Skip to main content

Adsorption of Microorganisms to Minerals

  • Chapter
  • First Online:
Adsorption at Natural Minerals/Water Interfaces

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 700 Accesses

Abstract

Adsorption of microorganisms (bacteria, fungi and microalgae, etc.) and biomacromolecules (humic substances, extracellular substances, proteins and nuclear acids, etc.) to minerals are universal in the nature environments. These processes also governed the inorganic and organic pollutants migration and conversion. This chapter discusses the interface reactions of microorganisms and minerals regarding the surface properties of both sides, leading to the microorganism’s survival and growing, minerals’ transformation and formation as well as polluted or harmful substances’ retention and removal. The content broads the knowledge of bacteria, fungi and algae and biomacromolecules adsorption onto natural minerals and highlights the application of microorganism-mineral interaction on environmental engineering such as heavy metals and polluted organic matters removal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, P.M., Bollag, J.-M., Senesi, N.: Interactions between soil particles and microorganisms: impact on the terrestrial ecosystem. Wiley (2002)

    Google Scholar 

  2. Loosdrecht, M.C.V., Lyklema, J., Norde, W., Zehnder, A.J.: Influence of interfaces on microbial activity. Microbiol. Rev. 54, 75 (1990)

    Article  Google Scholar 

  3. Hermansson, M.: The DLVO theory in microbial adhesion. Colloid Surface B. 14, 105–119 (1999)

    Article  CAS  Google Scholar 

  4. Bellon-Fontaine, M.N., Mozes, N., Hc, V.D.M., Sjollema, J., Cerf, O., Rouxhet, P.G., et al.: A comparison of thermodynamic approaches to predict the adhesion of dairy microorganisms to solid substrata. Cell Biophys. 17, 93–106 (1990)

    Article  CAS  Google Scholar 

  5. Dufrene, Y.F., Rouxhet, P.G.: Surface composition, surface properties, and adhesiveness of Azospirillum brasilense-variation during growth. Can. J. Microbiol. 42, 548–556 (1996)

    Article  CAS  Google Scholar 

  6. Hong, Z., Rong, X., Cai, P., Dai, K., Liang, W., Chen, W., et al.: Initial adhesion of Bacillus subtilis on soil minerals as related to their surface properties. Eur. J. Soil. Sci. 63, 457–466 (2012)

    Article  CAS  Google Scholar 

  7. Savage, D.C., Fletcher, M.: Bacterial adhesion: mechanisms and physiological significance. Q. Rev. Bio. 37 (1985)

    Google Scholar 

  8. Plummer, D.T., James, A.M.: Some physical investigations of the behaviour of bacterial surfaces III. The variation of the electrophoretic mobility and capsule size of Aerobacter aerogenes with age. Biochim. Biophys. Acta. 53, 453–460 (1961)

    Google Scholar 

  9. Pandey, B.D., Natarajan, K.A.: Microbiology for minerals, metals. In: Materials and the Environment. Crc Press (2017)

    Google Scholar 

  10. Marshall, K., Cruickshank, R.: Cell surface hydrophobicity and the orientation of certain bacteria at interfaces. Arch. Microbiol. 91, 29–40 (1973)

    CAS  Google Scholar 

  11. Costerton, J.W., Irvin, R.T., Cheng, K.J.: The bacterial glycocalyx in nature and disease. Annu. Rev. Microbiol. 35, 299 (1981)

    Article  CAS  Google Scholar 

  12. Garrett, T.R., Bhakoo, M., Zhang, Z.: Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. Mater. 18, 1049–1056 (2008)

    Article  CAS  Google Scholar 

  13. Bryers, J.D., Characklis, W.G.: Kinetics of initial biofilm formation within a turbulent flow system. 15(4), 483-491 (1981)

    Google Scholar 

  14. Characklis, W.G., Bryers, I.B.J.D.: Bioengineering report: Fouling biofilm development: A process analysis. Biotechnol. Bioeng. 102, 310–347 (2009)

