Skip to main content
Log in

Anatomically-based musculoskeletal modeling: prediction and validation of muscle deformation during walking

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Accurate modeling of the musculoskeletal system during motion is a challenging task that has not yet been solved. In this paper, we outline and validate a free-form deformation method called the Host Mesh Fitting (HMF) technique for predicting muscle deformation during walking of a subject-specific musculoskeletal model. 20 lower limb muscles were deformed according to the HMF solution of a surrounding host mesh that resembled the skin boundary, resulting in a realistic walking simulation of the anatomically-based model. The shape changes of five muscles were further validated by comparing the predicted deformations with magnetic resonance image data in two lower limb positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lieber, L.R., Friden, J.: Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23, 1647–1666 (2000)

    Article  Google Scholar 

  2. Magnenat-Thalmann, N., Thalmann, D.: Virtual humans: thirty years of research, what next? Vis. Comput. 21, 997–1015 (2005)

    Article  Google Scholar 

  3. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. ACM Comput. Graph. 20(4), 151–160 (1986)

    Article  Google Scholar 

  4. Fernandez, J.W., Mithraratne, P., Thrupp, S.F., Tawhai, M.H., Hunter, P.J.: Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model. Mechanobiol. 2, 139–155 (2004)

    Article  Google Scholar 

  5. Fernandez, J.W., Ho, A., Walt, S., Anderson, I.A., Hunter, P.J.: A cerebral palsy assessment tool using anatomically based geometries and free-form deformation. Biomech. Model. Mechanobiol. 4, 39–56 (2005)

    Article  Google Scholar 

  6. Lemos, R.R., Rokne, J., Baranoski, G.V.G., Kawakami, Y., Kurihara, T.: Modeling and simulating the deformation of human skeletal muscle based on anatomy and physiology. Comput. Animat. Virtual Worlds 16, 319–330 (2005)

    Article  Google Scholar 

  7. Teran, J., Sifakis, E., Blemker, S.S., Ng-Thow-Hing, V., Lau, C., Fedkiw, R.: Creating and Simulating skeletal muscle from the visible human data set. IEEE Trans. Vis. Comput. Graph. 11(3), 317–328 (2005)

    Article  Google Scholar 

  8. Blemker, S.S., Delp, S.L.: Rectus femoris and vastus intermedius fiber excursions predicted by three-dimensional muscle models. J. Biomech. 39(8), 1383–1391 (2006)

    Article  Google Scholar 

  9. Park, S.I., Hodgins, J.K.: Capturing and Animating Skin Deformation in Human Motion. ACM Computer Graphics (SIGGRAPH ’06 Conference Proceedings), pp. 881–889 (2006)

  10. Sueda, S., Kaufman, A., Pai, D.K.: Musculotendon simulation for hand animation. ACM Trans. Graph. 27(3), 1–8 (2008)

    Article  Google Scholar 

  11. Kalra, P., Magnenat-Thalmann, N., Moccozet, L., Sannier, G., Aubel, A., Thalmann, D.: Real-time animation of realistic virtual humans. IEEE Comput. Graph. Appl. 18(5), 42–55 (1998)

    Article  Google Scholar 

  12. Scheepers, F., Parent, R.E., Carlson, W.E., May, S.F.: Anatomy-Based Modeling of the Human Musculature. Computer Graphics (SIGGRAPH ’97 Conference Proceedings), pp. 163–172 (1997)

  13. Dong, F., Clapworthy, G.J., Krokos, M.A., Yao, J.: An anatomy-based approach to human muscle modeling and deformation. IEEE Trans. Vis. Comput. Graph. 8(2), 154–170 (2002)

    Article  Google Scholar 

  14. Aubel, A., Thalmann, D.: Interactive Modeling of the Human Musculature. Conference Proceedings Computer Animation, Seoul, Korea (2001)

  15. Arnold, A.S., Liu, M.Q., Schwartz, M.H., Oounpuu, S., Delp, S.L.: The role of estimating muscle-tendon lengths and velocities of the hamstrings in the evaluation and treatment of crouch gait. Gait Posture 23, 273–281 (2006)

    Article  Google Scholar 

  16. Anderson, F.C., Pandy, M.G.: Dynamic optimization of human walking. J. Biomech. Eng. 123, 381–390 (2001)

    Article  Google Scholar 

  17. Delp, S.L., Loan, J.P.: A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput. Biol. Medicine 25(1), 21–34 (1995)

    Article  Google Scholar 

  18. Damsgaard, M., Rasmussen, J., Christensen, S.T., Surma, E., de Zee, M.: Analysis of musculoskeletal systems in the Anybody Modeling System. Simul. Model. Pract. Theory 14, 1100–1111 (2006)

    Article  Google Scholar 

  19. Vasavada, A.N., Lasher, R.A., Meyer, T.E., Lin, D.C.: Defining and evaluating wrapping surfaces for MRI-derived spinal muscle paths. J. Biomech. 41(7), 1450–1457 (2008)

    Article  Google Scholar 

  20. Arnold, A.S., Salinas, S., Asakawa, D.J., Delp, S.L.: Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 5, 108–119 (2000)

    Article  Google Scholar 

  21. Arnold, A.S., Liu, M.Q., Schwartz, M.H., Ounpuu, S., Dias, L.S., Delp, S.L.: Do the hamstrings operate at increased muscle-tendon lengths and velocities after surgical lengthening? J. Biomech. 39, 1498–1506 (2006)

    Article  Google Scholar 

  22. Jonkers, I., Stewart, C., Deloovere, K., Moleaners, G., Spaepen, A.: Musculo-tendon length and lengthening velocity of rectus femoris in stiff knee gait. Gait Posture 23, 222–229 (2006)

    Article  Google Scholar 

  23. Blemker, S.S., Delp, S.L.: Three-dimensional representation of complex muscle architectures and geometries. Ann. Biomed. Eng. 33(5), 661–673 (2005)

    Article  Google Scholar 

  24. Bradley, C.P., Pullan, A.J., Hunter, P.J.: Geometric modeling of the human torso using cubic Hermite elements. Ann. Biomed. Eng. 25, 96–111 (1997)

    Article  Google Scholar 

  25. Sutherland, D.H.: The evolution of clinical gait analysis part II Kinematics. Gait Posture 16, 159–179 (2002)

    Article  Google Scholar 

  26. Klein Horsmann, M.D., Koopman, H.F.J.M., van der Helm, F.C.T., Policacu Prose, L., Veeger, H.E.J.: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. 22, 239–247 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Oberhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberhofer, K., Mithraratne, K., Stott, N.S. et al. Anatomically-based musculoskeletal modeling: prediction and validation of muscle deformation during walking. Vis Comput 25, 843–851 (2009). https://doi.org/10.1007/s00371-009-0314-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0314-8

Keywords

Navigation