Skip to main content

GM Cotton for Stress Environments

  • Chapter
  • First Online:
Cotton Precision Breeding

Abstract

Genetically modified (GM) insect-resistant (IR) and herbicide-tolerant (HT) cotton was released for commercial cultivation more than two decades ago. In 2018, GM cotton was planted on 24.8 million hectares worldwide. Rapid increase in GM cotton acreage is one of the indicators of the overall success of cotton biotechnology program. Environmental stresses like drought, salinity, heat, waterlogging, submergence, flooding, cold, freezing, oxidative stress, heavy metals, nutritional deficiency, etc. are limiting cotton yield from 50 to 70%. Multiple gene(s) control multiple abiotic stresses, making the situation more complex. Several genes and transcription factors regulating abiotic stress tolerance have been identified and cloned. Promising candidate genes were transformed into crop plants with significant improvement. Pyramiding of these genes is under investigation. Genome sequencing, transcriptomics, proteomics, and metabolomics have made it possible to study the expression of large number of genes at a global level. There are examples of transformation of individual genes into cotton under constitutive and stress-inducible promoters. Due to complex nature of traits, progress is very slow in developing abiotic stress-tolerant GM cotton. Genome editing and speed breeding tools could be used to develop GM cotton for stress environments. In this chapter, identification of genes and development of abiotic stress-tolerant GM cotton has been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S, Khan NI, Iqbal MZ, Hussain A, Hassan M (2002) Salt tolerance of cotton (Gossypium hirsutum L.). Asian J. Plant Sci 1(6):715–719

    Google Scholar 

  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21(1):1030. CRC Press LLC

    Article  Google Scholar 

  • Ashraf M, Wu L (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42. https://doi.org/10.1080/07352689409701906

    Article  Google Scholar 

  • Augostinho LMD, Prado RM, Rozane DE, Freitas N (2008) Dry mass accumulation and nutrient absorption march in ‘Pedro Sato’ guava seedlings. Bragantia 67(3):577–585

    Article  CAS  Google Scholar 

  • Azhar FM, Ali Z, Akhtar MM, Khan A, Trethowan R (2009) Genetic variability of heat tolerance, and its effect on yield an fibre quality traits in upland cotton (Gossypium hirsutum L.). Plant Breed 128:356–362

    Article  Google Scholar 

  • Bailey-Serres J, Lee SC, Brinton E (2012) Waterproofing crops: effective flooding survival strategies. Plant Physiol 160:1698–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakhsh A, Hussain T (2015) Engineering crop plants against abiotic stress: current achievements and prospects. Emir J Food Agric 27(1):24–39

    Article  Google Scholar 

  • Bange MP, Milroy SP, Thongbai P (2004) Growth and yield of cotton in response to water logging. Field Crop Res 88(2):129–142

    Article  Google Scholar 

  • Bello B, Zhang X, Liu C, Yang Z, Yang Z, Wang Q (2014) Cloning of Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 gene (GhSnRK2) and its overexpression in transgenic Arabidopsis escalates drought and low temperature tolerance. PLoS One 9:e112269. https://doi.org/10.1371/journal.pone.0112269. PMID: 25393623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biaswas J, Kalara N (2018) Effect of waterlogging and submergence on crop physiology and growth of different crops and its remedies: Bangladesh perspective. Saudi J Eng Technol. https://doi.org/10.21276/sjeat.2018.3.6.1

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Bruulsema TW, Mullen R, O’Halloran IP, Watters H (2012) Reducing loss of fertilizer phosphorus to Lake Erie with the 4Rs. IPNI Insights, International Plant Nutrition Institute, Norcross

    Google Scholar 

  • Burke JJ, Mahan JR, Hatfield JL (1988) A relationship between crop specific thermal kinetic windows and biomass production. Agron J 80:553–556

    Article  Google Scholar 

  • Chen T, Li W, Hu X, Guo J, Liu A, Zhang B (2015) A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant Cell Physiol 56(5):917–929