    Article  CAS  Google Scholar 

  15. Li, J., Busscher, H.J., Mei, H.C.V.D., Norde, W., Krom, B.P., Sjollema, J.: Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber: Part II: Use of fluorescence imaging. Colloid Surface B. 87, 427–432 (2011)

    Article  CAS  Google Scholar 

  16. Young, L.Y., Mitchell, R.: The role of chemotactic responses in primary film formation (1973)

    Google Scholar 

  17. Young, L.Y., Mitchell, R.: Negative chemotaxis of marine bacteria to toxic chemicals. Appl. Microbiol. 25, 972–975 (1973)

    Article  CAS  Google Scholar 

  18. Harvey, R.W., Garabedian, S.P.: Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer. Environ. Sci. Technol. 25, 178–185 (1997)

    Article  Google Scholar 

  19. Mudd, S., Mudd, E.B.: Certain interfacial tension relations and the behavior of bacteria in films. J. Exp. Med. 40:647–660 (1924)

    Google Scholar 

  20. Dahlbäck, B., Hermansson, M., Kjelleberg, S., Norkrans, B.: The hydrophobicity of bacteria -an important factor in their initial adhesion at the air-water interface. Arch. Microbiol. 128, 267–270 (1981)

    Article  Google Scholar 

  21. Rosenberg, M., Kjelleberg, S.: Hydrophobic interactions: role in bacterial adhesion. Adv. Microb. Ecol. 353–393 (1986)

    Google Scholar 

  22. Rusconi, R., Guasto, J.S., Stocker, R.: Bacterial transport suppressed by fluid shear. Nat. Phys. 10, 212–217 (2014)

    Article  CAS  Google Scholar 

  23. Xiancai, T., Bowen, Z., Tingting, L.: Attachment of microbes on mineral surface in microbial weathering and its significance (in Chinese). Geol. J. China Univ. 17, 21–28 (2011)

    Google Scholar 

  24. Ghauri, M.A., Okibe, N., Johnson, D.B.: Attachment of acidophilic bacteria to solid surfaces: The significance of species and strain variations. Hydrometallurgy 85, 72–80 (2007)

    Article  CAS  Google Scholar 

  25. Rodríguez, A.G., Navarro, H.R.: Interfacial insights of pyrite colonized by Acidithiobacillus thiooxidans cells under acidic conditions. Hydrometallurgy 103, 35–44 (2010)

    Article  CAS  Google Scholar 

  26. Sand, W., Gehrke, T.: Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res. Microbiol. 157, 49–56 (2006)

    Google Scholar 

  27. Hori, K.: Adhesion of bacteria. In: Biofilm and Materials Science. Springer, pp. 23–34 (2015)

    Google Scholar 

  28. Marshall, K., Stout, R., Mitchell, R.: Mechanism of the initial events in the sorption of marine bacteria to surfaces. Microbiology 68, 337–348 (1971)

    CAS  Google Scholar 

  29. Devasia, P., Natarajan, K.A., Sathyanarayana, D.N., Rao, G.R.: Surface chemistry of thiobacillus ferrooxidans relevant to adhesion on mineral surfaces. Appl. Eeviron. Microb. 59, 4051–4055 (1993)

    Article  CAS  Google Scholar 

  30. Ohmura, N., Kitamura, K., Saiki, H.: Selective adhesion of thiobacillus ferrooxidans to pyrite. Appl. Eeviron. Microb. 59, 4044–4050 (1993)

    Article  CAS  Google Scholar 

  31. Blake, R.C., Shute, E.A., Howard, G.T.: Solubilization of minerals by bacteria: electrophoretic mobility of thiobacillus ferrooxidans in the presence of iron, pyrite, and sulfur. Appl. Eeviron. Microb. 60, 3349–3357 (1994)

