Skip to main content
Log in

Clinical applications of musculoskeletal modelling for the shoulder and upper limb

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Musculoskeletal models have been developed to estimate internal loading on the human skeleton, which cannot directly be measured in vivo, from external measurements like kinematics and external forces. Such models of the shoulder and upper extremity have been used for a variety of purposes, ranging from understanding basic shoulder biomechanics to assisting in preoperative planning. In this review, we provide an overview of the most commonly used large-scale shoulder and upper extremity models and categorise the applications of these models according to the type of questions their users aimed to answer. We found that the most explored feature of a model is the possibility to predict the effect of a structural adaptation on functional outcome, for instance, to simulate a tendon transfer preoperatively. Recent studies have focused on minimising the mismatch in morphology between the model, often derived from cadaver studies, and the subject that is analysed. However, only a subset of the parameters that describe the model’s geometry and, perhaps most importantly, the musculotendon properties can be obtained in vivo. Because most parameters are somehow interrelated, the others should be scaled to prevent inconsistencies in the model’s structure, but it is not known exactly how. Although considerable effort is put into adding complexity to models, for example, by making them subject-specific, we have found little evidence of their superiority over current models. The current trend in development towards individualised, more complex models needs to be justified by demonstrating their ability to answer questions that cannot already be answered by existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ackland DC, Pandy MG (2009) Lines of action and stabilizing potential of the shoulder musculature. J Anat 215(2):184–197

    Article  PubMed  Google Scholar 

  2. Ackland DC, Lin Y-C, Pandy MG (2012) Sensitivity of model predictions of muscle function to changes in moment arms and muscle–tendon properties: a Monte-Carlo analysis. J Biomech 45(8):1463–1471

    Article  PubMed  Google Scholar 

  3. Anderson FC, Pandy MG (2001) Dynamic optimization of human walking. J Biomech Eng Trans ASME 123(5):381–390

    Article  CAS  Google Scholar 

  4. Arnet U, van Drongelen S, van der Woude LHV, Veeger DHEJ (2012) Shoulder load during handcycling at different incline and speed conditions. Clin Biomech 27(1):1–6

    Article  Google Scholar 

  5. Arnold AS, Salinas S, Asakawa DJ, Delp SL (2000) Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput Aided Surg 5(2):108–119

    Article  PubMed  CAS  Google Scholar 

  6. Bey MJ, Zauel R, Brock SK, Tashman S (2006) Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J Biomech Eng Transact ASME 128(4):604–609

    Article  Google Scholar 

  7. Blana D, Hincapie JG, Chadwick EK, Kirsch RF (2008) A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems. J Biomech 41(8):1714–1721

    Article  PubMed  Google Scholar 

  8. Blana D, Hincapie JG, Chadwick EK, Kirsch RF (2012) Selection of muscle and nerve-cuff electrodes for neuroprostheses using a customizable musculoskeletal model. J Rehabil Res Dev 5(3):395–408

    Google Scholar 

  9. Bolsterlee B, Zadpoor AA (2013) Transformation methods for estimation of subject-specific scapular muscle attachment sites. Comput Methods Biomech Biomed Eng (in press)

  10. Bolsterlee B, Veeger HEJ, Helm FCT (2013) Modelling clavicular and scapular kinematics: from measurement to simulation. Med Biol Eng Comput (in press)

  11. Bregman DJJ, van Drongelen S, Veeger HEJ (2009) Is effective force application in handrim wheelchair propulsion also efficient? Clini Biomech 24(1):13–19

    Article  CAS  Google Scholar 

  12. Byadarhaly KV, Perdoor MC, Minai AA (2012) A modular neural model of motor synergies. Neural Netw 32:96–108

    Article  PubMed  Google Scholar 

  13. Chadwick EK, van Noort A, van der Helm FC (2004) Biomechanical analysis of scapular neck malunion–a simulation study. Clin Biomech (Bristol, Avon) 19(9):906–912

    Google Scholar 

  14. Chadwick EK, Blana D, van den Bogert AJ, Kirsch RF (2009) A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements. IEEE Trans Biomed Eng 56(4):941–948