    Article  CAS  PubMed  Google Scholar 

  • Chibulke GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:752708

    Google Scholar 

  • Christianson JA, Llewellyn DJ, Dennis ES, Wilson IW (2010) Global gene expression response to waterlogging and roots and leaves of cotton (Gossypium hirsutum L.). Plant Cell Physiol 51(1):21–37

    Article  CAS  PubMed  Google Scholar 

  • Conaty WC, Tan DKY, Constable GA, Sutton BG, Field DJ, Mamum EA (2008) Genetic variation for water logging tolerance in cotton. J Cotton Sci 12:53–61

    Google Scholar 

  • Cottee NS, Wilson IW, Tan DKY, Bange MO (2014) Understanding the molecular events underpinning cultivar differences in the physiological performance and heat tolerance of cotton (Gossypium hirsutum). Funct Plant Biol 41:56–67

    Article  CAS  Google Scholar 

  • Dagar JC, Minhas PS (2016) Global perspectives on agroforestry for the management of salt-affected soils. In: Dagar JC, Minhas PS (eds) Agroforestry for the management of waterlogged saline soils and poor-quality waters. Springer, New Delhi, pp 5–32. https://doi.org/10.1007/978-81-322-2659-8_2

    Chapter  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavenging during environmental stress in plants. Front Environ Sci 2(53):1–13

    CAS  Google Scholar 

  • Demiral T, Türkan I (2006) Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environ Exp Bot 56:72–79. https://doi.org/10.1016/j.envexpbot.2005.01.00

    Article  CAS  Google Scholar 

  • Dennis ES, Delferous R, Ellis M, Rehman M, Wu Y, Hoeren FU, Grover A, Ismond KP, Good AG, Peacock WJ (2000) Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot 51:342

    Article  Google Scholar 

  • Fan Y, Pan D, Ji M, Guo D (1989) The relationship between the cytochrome oxidase activity and chilling resistance in cotton seedling. China Cotton 6:11–13

    Google Scholar 

  • Fan Y, Zhang S, Li S (1995) Study on relationship between cotton chilling seedling resistance and peroxidase activity variation. Cotton Sci 7:172–174

    Google Scholar 

  • FAO (2005) Global network on integrated soil management for sustainable use of salt-affected soils. FAO Land and Plant Nutrition Management Service, Rome. http://www.fao.org/ag/agl/agl/spush

    Google Scholar 

  • FAO (2007) Agriculture and water quality interactions: a global overview. SOLAW Background Thematic Report—TR08. http://www.fao.org/3/a-bl092e.pdf

  • Gaxiola RA, Edwards M, Elser JJ (2011) A transgenic approach to enhance phosphorus use efficiency in crops as part of a comprehensive strategy for sustainable agriculture. Chemosphere 84:840–845

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Gill R, Anjum NA, Tuteja N (2013) Transgenic approaches for abiotic stress tolerance in crop plants. Plant Stress 7:73–83

    Google Scholar 

  • Golledge NR, Keller ED, Gomez N, Naughten KA, Bernales J, Trusel L, Edwards TL (2019) Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566:65–72

    Article  CAS  PubMed  Google Scholar 

  • Gunapati S, Naresh R, Ranjan S, Nigam D, Has A, Verma PC, Gadre R, Pathre UV, Sane AP, Sane VA (2015) Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Sci Rep 6:24978

    Article  Google Scholar 

  • Guo D, Fan Y, Guo C, Pan D, Wan L, Xie G (1991) Peroxidase isoenzyme and chilling resistance of cotton seedling. China Cotton 18:11–13

    Google Scholar 

  • Guo Y, Pang C, Jia X, Ma Q, Dou L, Zhao F, Gu L, Wei H, Wang H, Fan S, Su J, Yu S (2017) An NAM domain gene, GhNAC79, improves resistance to drought stress in upland cotton. Front Plant Sci 8:1657. https://doi.org/10.3389/fpls.2017.01657

    Article  PubMed  PubMed Central  Google Scholar 

  • Han J, Shi J, Zeng L, Xu J, Wu L (2015) Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils. Environ Sci Pollut Res 22:2976–2986. https://doi.org/10.1007/s11356-014-3542-z