    Article  CAS  Google Scholar 

  32. Marshall, K.C.: Interfaces in microbial ecology: Harvard University Press (1976)

    Google Scholar 

  33. Jianhua, F.: Bioleaching of copper sulfide minerals, the bacterial ultrastructure and the mechanisms of attachment, purifing SFORase of Thiobacillus ferrooxidans (in Chinese). PhD, Central South University (2004)

    Google Scholar 

  34. Santhiya, D., Subramanian, S., Natarajan, K.A.: Surface chemical studies on galena and sphalerite in the presence of Thiobacillus thiooxidans with reference to mineral beneficiation. Miner. Eng. 13, 747–763 (2000)

    Article  CAS  Google Scholar 

  35. Subramanian, S., Santhiya, D., Natarajan, K.A.: Surface modification studies on sulphide minerals using bioreagents. Int. J. Miner. Process. 72, 175–188 (2003)

    Article  CAS  Google Scholar 

  36. Rong, X., Huang, Q., He, X., Chen, H., Peng, C., Liang, W.: Interaction of Pseudomonas putida with kaolinite and montmorillonite: A combination study by equilibrium adsorption, ITC, SEM and FTIR. Colloid Surface B. 64, 49–55 (2008)

    Article  CAS  Google Scholar 

  37. Deo, N., Natarajan, K.A., Somasundaran, P.: Mechanisms of adhesion of Paenibacillus polymyxa onto hematite, corundum and quartz. Int. J. Miner. Process. 62, 27–39 (2001)

    Article  CAS  Google Scholar 

  38. Jun, W., Kangnian, Z. (1996) Influence of bacteria on flotation of sulfide mineral. Foreign mineral processing in metal ore pp. 4–10 (in Chinese)

    Google Scholar 

  39. Sharma, P.K., Rao, K.H., Forssberg, K.S.E., Natarajan, K.A.: Surface chemical characterisation of Paenibacillus polymyxa before and after adaptation to sulfide minerals. Int. J. Miner. Process. 62, 3–25 (2001)

    Article  CAS  Google Scholar 

  40. Santhiya, D., Subramanian, S., Natarajan, K.A., Rao, K.H., Forssberg, K.S.E.: Bio-modulation of galena and sphalerite surfaces using Thiobacillus thiooxidans. Int. J. Miner. Process. 62, 121–141 (2001)

    Article  CAS  Google Scholar 

  41. Farahat, M., Hirajima, T., Sasaki, K., Doi, K.: Adhesion of Escherichia coli onto quartz, hematite and corundum: Extended DLVO theory and flotation behavior. Colloid Surface B 74, 140–149 (2009)

    Article  CAS  Google Scholar 

  42. Yee, N., Fein, J.B., Daughney, C.J.: Experimental study of the pH, ionic strength, and reversibility behavior of bacteria–mineral adsorption. Geochim Cosmochim Ac 64, 609–617 (2000)

    Article  CAS  Google Scholar 

  43. Ams, D.A., Fein, J.B., Dong, H., Maurice, P.A.: Experimental Measurements of the Adsorption of Bacillus subtilis and Pseudomonas mendocina Onto Fe-Oxyhydroxide-Coated and Uncoated Quartz Grains. Geomicrobiol J. 21, 511–519 (2004)

    Article  CAS  Google Scholar 

  44. Shashikala, A.R., Raichur, A.M.: Role of interfacial phenomena in determining adsorption of Bacillus polymyxa onto hematite and quartz. Colloid Surface B 24, 11–20 (2002)

    Article  CAS  Google Scholar 

  45. Chenu, C., Pons, C.H., Robert, M.: Interaction of kaolinite and montmorillonite with neutral polysaccharides. In: International Clay Conference, pp. 375–381 (1985)

    Google Scholar 

  46. Malik, M., Letey, J.: Adsorption of Polyacrylamide and Polysaccharide Polymers on Soil Materials. Soil Sci. Soc. Am. J. 55, 380–383 (1991)