    Article  PubMed  Google Scholar 

  15. Charlton IW, Johnson GR (2006) A model for the prediction of the forces at the glenohumeral joint. Proc Inst Mech Eng H J Eng Med 220(8):801–812

    Article  CAS  Google Scholar 

  16. Cheng C-K, Chen H-H, Chen C-S, Lee C-L, Chen C-Y (2000) Segment inertial properties of Chinese adults determined from magnetic resonance imaging. Clin Biomech 15(8):559–566

    Article  CAS  Google Scholar 

  17. Codman E (1934) The shoulder. Thomas Todd Company, Boston

    Google Scholar 

  18. Correa TA, Baker R, Graham HK, Pandy MG (2011) Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait. J Biomech 44(11):2096–2105

    Article  PubMed  Google Scholar 

  19. Crowninshield RD, Brand RA (1981) A physiologically based criterion of muscle force prediction in locomotion. J Biomech 14(11):793–801

    Article  PubMed  CAS  Google Scholar 

  20. Damsgaard M, Rasmussen J, Christensen ST, Surma E, de Zee M (2006) Analysis of musculoskeletal systems in the anybody modeling system. Simul Model Pract Theory 14(8):1100–1111

    Article  Google Scholar 

  21. de Groot JH, Brand R (2001) A three-dimensional regression model of the shoulder rhythm. Clin Biomech 16(9):735–743

    Article  Google Scholar 

  22. De Luca CJ, Forrest WJ (1973) Force analysis of individual muscles acting simultaneously on shoulder joint during isometric abduction. J Biomech 6(4):385–393

    Article  Google Scholar 

  23. DeGoede KM, Ashton-Miller JA (2003) Biomechanical simulations of forward fall arrests: effects of upper extremity arrest strategy, gender and aging-related declines in muscle strength. J Biomech 36(3):413–420

    Article  PubMed  Google Scholar 

  24. Dickerson CR, Chaffin DB, Hughes RE (2007) A mathematical musculoskeletal shoulder model for proactive ergonomic analysis. Comput Methods Biomech Biomed Eng 10(6):389–400

    Article  Google Scholar 

  25. Dubowsky SR, Rasmussen J, Sisto SA, Langrana NA (2008) Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces. J Biomech 41(14):2981–2988

    Article  PubMed  Google Scholar 

  26. Dul J (1988) A biomechanical model to quantify shoulder load at the work place. Clin Biomech 3(3):124–128

    Article  Google Scholar 

  27. Dul J, Johnson GE, Shiavi R, Townsend MA (1984) Muscular synergism.2. A minimum-fatigue criterion for load sharing between synergistic muscles. J Biomech 17(9):675–684

    Article  PubMed  CAS  Google Scholar 

  28. Dul J, Townsend MA, Shiavi R, Johnson GE (1984) Muscular synergism.1. On criteria for load sharing between synergistic muscles. J Biomech 17(9):663–673

    Article  PubMed  CAS  Google Scholar 

  29. Engin AE, Chen SM (1986) Statistical data base for the biomechanical properties of the human shoulder complex–II: passive resistive properties beyond the shoulder complex sinus. J Biomech Eng 108(3):222–227

    Article  PubMed  CAS  Google Scholar 

  30. Favre P, Snedeker JG, Gerber C (2009) Numerical modelling of the shoulder for clinical applications. Philos Trans A Math Phys Eng Sci 367(1895):2095–2118

    Article  PubMed  Google Scholar 

  31. Favre P, Senteler M, Hipp J, Scherrer S, Gerber C, Snedeker JG (2012) An integrated model of active glenohumeral stability. J Biomech 45(13):2248–2255

    Article  PubMed  Google Scholar 

  32. Fischer SL, Brenneman EC, Wells RP, Dickerson CR (2012) Relationships between psychophysically acceptable and maximum voluntary hand force capacity in the context of underlying biomechanical limitations. Appl Ergon 43(5):813–820