    Article  CAS  Google Scholar 

  • Hao QN, Zhou XA, Sha AH, Wang C, Zhou R, Chen S (2011) Identification of genes associated with nitrogen-use efficiency by genome-wide transcriptional analysis of two soybean genotypes. BMC Genomics 12:525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan MMU, Ma F, Prodhan ZH, Li F, Shen H, Chen Y, Wang X (2018) Molecular and physio-biochemical characterization of cotton species for assessing drought stress tolerance. Int J Mol Sci 19:2636

    Article  Google Scholar 

  • Hayat S, Haya Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He C, Yan J, Shen G, Fu L, Holaday AS, Blumwald E, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46:1848±1854. https://doi.org/10.1093/pcp/pci201. PMID: 16179357

  • He L, Yang X, Wang L, Zhu L, Zhou T, Deng T, Zheng X (2013) Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem Biophys Res Commun 435:209–215

    Article  CAS  PubMed  Google Scholar 

  • Hediye A, Rengin S, Baris O, Turkan UI (2014) Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum L.) cultivars under combined drought and heat induced oxidative stress. Environ Exp Bot 99:141–149

    Article  Google Scholar 

  • Holaday AS, Mahan JR, Payton P (2016) Effects of chilling temperatures on photosynthesis. J Cotton Sci 20:220–231

    Google Scholar 

  • Huang JG, Yang M, Liu P, Yang GD, Wu CA, Zheng CC (2009) GhDREB1 enhances abiotic stress tolerance, delays GA-mediated development and represses cytokinin signalling in transgenic Arabidopsis. Plant Cell Environ 32:1132±1145

    Google Scholar 

  • Hussain A, Zafar ZU, Athar H-R, Farooq J, Ahmad S, Nazeer W (2019) Assessing gene action for hypoxia tolerance in cotton (Gossypium hirsutum L.). Agron Mesoam 30(1):51–62

    Article  Google Scholar 

  • ISAAA (2018) Global status of commercialized biotech/GM crops in 2018:biotech crops continue to help meet the challenges of increased population and climate change. ISAAA Brief No. 54, ISAAA, Ithaca

    Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • Karan R, Subudhi P (2012) Approaches to increasing salt tolerance in plants. In: Ahmad P, Parasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science-Business Media, LLC

    Google Scholar 

  • Khan N, Ahmad I, Azhar MT (2017) Genetic variation in relative cell injury for breeding upland cotton under high temperature stress. Turk J Field Crops 22(1):152–159

    Google Scholar 

  • Khan A, Pan X, Najeeb U, Tan DKY, Fahad S, Zahoor A, Lou H (2018) Coping with drought: stress and adaptive mechanism, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biol Res 51:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuai J, Chen Y, Wang Y, Meng Y, Chen B, Zhao W, Zhou Z (2016) Effect of waterlogging on carbohydrate metabolism and the quality of fiber in cotton (Gossypium hirsutum L.). Front. Plant Sci 7:877

    Google Scholar 

  • Kuppu S, Mishra N, Hu R, Sun L, Zhu X, Shen G et al (2013) Water deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS One 8:e64190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Xiong L, Ishitani M, Stevenson B, Zhu J-K (1999) Cold-regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant. Plant J 17(3):301–308

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhang J, Fan Y (1996) Study on relationship between cotton chilling seedling resistance and non-protein nitrogen content increase. China Cotton 23:11–12

    Google Scholar 

  • Li W, Zhonghua Z, Shunil Z, Jinxiang C, Feng W, Ruilian L, Hao Z (2014) Primary identification of waterlogging tolerance genes in cotton (Gossypium hirsutum L) based on quantitative proteomic approach. Cotton Sci 4