    Article  CAS  Google Scholar 

  47. Santoro, T., Stotzky, G.: Effect of electrolyte composition and pH on the particle size distribution of microorganisms and clay minerals as determined by the electrical sensing zone method*1. Arch. Biochem. Biophys. 122, 664–669 (1967)

    Article  CAS  Google Scholar 

  48. Jones, D.L., Edwards, A.C.: Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol. Biochem. 30, 1895–1902 (1998)

    Article  CAS  Google Scholar 

  49. Zobell, C.E.: The Effect of Solid Surfaces upon Bacterial Activity. J. Bacteriol. 46, 39 (1943)

    Article  CAS  Google Scholar 

  50. Martin, J.P., Filip, Z., Haider, K.: Effect of montmorillonite and humate on growth and metabolic activity of some actinomycetes. Soil Biol. Biochem. 8, 409–413 (1976)

    Article  CAS  Google Scholar 

  51. Lavie, S., Stotzky, G.: Interactions between clay minerals and siderophores affect the respiration of Histoplasma capsulatum. Appl. Environ. Microb. 51, 74–79 (1986)

    Google Scholar 

  52. Banfield, J.F., Barker, W.W., Welch, S.A., Taunton, A.: Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. P Natl Acad Sci Usa 96, 3404–3411 (1999)

    Article  CAS  Google Scholar 

  53. Uroz, S., Calvaruso, C., Turpault, M.P., Sarniguet, A., Boer, W.D., Leveau, J.H.J., et al.: Efficient mineral weathering is a distinctive functional trait of the bacterial genus Collimonas. Soil Biol. Biochem. 41, 2178–2186 (2009)

    Article  CAS  Google Scholar 

  54. Ojeda, L., Keller, G., Muhlenhoff, U., Rutherford, J.C., Lill, R., Winge, D.R.: Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J. Biol. Chem. 281, 17661–17669 (2006)

    Article  CAS  Google Scholar 

  55. Rogers, J.R., Bennett, P.C.: Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chem. Geol. 203, 91–108 (2004)

    Article  CAS  Google Scholar 

  56. Ahmed, E.: Microbe-mineral interactions in soil: Investigation of biogenic chelators, microenvironments and weathering processes. Department of Geological Sciences, Stockholm University, Sweden, Doctor of philosophy (2015)

    Google Scholar 

  57. Liermann, L.J., Kalinowski, B.E., Brantley, S.L., Ferry, S.G.: Role of bacterial siderophores in dissolution of hornblende. Geochim. Cosmochim. Ac. 64, 587–602 (2009)

    Article  Google Scholar 

  58. Maurice, P.A., Haack, E.A., Mishra, B.: Siderophore sorption to clays. Biometals 22, 649 (2009)

    Article  CAS  Google Scholar 

  59. Roberts, J.A., Fowle, D.A., Hughes, B.T., Kulczycki, E.: Attachment Behavior of Shewanella putrefaciens onto Magnetite under Aerobic and Anaerobic Conditions. Geomicrobiol J. 23, 631–640 (2006)

    Article  CAS  Google Scholar 

  60. Bennett, P., Rogers, J., Choi, W., Hiebert, F.: Silicates, silicate weathering, and microbial ecology. Geomicrobiol J. 18, 3–19 (2001)

    Article  CAS  Google Scholar 

  61. Mauck, B.S., Roberts, J.A.: Mineralogic control on abundance and diversity of surface-adherent microbial communities. Geomicrobiol J. 24, 167–177 (2007)

    Article  CAS  Google Scholar 

  62. Mailloux, B.J., Alexandrova, E., Keimowitz, A.R., Wovkulich, K., Freyer, G.A., Herron, M., et al.: Microbial Mineral Weathering for Nutrient Acquisition Releases Arsenic. Appl Environ MicrobI 75, 2558–2565 (2009)