    Article  PubMed  Google Scholar 

  33. Galban CJ, Maderwald S, Uffmann K, de Greiff A, Ladd ME (2004) Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur J Appl Physiol 93(3):253–262

    Article  PubMed  Google Scholar 

  34. Garner BA, Pandy MG (2001) Musculoskeletal model of the upper limb based on the visible human male dataset. Comput Methods Biomech Biomed Eng 4(2):93–126

    Article  CAS  Google Scholar 

  35. Happee R (1994) Inverse dynamic optimization including muscular dynamics, a new simulation method applied to goal-directed movements. J Biomech 27(7):953–960

    Article  PubMed  CAS  Google Scholar 

  36. Happee R, Van der Helm FCT (1995) The control of shoulder muscles during goal-directed movements, an inverse dynamic analysis. J Biomech 28(10):1179–1191

    Article  PubMed  CAS  Google Scholar 

  37. Harryman Ii DT, Walker ED, Harris SL, Sidles JA, Jackins SE, Matsen Iii FA (1993) Residual motion and function after glenohumeral or scapulothoracic arthrodesis. J Shoulder Elbow Surg 2(6):275–285

    Article  Google Scholar 

  38. Hillen RJ, Burger BJ, Poll RG, van Dijk CN, Veeger D (2012) The effect of experimental shortening of the clavicle on shoulder kinematics. Clin Biomech 27(8):777–781

    Article  Google Scholar 

  39. Hincapie JG, Kirsch RF (2009) Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis. IEEE Trans Neural Syst Rehab Eng 17(1):80–90

    Article  Google Scholar 

  40. Hincapie JG, Blana D, Chadwick EK, Kirsch RF (2008) Musculoskeletal model-guided, customizable selection of shoulder and elbow muscles for a C5SCI neuroprosthesis. IEEE Trans Neural Syst Rehabil Eng 16(3):255–263

    Article  PubMed  Google Scholar 

  41. Hinrichs RN (1985) Regression equations to predict segmental moments of inertia from anthropometric measurements—an extension of the data of Chandler Et-Al (1975). J Biomech 18(8):621–624

    Article  PubMed  CAS  Google Scholar 

  42. Högfors C, Sigholm G, Herberts P (1987) Biomechanical model of the human shoulder—I. Elements. J Biomech 20(2):157–166

    Article  PubMed  Google Scholar 

  43. Högfors C, Peterson B, Sigholm G, Herberts P (1991) Biomechanical model of the human shoulder joint—II. The shoulder rhythm. J Biomech 24(8):699–709

    Article  PubMed  Google Scholar 

  44. Holzbaur KRS, Murray WM, Delp SL (2005) A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng 33(6):829–840

    Article  PubMed  Google Scholar 

  45. Holzbaur KRS, Murray WM, Gold GE, Delp SL (2007) Upper limb muscle volumes in adult subjects. J Biomech 40(4):742–749

    Article  PubMed  Google Scholar 

  46. Jastifer J, Gustafson P, Patel B, Uggen C (2012) Pectoralis major transfer for subscapularis deficiency: a computational study. Should Elbow 4(1):25–29

    Article  Google Scholar 

  47. Johnson GR, Pandyan AD (2005) The activity in the three regions of the trapezius under controlled loading conditions—an experimental and modelling study. Clin Biomech 20(2):155–161

    Article  Google Scholar 

  48. Kaptein BL, van der Helm FCT (2004) Estimating muscle attachment contours by transforming geometrical bone models. J Biomech 37(3):263–273

    Article  PubMed  CAS  Google Scholar 

  49. Kibler WB, Sciascia A, Wilkes T (2012) Scapular dyskinesis and its relation to shoulder injury. J Am Acad Orthop Surg 20(6):364–372

    Article  PubMed  Google Scholar 

  50. Kirsch RF, Acosta AM (2001) Model-based development of neuroprostheses for restoring proximal arm function. Proceedings of the 23rd Annual International Conference of the IEEE. Eng Med Biol Soc 1–4:234075–234079