    Google Scholar 

  • Li H, Li K, Guo Y, Guo J, Miao K, Botella JR, Song C-P, Miao Y (2018) A transient transformation system for gene characterization in upland cotton (Gossypium hirsutum). Plant Methods 14:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Lisei-de-Sa ME, Arraes FBM, Brito GG, Beneventi MA, Lourenco-Tessutti IT, Basso AMM, Amorim RMS, Silva MCM, Faheem M, Oliveira NG, Mizoi J, Yamaguchi-Shinozaki K, Grossi-de-Sa MF (2017) AtDREB2A-CAinfluences root architecture and increases drought tolerance in transgenic cotton. Agric Sci 8:1195–1225. https://doi.org/10.4236/as.2017.810087

    Article  CAS  Google Scholar 

  • Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9(1):e86895

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu B, Mu J, Zhu J, Liang Z, Zhang L (2017) Saussurea involucrata SiDgn2 gene confers tolerance to drought stress in upland cotton. Pak J Bot 49(2):465–473

    Google Scholar 

  • Luo X, Wu J, Li Y, Nan Z, Guo X, Wang Y, Zhang A, Wang Z, Xia G, Tian Y (2013) Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. PLoS One 8(1):e54002. https://doi.org/10.1371/journal.pone.0054002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Reid R, Freese D, Li C, Watkins J, Shi H (2017) Salt tolerance response revealed by RNA-Seq in a diploid halophyte wild relative of sweet potato. Sci Rep 7:1–13

    Google Scholar 

  • Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248

    Article  CAS  Google Scholar 

  • Lv S, Zhang K, Gao Q, Lian L, Song Y, Zhang J (2008) Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49:1150–1164

    Article  CAS  PubMed  Google Scholar 

  • Lv S, Lian LJ, Tao PL, Li ZX, Zhang KW, Zhang J (2009) Overexpression of Thellungiella halophila H (+)-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta 229:899–910

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Dong H, Li W (2011) Genetic improvement of cotton tolerance to salinity stress. Afr J Agric Res 6(33):6798–6803

    Google Scholar 

  • Ma W, Zhao T, Liu B, Fang L, Hu Y, Zhang T (2016) Identification and characterization of the GhHsp20 gene family in Gossypium hirsutum. Sci Rep 6:32517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magwanga RO, Lu P, Kirungu JN, Dong Q, Hu Y, Zhou Z, Cai X, Wang X, Hou Y, Wang K, Liu F (2018) Cotton late embryogenesis abundant (LEA2) gene promotes root growth and confers drought stress tolerance in transgenic Arabidopsis thaliana. G3 (Bethesda) 8(8):2781–2803

    Article  CAS  Google Scholar 

  • Maoni C, Zhiyong Z, Haina S, Chengqi L, Xin Z, Genhai H, Jinbao Z, Qinglian W (2017) Genome-wide identification and expression analysis of Pht1 family genes in cotton (Gossypium hirsutum L.). Cotton Sci 29(1):59–69

    Google Scholar 

  • Maqbool A, Abbas W, Rao AQ, Irfan M, Zahur M, Bakhsh A, Riazuddin S, Husnain T (2010) Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium hirsutum. Biotechnol Prog 26:21–25

    CAS  PubMed  Google Scholar 

  • Millar AA, Dennis ES (1996) Protein synthesis during oxygen deprivation in cotton. Aust J Plant Physiol 23:341–348

    CAS  Google Scholar 

  • Mishra N, Sun L, Zhu X, Smith J, Prakash Srivastava A, Yang X, Pehlivan N, Esmaeili N, Luo H, Shen G, Jones D, Auld D, Burke J, Payton P, Zhang H (2017) Overexpression of the rice SUMO E3 ligase gene OsSIZ1 in cotton enhances drought and heat tolerance, and substantially improves fiber yields in the field under reduced irrigation and rainfed conditions. Plant Cell Physiol 58(4):735–746. https://doi.org/10.1093/pcp/pcx032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mission J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Stomerville S, Rolland N, Doumas P, Nacry P, Herrera-Estrella L, Nussaume L, Thibaud MC (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci U S A 94:11934–11939

    Article  Google Scholar 

  • Mittal A, Gampala SS, Ritchie GL, Payton P, Burke JJ, Rock CD (2014) Related to ABA-Insensitive3 (ABI3)/Viviparous1 and AtABI5 transcription factor co-expression in cotton enhances drought stress adaptation. Plant Biotechnol J 12:578–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plette D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral NaC transporter gene. Nat Biotechnol 30:360–364. https://doi.org/10.1038/nbt.2120