    Article  CAS  Google Scholar 

  63. Kalinowski, B.E., Liermann, L.J., Brantley, S.L., Barnes, A., Pantano, C.G.: X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende. Geochim Cosmochim Ac 64, 1331–1343 (2000)

    Article  CAS  Google Scholar 

  64. Dong, H.: Mineral-microbe interactions: a review. Front Earth Sci. China 4, 127–147 (2011)

    Article  CAS  Google Scholar 

  65. Papassiopi, N., Vaxevanidou, K., Paspaliaris, I.: Effectiveness of iron reducing bacteria for the removal of iron from bauxite ores. Miner. Eng. 23, 25–31 (2010)

    Article  CAS  Google Scholar 

  66. Ryu, H.W., Cho, K.S., Yong, K.C., Sang, D.K., Mori, T.: Refinement of low-grade clay by microbial removal of sulfur and iron compounds using Thiobacillus ferrooxidans. J. Ferment. Bioeng. 80, 46–52 (1995)

    Article  CAS  Google Scholar 

  67. Juszczak, A., Domka, F., Kozłowski, M., Wachowska, H.: Microbial desulfurization of coal with Thiobacillus ferrooxidans bacteria. Fuel 74, 725–728 (1995)

    Article  CAS  Google Scholar 

  68. Bosecker, K.: Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev. 20, 591–604 (1997)

    Article  CAS  Google Scholar 

  69. Poorni, S., Natarajan, K.A.: Microbially induced selective flocculation of hematite from kaolinite. Int. J. Miner. Process. 125, 92–100 (2013)

    Article  CAS  Google Scholar 

  70. Deo, N., Natarajan, K.A.: Studies on interaction of Paenibacillus polymyxa with iron ore minerals in relation to beneficiation. Int. J. Miner. Process. 55, 41–60 (1998)

    Article  CAS  Google Scholar 

  71. Bagdigian, R.M., Myerson, A.S.: The adsorption of Thiobacillus ferrooxidans on coal surfaces. Biotechnol. Bioeng. 28, 467–479 (1986)

    Article  CAS  Google Scholar 

  72. Donati, E.R., Sand, W.: Microbial Processing of Metal Sulfides. Springer Ebooks (2007)

    Google Scholar 

  73. Patra, P., Natarajan, K.A.: Microbially-induced flocculation and flotation for pyrite separation from oxide gangue minerals. Miner. Eng. 16, 965–973 (2003)

    Article  CAS  Google Scholar 

  74. Patra, P., Natarajan, K.A.: Microbially induced flocculation and flotation for separation of chalcopyrite from quartz and calcite. Int. J. Miner. Process. 74, 143–155 (2004)

    Article  CAS  Google Scholar 

  75. Yee, N., Fein, J.: Cd adsorption onto bacterial surfaces: A universal adsorption edge? Geochim. Cosmochim. Ac. 65, 2037–2042 (2001)

    Article  CAS  Google Scholar 

  76. Huang, Q., Chen, W., Xu, L.: Adsorption of Copper and Cadmium by Cu- and Cd-Resistant Bacteria and Their Composites with Soil Colloids and Kaolinite. Geomicrobiol J. 22, 227–236 (2005)

    Article  CAS  Google Scholar 

  77. Flemming, C.A., Ferris, F.G., Beveridge, T.J., Bailey, G.W.: Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites. Appl. Environ. Microb. 56, 3191–3203 (1990)

    Article  CAS  Google Scholar 

  78. Ohnuki, T., Yoshida, T., Ozaki, T., Samadfam, M., Kozai, N., Yubuta, K., et al.: Interactions of uranium with bacteria and kaolinite clay. Chem. Geol. 220, 237–243 (2005)

    Article  CAS  Google Scholar 

  79. Zou, C.Y., Lian, B., Zang, S.Y., Wu, F.C.: Adsorption and desorption of heavy metal ions by bacteria-contained mineral composite adsorbents (in Chinese). J. Saf. Environ. 11, 43–46 (2011)