    Google Scholar 

  51. Kontaxis A, Johnson GR (2009) The biomechanics of reverse anatomy shoulder replacement—a modelling study. Clin Biomech 24(3):254–260

    Article  CAS  Google Scholar 

  52. Koo TKK, Mak AFT (2005) Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow. J Electromyogr Kinesiol 15(1):12–26

    Article  PubMed  Google Scholar 

  53. Lemieux PO, Hagemeister N, Tetreault P, Nuno N (2012) Influence of the medial offset of the proximal humerus on the glenohumeral destabilising forces during arm elevation: a numerical sensitivity study. Comput Methods Biomech Biomed Eng 16(1):103–111

    Article  Google Scholar 

  54. Lemieux PO, Nuno N, Hagemeister N, Tetreault P (2012) Mechanical analysis of cuff tear arthropathy during multiplanar elevation with the anybody shoulder model. Clin Biomech 27(8):801–806

    Article  Google Scholar 

  55. Lieber RL, Jacobson MD, Fazeli BM, Abrams RA, Botte MJ (1992) Architecture of selected muscles of the arm and forearm—anatomy and implications for tendon transfer. J Hand Surg Am 17A(5):787–798

    Article  Google Scholar 

  56. Ling HY, Angeles IG, Horodyski MB (2009) Biomechanics of latissimus dorsi transfer for irreparable posterosuperior rotator cuff tears. Clin Biomech 24(3):261–266

    Article  CAS  Google Scholar 

  57. Ludewig PM, Phadke V, Braman JP, Hassett DR, Cieminski CJ, LaPrade RF (2009) Motion of the shoulder complex during multiplanar humeral elevation. J Bone Joint Surg Am 91(2):378–389

    Article  PubMed  Google Scholar 

  58. Magermans DJ, Chadwick EKJ, Veeger HEJ, Rozing PM, van der Helm FCT (2004) Effectiveness of tendon transfers for massive rotator cuff tears: a simulation study. Clin Biomech 19(2):116–122

    Article  CAS  Google Scholar 

  59. Magermans DJ, Chadwick EKJ, Veeger HEJ, van der Helm FCT, Rozing PM (2004) Biomechanical analysis of tendon transfers for massive rotator cuff tears. Clin Biomech 19(4):350–357

    Article  CAS  Google Scholar 

  60. Magermans DJ, Chadwick EKJ, Veeger HEJ, van der Helm FCT (2005) Requirements for upper extremity motions during activities of daily living. Clin Biomech 20(6):591–599

    Article  CAS  Google Scholar 

  61. Masjedi M, Johnson GR (2010) Reverse anatomy shoulder replacement: comparison of two designs. Proc Inst Mech Eng H J Eng Med 224(H9):1039–1049

    Google Scholar 

  62. McClure PW, Michener LA, Sennett BJ, Karduna AR (2001) Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo. J Shoulder Elbow Surg 10(3):269–277

    Article  PubMed  CAS  Google Scholar 

  63. Morrow MMB, Kaufman KR, An KN (2010) Shoulder model validation and joint contact forces during wheelchair activities. J Biomech 43(13):2487–2492

    Article  PubMed  Google Scholar 

  64. Murray WM, Buchanan TS, Delp SL (2000) The isometric functional capacity of muscles that cross the elbow. J Biomech 33(8):943–952

    Article  PubMed  CAS  Google Scholar 

  65. Murray WM, Buchanan TS, Delp SL (2002) Scaling of peak moment arms of elbow muscles with upper extremity bone dimensions. J Biomech 35(1):19–26

    Article  PubMed  Google Scholar 

  66. Nikooyan AA, Veeger HEJ, Westerhoff P, Graichen F, Bergmann G, van der Helm FCT (2010) Validation of the delft shoulder and elbow model using in vivo glenohumeral joint contact forces. J Biomech 43(15):3007–3014

    Article  PubMed  CAS  Google Scholar 

  67. Nikooyan AA, Veeger HE, Chadwick EK, Praagman M, Helm FC (2011) Development of a comprehensive musculoskeletal model of the shoulder and elbow. Med Biol Eng Comput 49(12):1425–1435