    Article  CAS  PubMed  Google Scholar 

  • Mustroph A (2018) Improving flooding tolerance of crop plants. Agronomy 8:160

    Article  CAS  Google Scholar 

  • Najeeb U, Bange MP, Tan DY, Atwell BJ (2015) Consequences of waterlogging in cotton and opportunities for mitigation of yield losses. AoB Plants 7:plv080

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikalje G, Suprasanna P (2018) Coping with metal toxicity-Cues from halophytes. Front Plant Sci 9:777

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  CAS  PubMed  Google Scholar 

  • Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M (2012) Mechanism for coping with submergence and waterlogging in rice. Rice 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Oluoch G, Zheng J, Wang X, Khan MKR, Zhou Z, Cai X, Wang C, Wang Y, Li X, Wang H, Liu F, Wang K (2016) QTL mapping for salt tolerance at seedling stage in the interspecific cross of Gossypium tomentosum with Gossypium hirsutum. Euphytica 209:223–235. https://doi.org/10.1007/s10681-016-1674-6

    Article  CAS  Google Scholar 

  • Oosterhuis DM (2002) Day or night high temperature: a major cause of yield variability. Cotton Grower 46:8–9

    Google Scholar 

  • Pachauri RK, Allen MR, Barros VR, Booome J, Cramer W, Christ R, Church JA, Clark L, Dahe Q, Dasgupta D (2014) Climate change 2014: synthesis report. In: Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change, Switzerland

    Google Scholar 

  • Park SY, Noh KJ, Yoo JH, Yu JW, Lee BW, Kim JG, Seo HS, Paek NC (2006) Rapid up-regulation of Dehyrin3 and Dehydrin4 in response to dehydration is a characteristic of drought-tolerant genotypes in barley. J Plant Biol 49:455–462

    Article  CAS  Google Scholar 

  • Park W, Scheffler BE, Bauer PJ, Campbell BT (2012) Genome-wide identification of differentially expressed genes under water deficit stress in upland cotton (Gossypium hirsutum L.). BMC Plant Biol 12:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhi V, Kumar V, Sunilkumar G, Campbell LM, Singh NK, Rathore KS (2009) Expression of apoplastically secreted tobacco osmotin in cotton confers drought tolerance. Mol Breed 23:625–639

    Article  CAS  Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fiber yield in the field conditions. Plant Biotechnol J 9:88–99

    Article  CAS  PubMed  Google Scholar 

  • Payton P, Holaday AS, Allen RD, Webb RP (1999) Response of transgenic cotton to oxidative stress. In: Proceedings of the beltwide cotton conference, vol 1. pp 523–524

    Google Scholar 

  • Pilon-Smits EAH, Zhu Y, Sears T, Terry N (2000) Overexpression of glutathione reductase in Brassica juncea—effects on cadmium accumulation and tolerance. Physiol Plant 110:455–460

    Article  CAS  Google Scholar 

  • Qi X-H, Xu X-W, Lin X-J, Zhang W-J, Chen X-H (2012) Identification of differentially expressed genes in cucumber (Cucumis sativus L) root under waterlogging stress by digital gene expression profile. Genomics 99:160–168

    Article  CAS  PubMed  Google Scholar 

  • Ray B, Noren SK, Mandal AB, Basu AK (2011) Genetic engineering for abiotic stress tolerance in agricultural crops. Biotech 10(1):1–22

    Google Scholar 

  • Reddy VR, Baker DN, Hodges HF (1991) Temperature effects on cotton canopy growth, photosynthesis and respiration. Agron J 83:699–704

    Article  Google Scholar 

  • Riaz M, Farooq J, Sakhawat G, Mahmood A, Sadiq MA, Yaseen M (2013) Genotypic variability for root/shoot parameters under water stress in some advanced lines of cotton (Gossypium hirsutum L.). Genet Mol Res 12(1):552–561

    Article  CAS  PubMed  Google Scholar 

  • Salman M, Khan AA, Rana IA, Maqsood RH, Azhar MT (2016) Genetic architecture of relative cell injury and some yield related parameters in Gossypium hirsutum L. Turk J Field Crops 21(2):246–253

    Article  Google Scholar 

  • Sett R (2017) Tolerance of plants in response to abiotic stress factors. Recent Adv Petrochem Sci 1(5). RAPSCI.MS.ID. 555573. Juniper Publishers. ISSN: 2575-8578

  • Shan D-P, Huang J-G, Yang Y-T, Guo Y-H, Wu C-A, Yang G-D, Gao Z, Zheng C-C (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Hao L, Li J, Liu D, Guo X, Li H (2014) The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana. Plant Cell Rep 33:483–498. https://doi.org/10.1007/s00299-013-1548-5. PMID: 24337818

    Article  CAS  PubMed  Google Scholar 

  • Shrawat AK, Carroll RT, DePauw M, Taylor GT, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6:722–732

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Parasad PVV, Sunjita K, Giri SN, Reddy KR (2007) Influence of high temperature and breeding for heat tolerance in cotton: a review. Adv Agron 93:313–385

    Article  CAS  Google Scholar 

  • Su J, Zhang F, Ching X, Song A, Guan Z, Fang W, Chen F (2019) Genome-wide association study identifies favorable SNP alleles and candidate genes for waterlogging tolerance in chrysanthemums. Hortic Res 6:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivian CY (1972) Mechanism of heat and drought tolerance in grain sorghum and methods of measurement. In: Rao NGP, House LR (eds) Sorghum in the seventies. Oxford and IBH Publishing Co., New Delhi

    Google Scholar 

  • Sun Z, Li H, Zhang Y, Li Z, Ke H, Wu L, Zhnag G, Wang X, Ma Z (2018) Identification of SNPs and candidate genes association with salt tolerance at the seedling stage in cotton (Gossypium hirsutum L.). Front Plant Sci 9:1011

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari RS, Picchioni GA, Steiner RL, Jones DC, Hughs SE, Zhang J (2013) Genetic variation in salt tolerance at the seedling stage in an interspecific backcross inbred line population of cultivated tetraploid cotton. Euphytica 194:1–11. https://doi.org/10.1007/s10681-013-0927-x

    Article  Google Scholar 

  • Ullah A, Sun H, Yang X, Zhang X (2017) Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J 15:271–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vwioka E, Adinkwu O, El-Esawi MA (2017) Comparative physiological, biochemical and genetic response to prolonged waterlogging stress in Okra and maize given exogenous ethylene priming. Front Plant Sci 8:632

    Google Scholar 

  • Wan T, Xue H, Yi-ping T (2017) Transgenic approaches for improving use efficiency of nitrogen, phosphorus and potassium in crops. J Integr Agric 16(12):2657–2673

    Article  Google Scholar 

  • Wang Q, Liu N, Yang X, Tu L, Zhang X (2016) Small RNA-mediated responses to low- and high temperature stress in cotton. Sci Rep 6:35558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhang Q, Cui F, Hou L, Zhao S, Xia H, Qiu J, Li T, Zhang Y, Wang X, Zhao C (2017) Genome wide analysis of gene expression provides new insights into cold responses in Thellungiella salsuginea. Front Plant Sci 8:713

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Xu Y, Lu P, Wang X, Li Z, Cai XZ, Wang Y, Zhang Z, Lin Z, Liu F, Wang K (2017) Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis. PLoS One 12(5):e0178313

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Chen M, Ji J, Xu Q, Qi X, Chen X (2017) Comparative RNA-seq based transcriptome profiling of waterlogging response in cucumber hypocotyls reveals novel insight into the de novo adventitious root primordial initiation. BMC Plant Biol 17:129

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic and cold-stress-responsive promoters. Plant J 10:88–94

    CAS  Google Scholar 

  • Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Zhang D, Li X, Li H, Zhang D, Lan H, Wood AJ, Wang J (2016) Overexpression of ScALDH21 gene in cotton improves drought tolerance and growth in greenhouse and field conditions. Mol Breed 36:34

    Article  Google Scholar 

  • Ye W, Liu J (1998) Identification technique and application of salt-tolerant germplasm resources in cotton. China Cotton 25(9):34–38

    Google Scholar 

  • Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Lian K, Zhang Z, Du D, Zhang X, Zhao H, Haq BU, Qiu F (2018) Dissecting the genetic architecture of waterlogging stress-related traits uncovers a key waterlogging tolerance gene in maize. Theor Appl Genet 131:12299–12310

    Article  Google Scholar 

  • Yue Y, Zhang M, Zhang J, Tian X, Duan L, Li Z (2012) Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Exp Bot 63:3741–3748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu-qiang H, Guo-qing L, Li-hua W, Chun-ling W, Hui-ming G, Yi-fei L, Hong-mei H (2018) Overexpression of AmDUF1517 enhanced tolerance to salinity, drought, and cold stress in transgenic cotton. J Integr Agric 17(10):2204–2214

    Article  Google Scholar 

  • Zahid KR, Ali F, Shah F, Younas M, Shah T, Shawar D, Hassan W, Ahmad Z, Qi C, Lu Y, Aqbal A, Wu W (2016) Response and tolerance mechanism of cotton Gossypium hirsutum L. to elevated temperature stress: a review front. Plant Sci 7:937

    Google Scholar 

  • Zhang H, Dong H, Li W, Sun Y, Chen S, Kong X (2009) Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Mol Breed 23:289–298

    Article  CAS  Google Scholar 

  • Zhang K, Guo N, Lian L, Wang J, Lv S, Zhang J (2011) Improved salt tolerance and seed cotton yield in cotton (Gossypium hirsutum L.) by transformation with betA gene for glycinebetaine synthesis. Euphytica 181:1–16

    Article  CAS  Google Scholar 

  • Zhang D-Y, Yang H-L, Li X-S, Li H-Y, Wang Y-C (2014) Overexpression of Tamarix albiflonum TaMnSOD increases drought tolerance in transgenic cotton. Mol Breed 34:1–11

    Article  Google Scholar 

  • Zhang Y, Song X, Yang G, Li Z, Li H, Kong X, Eneji AE, Dong H (2015) Physiological and molecular adjustment of cotton to waterlogging at peak-flowering in relation to growth and yield. Field Crop Res 179:164–172

    Article  Google Scholar 

  • Zhang J, Li B, Yang Y, Hu W, Chen F, Xie L, Fan L (2016a) Genome wide characterization and expression profiles of the superoxide dismutase gene family in Gossypium. Int J Genomics 2016:8740901

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Srivastava V, Stewart JMD, Underwood J (2016b) Heat tolerance in cotton is correlated with induced overexpression of heat-shock factors, heat-shock proteins and general stress response gene. J Cotton Sci 20:253–262

    Article  CAS  Google Scholar 

  • Zhang Y, Kong X, Dai J, Luo Z, Li Z, Lu H, Xu S, Tang W, Zhang D, Li W, Xin C, Dong H (2017) Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress. PLoS One 12(9):e0185075

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Abdelraheem A, Wedegaertner T (2019) Genetic variation of waterlogging tolerance in Pima (Gossypium barbadense) cotton and glanded and glandless upland cotton (Gossypium hirsutum) under field conditions. Ind Crop Prod 129:169–174

    Article  CAS  Google Scholar 

  • Zhou B, Zhang L, Ullah A, Jin X, Yang X, Zhang X (2016) Identification of multiple stress responsive genes by sequencing a normalized cDNA library from sea-land cotton (Gossypium barbadense L.). PLoS One 11(3):e0152927

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saeed, N.A., Ahmad, M., Mukhtar, Z. (2021). GM Cotton for Stress Environments. In: Rahman, Mu., Zafar, Y., Zhang, T. (eds) Cotton Precision Breeding. Springer, Cham. https://doi.org/10.1007/978-3-030-64504-5_11

Download citation

Publish with us

Policies and ethics