    Google Scholar 

  80. Biswas, B., Sarkar, B., Rusmin, R., Naidu, R.: Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction. Environ. intl. 85, 168 (2015)

    Article  CAS  Google Scholar 

  81. Dong, H., Lu, A.: Mineral-Microbe Interactions and Implications for Remediation. Elements 8, 95–100 (2012)

    Article  CAS  Google Scholar 

  82. Nan, Q., Mingxing, G., Yanfu, Z., Gang, N., Ruijia, C.: Treatment characteristics of mixed microbial loaded on modified diatomite for dye wastewater. Bulletin of the chinese ceramic society 34, 3451–3455 (2015)

    Google Scholar 

  83. Chen, H., He, X., Rong, X., Chen, W., Cai, P., Liang, W., et al.: Adsorption and biodegradation of carbaryl on montmorillonite, kaolinite and goethite. Appl. Clay Sci. 46, 102–108 (2009)

    Article  CAS  Google Scholar 

  84. Quintelas, C., Costa, F., Tavares, T.: Bioremoval of diethylketone by the synergistic combination of microorganisms and clays: uptake, removal and kinetic studies. Environ. Sci. Pollut. R. 20, 1374–1383 (2013)

    Article  CAS  Google Scholar 

  85. Templeton, A.S., Spormann, A.: Speciation of Pb(II) sorbed by Burkholderia cepacia/goethite composites. Environ. Sci. Technol. 37, 2166–2172 (2003)

    Article  CAS  Google Scholar 

  86. Gadd, G.M.: Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 111, 3–49 (2007)

    Article  CAS  Google Scholar 

  87. Burford, Fomina E.P., Gadd, M., G, M.: Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral. Mag. 67, 1127–1155 (2003)

    Article  CAS  Google Scholar 

  88. Li, H., Cai, L., Yao, Q.Z., Zhou, G.T.: Fungal involvement in biogeological processes and application to environmental bioremediation (in Chinese). Geol. J. China Univ. 3, 382–394 (2015) 

    Google Scholar 

  89. Jacobs, H., Boswell, G.P., Harper, F.A., Ritz, K., Davidson, F.A., Gadd, G.M.: Solubilization of metal phosphates by Rhizoctonia solani. Mycol. Res. 106, 1468–1479 (2002)

    Article  CAS  Google Scholar 

  90. Balogh-Brunstad, Z., Keller, C.K., Dickinson, J.T., Stevens, F., Li, C.Y., Bormann, B.T.: Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments. Geochim. Cosmochim. Ac. 72, 2601–2618 (2008)

    Article  CAS  Google Scholar 

  91. Gleeson, D.: Meter-Scale diversity of microbial communities on a weathered pegmatite Granite outcrop in the Wicklow Mountains, Ireland; Evidence for mineral induced selection? Geomicrobiol J. 27, 1–14 (2010)

    Article  Google Scholar 

  92. Gadd, G.M., Raven, J.A.: Geomicrobiology of eukaryotic microorganisms. Geomicrobiol J. 27, 491–519 (2010)

    Article  CAS  Google Scholar 

  93. CastroIM, Fietto J.L.R., Vieira, R.X., Trópia, M.J.M., Campos, L.M.M., Paniago, E.B., et al.: Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy 57, 39–49 (2000)

    Article  Google Scholar 

  94. Mulligan, C.N., Galvez-Cloutier, R.: Bioremediation of metal contamination. Envion. Monit. Assess. 84, 45–60 (2003)

    Article  CAS  Google Scholar 

  95. Valix, M., Usai, F., Malik, R.: Fungal bio-leaching of low grade laterite ores. Miner. Eng. 14, 197–203 (2001)

    Article  CAS  Google Scholar 

  96. Morley, G.F., Gadd, G.M.: Sorption of toxic metals by fungi and clay minerals. Mycol. Res. 99, 1429–1438 (1995)

    Article  CAS  Google Scholar 

  97. Hu, J., Lian, B., Yu, J.P., Hu, X.: Formation of aspergillus niger-mineral aggregation and characterization of polysaccharide from aggregation (in Chinese). Acta Microbiol. Sin. 6, 756–763 (2011) 

    Google Scholar 

  98. Huang, Q., Jianmei, W.U., Chen, W., Xueyuan, L.I.: Adsorption of cadmium by soil colloids and minerals in presence of Rhizobia. Pedosphere 10, 299–307 (2000)

    CAS  Google Scholar 

  99. Fomina, M., Gadd, G.M.: Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium. J. Chem. Technol. Biot. 78, 23–34 (2010)

    Article  CAS  Google Scholar 

  100. Loy, A., Mandl, M., Barton, L.L.: Geomicrobiology: Molecular and environmental perspective. Springer Science & Business Media (2010)

    Google Scholar 

  101. Henderson, R., Parsons, S.A., Jefferson, B.: The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Res. 42, 1827–1845 (2008)

    Google Scholar 

  102. Hadjoudja, S., Vignoles, C., Deluchat, V., Lenain, J.F., Jeune, A.H.L., Baudu, M.: Short term copper toxicity on Microcystis aeruginosa and Chlorella vulgaris using flow cytometry. Aquat. Toxicol. 94, 255–264 (2009)

    Article  CAS  Google Scholar 

  103. Ozkan, A., Berberoglu, H.: Cell to substratum and cell to cell interactions of microalgae. Colloid Surface B 112, 302–309 (2013)

    Article  CAS  Google Scholar 

  104. Xia, L., Li, H., Song, S.: Cell surface characterization of some oleaginous green algae. J. Appl. Phycol. 28, 2323–2332 (2016)

    Article  CAS  Google Scholar 

  105. Zhang, X., Amendola, P., Hewson, J.C., Sommerfeld, M., Hu, Q.: Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation. Bioresource Technol 116, 477–484 (2012)

    Article  CAS  Google Scholar 

  106. Li, Y., Song, S., Xia, L., Yin, H., Meza, J.V.G., Ju, W.: Enhanced Pb (II) removal by algal-based biosorbent cultivated in high-phosphorus cultures. Chem. Eng. J. 361, 167–179 (2019)

    Google Scholar 

  107. Xia, L., Huang, R., Li, Y., Song, S.: The effect of growth phase on the surface properties of three oleaginous microalgae (Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231). PLOS ONE 12 (2017) e0186434 (2017)

    Google Scholar 

  108. Wynn-Williams, D.D.: Cyanobacteria in Deserts-Life at the Limit?. Springer, Netherlands (2000)

    Google Scholar 

  109. Herrera, L.K., Arroyave, C., Guiamet, P., Saravia, S.G.D., Videla, H.: Biodeterioration of peridotite and other constructional materials in a building of the Colombian cultural heritage. Int Biodeter Biodegr 54, 135–141 (2004)

    Article  CAS  Google Scholar 

  110. Budel, B., Kuhl, B.W., Pfanz, H., Sultemeyer, D., Wessels, D.: Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2, 261–268 (2004)

    Article  Google Scholar 

  111. De, L.R.A., Wierzchos, J., Sancho, L.G., Ascaso, C.: Acid microenvironments in microbial biofilms of antarctic endolithic microecosystems. Environ. Microbiol. 5, 231–237 (2003)

    Article  Google Scholar 

  112. Garcia-Pichel, F.: Plausible mechanisms for the boring on carbonates by microbial phototrophs. Sediment Geol 185, 205–213 (2006)