    Article  PubMed  Google Scholar 

  68. Nikooyan AA, Veeger HEJ, Westerhoff P, Bolsterlee B, Graichen F, Bergmann G, van der Helm FCT (2012) An EMG-driven musculoskeletal model of the shoulder. Hum Mov Sci 31(2):429–447

    Article  PubMed  CAS  Google Scholar 

  69. Patel B, Gustafson PA, Jastifer J (2012) The effect of clavicle malunion on shoulder biomechanics. A computational study. Clin Biomech 27(5):436–442

    Article  Google Scholar 

  70. Poppen NK, Walker PS (1978) Forces at the glenohumeral joint in abduction. Clin Orthop Relat Res 135:165–170

    PubMed  Google Scholar 

  71. Praagman M, Chadwick EKJ, van der Helm FCT, Veeger HEJ (2006) The relationship between two different mechanical cost functions and muscle oxygen consumption. J Biomech 39(4):758–765

    Article  PubMed  CAS  Google Scholar 

  72. Praagman M, Chadwick EKJ, van der Helm FCT, Veeger HEJ (2010) The effect of elbow angle and external moment on load sharing of elbow muscles. J Electromyogr Kinesiol 20(5):912–922

    Article  PubMed  CAS  Google Scholar 

  73. Saul KR, Murray WM, Hentz VR, Delp SL (2003) Biomechanics of the Steindler flexorplasty surgery: a computer simulation study. J Hand Surg Am 28A(6):979–986

    Article  Google Scholar 

  74. Saul KR, Hayon S, Smith TL, Tuohy CJ, Mannava S (2011) Postural dependence of passive tension in the supraspinatus following rotator cuff repair: a simulation analysis. Clin Biomech 26(8):804–810

    Article  Google Scholar 

  75. Scovil CY, Ronsky JL (2006) Sensitivity of a hill-based muscle model to perturbations in model parameters. J Biomech 39(11):2055–2063

    Article  PubMed  Google Scholar 

  76. Steenbrink F, de Groot JH, Veeger HEJ, van der Helm FCT, Rozing PM (2009) Glenohumeral stability in simulated rotator cuff tears. J Biomech 42(11):1740–1745

    Article  PubMed  CAS  Google Scholar 

  77. Stenlund B, Lindbeck L, Karlsson D (2002) Significance of house painters’ work techniques on shoulder muscle strain during overhead work. Ergonomics 45(6):455–468

    Article  PubMed  CAS  Google Scholar 

  78. Stroeve S (1998) Neuromuscular control model of the arm including feedback and feedforward components. Acta Psychol 100(1–2):117–131

    Article  CAS  Google Scholar 

  79. Suarez DR, Valstar ER, van der Linden JC, van Keulen F, Rozing PM (2009) Effect of rotator cuff dysfunction on the initial mechanical stability of cementless glenoid components. Med Biol Eng Comput 47(5):507–514

    Article  PubMed  Google Scholar 

  80. Terrier A, Reist A, Vogel A, Farron A (2007) Effect of supraspinatus deficiency on humerus translation and glenohumeral contact force during abduction. Clin Biomech 22(6):645–651

    Article  Google Scholar 

  81. Terrier A, Vogel A, Capezzali M, Farron A (2008) An algorithm to allow humerus translation in the indeterminate problem of shoulder abduction. Med Eng Phys 30(6):710–716

    Article  PubMed  Google Scholar 

  82. van Andel CJ, Wolterbeek N, Doorenbosch CAM, Veeger DHEJ, Harlaar J (2008) Complete 3D kinematics of upper extremity functional tasks. Gait Posture 27(1):120–127

    Article  PubMed  Google Scholar 

  83. van Andel C, van Hutten K, Eversdijk M, Veeger D, Harlaar J (2009) Recording scapular motion using an acromion marker cluster. Gait Posture 29(1):123–128

    Article  PubMed  Google Scholar 

  84. van den Bogert AJ, Blana D, Heinrich D (2011) Implicit methods for efficient musculoskeletal simulation and optimal control. Procedia IUTAM 2:297–316

    Article  PubMed  Google Scholar 

  85. Van der Helm FCT (1994) A finite element musculoskeletal model of the shoulder mechanism. J Biomech 27(5):551–569

    Article  PubMed  Google Scholar 

  86. Van Der Helm FCT, Pronk GM (1994) Loading of shoulder girdle muscles in consequence of a glenohumeral arthrodesis. Clin Biomech 9(3):139–148

    Article  Google Scholar 

  87. Van Der Helm FCT, Veeger HEJ (1996) Quasi-static analysis of muscle forces in the shoulder mechanism during wheelchair propulsion. J Biomech 29(1):39–52

    Article  PubMed  Google Scholar 

  88. van der Helm FCT, Veenbaas R (1991) Modelling the mechanical effect of muscles with large attachment sites: application to the shoulder mechanism. J Biomech 24(12):1151–1163

    Article  PubMed  Google Scholar 

  89. Van Der Helm FCT, Veeger HEJ, Pronk GM, Vanderwoude LHV, Rozendal RH (1992) Geometry parameters for musculoskeletal modeling of the shoulder system. J Biomech 25(2):129–144

    Article  PubMed  Google Scholar 

  90. van Drongelen S, van der Woude LH, Janssen TW, Angenot EL, Chadwick EK, Veeger DJH (2005) Mechanical load on the upper extremity during wheelchair activities. Arch Phys Med Rehabil 86(6):1214–1220

    Article  PubMed  Google Scholar 

  91. van Drongelen S, van der Woude LH, Janssen TW, Angenot EL, Chadwick EK, Veeger DJH (2005) Glenohumeral contact forces and muscle forces evaluated in wheelchair-related activities of daily living in able-bodied subjects versus subjects with paraplegia and tetraplegia. Arch Phys Med Rehabil 86(7):1434–1440

    Article  PubMed  Google Scholar 

  92. van Drongelen S, van der Woude LHV, Janssen TWJ, Angenot ELD, Chadwick EKJ, Veeger HEJ (2006) Glenohumeral joint loading in tetraplegia during weight relief lifting: a simulation study. Clin Biomech 21(2):128–137

    Article  Google Scholar 

  93. Veeger DHEJ (2011) “What if”: the use of biomechanical models for understanding and treating upper extremity musculoskeletal disorders. Man Ther 16(1):48–50

    Article  PubMed  Google Scholar 

  94. Veeger HEJ, van der Helm FCT (2007) Shoulder function: the perfect compromise between mobility and stability. J Biomech 40(10):2119–2129

    Article  PubMed  CAS  Google Scholar 

  95. Veeger HEJ, Van der Helm FCT, Van der Woude LHV, Pronk GM, Rozendal RH (1991) Inertia and muscle-contraction parameters for musculoskeletal modeling of the shoulder mechanism. J Biomech 24(7):615–629

    Article  PubMed  CAS  Google Scholar 

  96. Veeger HEJ, Rozendaal LA, van der Helm FCT (2002) Load on the shoulder in low intensity wheelchair propulsion. Clin Biomech 17(3):211–218

    Article  CAS  Google Scholar 

  97. Winby CR, Lloyd DG, Kirk TB (2008) Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters. J Biomech 41(8):1682–1688

    Article  PubMed  CAS  Google Scholar 

  98. Yu J, Ackland DC, Pandy MG (2011) Shoulder muscle function depends on elbow joint position: an illustration of dynamic coupling in the upper limb. J Biomech 44(10):1859–1868

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Bolsterlee.

Additional information

Submitted for inclusion in the Special Issue dedicated to the 9th Conference of the International Shoulder Group, Aberystwyth, UK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolsterlee, B., Veeger, D.H.E.J. & Chadwick, E.K. Clinical applications of musculoskeletal modelling for the shoulder and upper limb. Med Biol Eng Comput 51, 953–963 (2013). https://doi.org/10.1007/s11517-013-1099-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1099-5

Keywords

Navigation