mijailovic, S., Zdravkovic, N.: Modelling of muscle behaviour by the finite element method using Hill’s three-element model. Int. J. Numer. Meth. Eng. 43(5), 941–953 (1998). https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<941::AID-NME435>3.0.CO;2-3

    Article  MATH  Google Scholar 

  24. Kotsalos, C., Latt, J., Chopard, B.: Bridging the computational gap between mesoscopic and continuum modeling of red blood cells for fully resolved blood flow. J. Comput. Phys. 398, 108905 (2019). https://doi.org/10.1016/j.jcp.2019.108905. cited By 0

    Article  MathSciNet  MATH  Google Scholar 

  25. Macklin, M., et al.: Small steps in physics simulation. In: Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2019, pp. 2:1–2:7. ACM, New York (2019). https://doi.org/10.1145/3309486.3340247

  26. Modenese, L., Gopalakrishnan, A., Phillips, A.: Application of a falsification strategy to a musculoskeletal model of the lower limb and accuracy of the predicted hip contact force vector. J. Biomech. 46(6), 1193–1200 (2013). https://doi.org/10.1016/j.jbiomech.2012.11.045

    Article  Google Scholar 

  27. Modenese, L., Kohout, J.: Automated generation of three-dimensional complex muscle geometries for use in personalised musculoskeletal models. Ann. Biomed. Eng. 48, 1793–1804 (2020). https://doi.org/10.1007/s10439-020-02490-4

    Article  Google Scholar 

  28. Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Commun. Image Represent. 18, 109–118 (2007). https://doi.org/10.1016/j.jvcir.2007.01.005

    Article  Google Scholar 

  29. Oberhofer, K., Mithraratne, K., Stott, N.S., Anderson, I.A.: Anatomically-based musculoskeletal modeling: prediction and validation of muscle deformation during walking. Vis. Comput. 25(9), 843–851 (2009). https://doi.org/10.1007/s00371-009-0314-8

    Article  Google Scholar 

  30. Otake, Y., et al.: Patient-specific skeletal muscle fiber modeling from structure tensor field of clinical CT images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 656–663. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_75

    Chapter  Google Scholar 

  31. Pellikaan, P., et al.: Evaluation of a morphing based method to estimate muscle attachment sites of the lower extremity. J. Biomech. 47(5), 1144–1150 (2014). https://doi.org/10.1016/j.jbiomech.2013.12.010

    Article  Google Scholar 

  32. Romeo, M., Monteagudo, C., Sánchez-Quirós, D.: Muscle and fascia simulation with extended position based dynamics. Comput. Graph. Forum 39(1), 134–146 (2019). https://doi.org/10.1111/cgf.13734

    Article  Google Scholar 

  33. Shao, X., Liao, E., Zhang, F.: Improving SPH fluid simulation using position based dynamics. IEEE Access 5, 13901–13908 (2017). https://doi.org/10.1109/ACCESS.2017.2729601

    Article  Google Scholar 

  34. Valente, G., Martelli, S., Taddei, F., Farinella, G., Viceconti, M.: Muscle discretization affects the loading transferred to bones in lower-limb musculoskeletal models. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 226(2), 161–169 (2012)

    Article  Google Scholar 

  35. Van Sint Jan, S.: Introducing anatomical and physiological accuracy in computerized anthropometry for increasing the clinical usefulness of modeling systems. Crit. Rev. Phys. Rehabil. Med. 17, 149–174 (2005). https://doi.org/10.1615/CritRevPhysRehabilMed.v17.i4.10

    Article  Google Scholar 

  36. Viceconti, M., Clapworthy, G., Van Sint Jan, S.: The virtual physiological human - a European initiative for in silico human modelling. J. Physiol. Sci.: JPS 58, 441–446 (2008). https://doi.org/10.2170/physiolsci.RP009908

    Article  Google Scholar 

  37. Weinhandl, J.T., Bennett, H.J.: Musculoskeletal model choice influences hip joint load estimations during gait. J. Biomech. 91, 124–132 (2019). https://doi.org/10.1016/j.jbiomech.2019.05.015

    Article  Google Scholar 

  38. Zhao, Y., et al.: Laplacian musculoskeletal deformation for patient-specific simulation and visualisation. In: 2013 17th International Conference on Information Visualisation. IEEE (2013). https://doi.org/10.1109/iv.2013.67

Download references

Acknowledgment

Authors would like to thank their colleagues and students for valuable discussion, worthful suggestions and constructive comments. Authors would like to thank also anonymous reviewers for their hints and notes provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Kohout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kohout, J., Červenka, M. (2021). Muscle Deformation Using Position Based Dynamics. In: Ye, X., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2020. Communications in Computer and Information Science, vol 1400. Springer, Cham. https://doi.org/10.1007/978-3-030-72379-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72379-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72378-1

  • Online ISBN: 978-3-030-72379-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics