Skip to main content
Log in

Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Glycine betaine is an osmoprotectant that plays an important role and accumulates rapidly in many plants during salinity or drought stress. Choline monooxygenase (CMO) is a major catalyst in the synthesis of glycine betaine. In our previous study, a CMO gene (AhCMO) cloned from Atriplex hortensis was introduced into cotton (Gossypium hirsutum L.) via Agrobacterium mediation to enhance resistance to salinity stress. However, there is little or no knowledge of the salinity tolerance of the transgenic plants, particularly under saline-field conditions. In the present study, two transgenic AhCMO cotton lines of the T3 generation were used to study the AhCMO gene expression, and to determine their salinity tolerance in both greenhouse and field under salinity stress. Molecular analysis confirmed that the transgenic plants expressed the AhCMO gene. Greenhouse study showed that on average, seedlings of the transgenic lines accumulated 26 and 131% more glycine betaine than those of non-transgenic plants (SM3) under normal and salt-stress (150 mmol l−1 NaCl) conditions, respectively. The osmotic potential, electrolyte leakage and malondialdehyde (MDA) accumulation were significantly lower in leaves of the transgenic lines than in those of SM3 after salt stress. The net photosynthesis rate and Fv/Fm in transgenic cotton leaves were less affected by salinity than in non-transgenic cotton leaves. Therefore, transgenic cotton over-expressing AhCMO was more tolerant to salt stress due to elevated accumulation of glycine betaine, which provided greater protection of the cell membrane and photosynthetic capacity than in non-transgenic cotton. The seed cotton yield of the transgenic plants was lower under normal conditions, but was significantly higher than that of non-transgenic plants under salt-stressed field conditions. The results indicate that over-expression of AhCMO in cotton enhanced salt stress tolerance, which is of great value in cotton production in the saline fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad S, Khan N, Iqbal MZ, Hussain A, Hassan M (2002) Salt tolerance of cotton (Gossypium hirsutum L.). Asian J Plant Sci 1:715–719

    Google Scholar 

  • Arakawa K, Katayama M, Takabe T (1990) Levels of betaine and betaine aldehyde dehydrogenase activity in the green leaves and etiolated leaves and roots of barley. Plant Cell Physiol 31:797–803

    CAS  Google Scholar 

  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30. doi:10.1016/S0735-2689(02)80036-3

    Article  CAS  Google Scholar 

  • Blunden G, Patel AV, Armstrong NJ, Gorham J (2001) Betaine distribution in the Malvaceae. Phytochemistry 58:451–454. doi:10.1016/S0031-9422(01)00263-1

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Hortic (Amsterdam) 78:237–260. doi:10.1016/S0304-4238(98)00195-2

    Article  CAS  Google Scholar 

  • Cha-um S, Supaibulwatana K, Kirdmanee C (2006) Water relation, photosynthetic ability and growth of Thai Jasmine rice (Oryza sativa L. ssp. Indica Cv. KDML 105) to salt stress by application of exogenous glycinebetaine and choline. J Agron Crop Sci 192:25–36. doi:10.1111/j.1439-037X.2006.00186.x

    Article  CAS  Google Scholar 

  • Chen SY, Zhu LH, Hong J (1991) Molecular biology identification of a salt-tolerant rice line. Acta Bot Sin 33:569–573

    CAS  Google Scholar 

  • Chomczynski P, Sacci N (1987) Single-step method of RNA isolation by acid guanidiumthiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. doi:10.1016/0003-2697(87)90021-2

    Article  PubMed  CAS  Google Scholar 

  • Flower TG, Yeo AR (1986) Ion relations of plant drought and salinity. Aust J Plant Physiol 13:75–91

    Article  Google Scholar 

  • Gibon Y, Bessieres MA, Larher F (1997) Is glycine betaine a non-compatible solute in higher plants that do not accumulate it? Plant Cell Environ 20:329–340. doi:10.1046/j.1365-3040.1997.d01-82.x

    Article  Google Scholar 

  • Gorham J (1996) Glycine betaine is a major nitrogen-containing solute in the Malvaceae. Phytochemistry 43:367–369. doi:10.1016/0031-9422(96)00312-3

    Article  CAS  Google Scholar 

  • Gossett DR, Millhollon EP, Lucas MC (1994a) Antioxidant response to NaCl stress in salt-tolerant and saltsensitive cultivars of cotton. Crop Sci 34:706–714

    CAS  Google Scholar 

  • Gossett DR, Millhollon EP, Lucas MC, Banks SW, Marney MM (1994b) The effects of NaCl on antioxidant enzyme activities in callus tissue of salt-tolerant and salt-sensitive cultivars (Gossypium hirsutum L.). Plant Cell Rep 13:498–503. doi:10.1007/BF00232944

    Article  CAS  Google Scholar 

  • Grumet R, Hanson AD (1986) Glycine-betaine accumulation in barley. Aust J Plant Physiol 13:353–364

    CAS  Google Scholar 

  • Guo BH, Zhang YM, Li HJ, Du LQ (2000) Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH). Acta Bot Sin 42:279–283

    Google Scholar 

  • Guo Y, Zhang L, Xiao G, Chen SY (1997) Expression of the BADH gene and salinity tolerance in rice transgenic plants. Sci China 27:151–155

    Google Scholar 

  • Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M (1998) Oxydative damage in pea plants exposed to water deficit or paraquat. Plant Physiol 116:173–181. doi:10.1104/pp.116.1.173

    Article  CAS  Google Scholar 

  • Johnson GN, Young AJ, Scholes JD, Horton P (1993) The dissipation of excess excitation energy in British plant species. Plant Cell Environ 16:673–679. doi:10.1111/j.1365-3040.1993.tb00485.x

    Article  CAS  Google Scholar 

  • Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248. doi:10.1007/s11032-007-9086-x

    Article  CAS  Google Scholar 

  • Matoh T, Watanabe J, Takahashi E (1987) Sodium, potassium, chloride, and betaine concentrations in isolated vacuoles from salt-grown Atriplex gmelini leaves. Plant Physiol 84:173–177

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659

    Article  PubMed  CAS  Google Scholar 

  • McCue KF, Hanson AD (1992) Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol Biol 18:1–11. doi:10.1007/BF00018451

    Article  PubMed  CAS  Google Scholar 

  • Meek CR, Oosterhuis D (2000) Effects of glycine betaine and water regime on diverse cotton cultivars. Proceedings of the 2000 cotton Research Meeting. AAES Special Report 198: 109–112

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76. doi:10.1016/S0098-8472(02)00058-8

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant cDNA. Nucleic Acids Res 8:4321–4325. doi:10.1093/nar/8.19.4321

    Article  PubMed  CAS  Google Scholar 

  • Naidu BP, Cameron DF, Konduri SV (1998) Improving drought tolerance of cotton by glycine betaine application and selection. In: Proceedings of the 9th Australian agronomy conference, Wagga Wagga. http://www.regional.org.au/au/asa/1998/4/221naidu.htm

  • Premachandra GS, Ogata S, Saneoka H (1989) Evaluation of polyethylene glycol test for measurement of cell membrane stability in maize. Soil Sci Plant Nutr 35:565–573

    Google Scholar 

  • Quan RD, Shang M, Zhang H, Zhao YX, Zhang JR (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486. doi:10.1111/j.1467-7652.2004.00093.x

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384. doi:10.1146/annurev.pp.44.060193.002041

    Article  CAS  Google Scholar 

  • Rhodes D, Rich PJ, Brunk DG, Ju GC, Rhodes JC, Pauly MH, Hansen LA (1989) Development of two isogenic sweet corn hybrids differing for glycine betaine content. Plant Physiol 91:1112–1121

    Article  PubMed  CAS  Google Scholar 

  • Russell BL, Rathinasabapathi B, Hanson AD (1998) Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranch. Plant Physiol 116:859–865. doi:10.1104/pp.116.2.859

    Article  PubMed  CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycine betaine synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol 125:180–188. doi:10.1104/pp.125.1.180

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171. doi:10.1046/j.0016-8025.2001.00790.x

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. America Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Shen YG, Du BX, Zhang WK, Zhang JS, Chen SY (2002) AhCMO, regulated by stress in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theor Appl Genet 105:815–821. doi:10.1007/s00122-002-1006-1

    Article  PubMed  CAS  Google Scholar 

  • Sulpice R, Tsukaya H, Nonaka H, Mustardy L, Chen TH, Murata N (2003) Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. Plant J 36:165–176. doi:10.1046/j.1365-313X.2003.01873.x

    Article  PubMed  CAS  Google Scholar 

  • Tang QY, Feng MG (1997) Practical statistics and DPS data processing system. China Agricultural Press, Beijing, pp 1–407

    Google Scholar 

  • Tang W, Luo Z, Wen SM, Dong HZ, Xin CS, Li WJ (2007) Comparison of inhibitory effects on leaf photosynthesis in cotton seedlings between drought and salinity stress. Cotton Sci 19:28–32

    Google Scholar 

  • Xiao G, Zhang GY, Liu FH, Chen SY (1995) The study of the BADH gene in Atriplex hortensis. Chin Sci Bull 40:741–745

    Google Scholar 

  • Xing W, Rajashekar CB (2000) Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana. Environ Exp Bot 46:21–28. doi:10.1016/S0098-8472(01)00078-8

    Article  Google Scholar 

  • Yancey PH (1994) Compatible and counteracting solutes. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, pp 81–109

    Google Scholar 

  • Zhang HJ, Dong HZ, Shi YJ, Chen SY, Zhu YH (2007) Transformation of cotton (Gossypium hirsutum) with AhCMO gene and the expression of salinity tolerance. Acta Agron Sin 33:1073–1078

    CAS  Google Scholar 

  • Zhu JK (2001) Over expression of a delta-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Trends Plant Sci 6:66–72. doi:10.1016/S1360-1385(00)01838-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported financially by a Project for cotton (nyhyzx07-005-02) from Chinese Ministry of Agriculture. We also gratefully acknowledge the financial support from Agricultural Seed Industrialization Foundation of Shandong Province (2005-cotton), and the High Innovation Fund (2006YCX009) from Shandong Academy of Agricultural Sciences. We thank Prof. A. E. Eneji of China Agricultural University for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hezhong Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Dong, H., Li, W. et al. Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Mol Breeding 23, 289–298 (2009). https://doi.org/10.1007/s11032-008-9233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-008-9233-z

Keywords

Navigation