    Article  Google Scholar 

  113. Huang, L.N., Tang, F.Z., Song, Y.S., Wan, C.Y., Wang, S.L., Liu, W.Q., Shu, W.S.: Biodiversity, abundance, and activity of nitrogen-fixing bacteria during primary succession on a copper mine tailings. Fems. Microbiol. Ecol. 78, 439–450 (2011)

    Article  CAS  Google Scholar 

  114. García-Meza, J.V., Barrangue, C., Admiraal, W.: Biofilm formation by algae as a mechanism for surviving on mine tailings. Environ. Toxicol. Chem. 24, 573–581 (2005)

    Article  Google Scholar 

  115. Varshney, P., Mikulic, P., Vonshak, A., Beardall, J., Wangikar, P.P.: Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour. Technol. 184, 363 (2015)

    Article  CAS  Google Scholar 

  116. Magaña, H.A., Contreras, C., Villareal, T.A.: A historical assessment of Karenia brevis in the western Gulf of Mexico. Harmful Algae 2, 163–171 (2003)

    Article  Google Scholar 

  117. Chorus, I., Bartram, J., Chorus, I., Bartram, J.: Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. Limnol. Oceanoge. 45, 255–258 (1999)

    Google Scholar 

  118. Sengco, M.R., Li, A., Tugend, K., Kulis, D., Anderson, D.M.: Removal of red-and brown-tide cells using clay flocculation. I. Laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens. Mar. Eco. Progress Series 210, 41–53 (2001)

    Article  CAS  Google Scholar 

  119. Beaulieu, S.E., Sengco, M.R., Anderson, D.W.: Using clay to control harmful algal blooms: deposition and resuspension of clay/algal flocs. Harmful Algae 4, 123–138 (2005)

    Article  Google Scholar 

  120. Pierce, R.H., Henry, M.S., Higham, C.J., Blum, P., Sengco, M.R., Anderson, D.M.: Removal of harmful algal cells (Karenia brevis) and toxins from seawater culture by clay flocculation. Harmful Algae 3, 141–148 (2004)

    Article  Google Scholar 

  121. Lee, Y., Choi, J., Kim, E., Youn, S., Yang, E.: Field experiments on mitigation of harmful algal blooms using a Sophorolipid-Yellow clay mixture and effects on marine plankton. Harmful Algae 7, 154–162 (2008)

    Article  Google Scholar 

  122. Anderson, D.M., Garrison, D.J.: The ecology and oceanography of harmful algal blooms. Limnol. Oceanogr. 42, 1009–1305 (1997)

    Google Scholar 

  123. Pierce, R.H., Blum, P., Sengco, M.R., Anderson, D.M.: Removal of harmful algal cells (Karenia brevis) and toxins from seawater culture by clay flocculation. Harmful Algae 3, 141–148 (2004)

    Article  Google Scholar 

  124. Shirota, A.: Red tide problem and countermeasures 2. Int. J. Aquat. Fish. Technol. 1, 195–223 (1989)

    Google Scholar 

  125. Davidovich, N.A., Bates, S.S.: Sexual Reproduction in the Pennate Diatoms Pesudo-NitzschiaI Multlseries and P. Pseudodelicatissima (Bacillariophyceae). J. Phycol. 34, 126–137 (2010)

    Article  Google Scholar 

  126. Yu, Z.M., Zou, J.Z., Ma, X.N.: Application of clays to removal of red tide organisms I. Coagulation of red tide organisms with clays. Chin. J. Oceanol. Limn. 12, 316–324 (1994)

    Article  CAS  Google Scholar 

  127. Gobler, C.J., Lonsdale, D.J., Boyer, G.L.: A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et sieburth). Estuaries 28, 726–749 (2005)

    Article  CAS  Google Scholar 

  128. Pan, G., Zhang, M., Chen, H., Zou, H., Yan, H.: Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environ. Pollut. 141, 195–200 (2006)

    Article  CAS  Google Scholar 

  129. Sengco, M.R., Anderson, D.W.: Controlling harmful algal blooms through clay Flocculation. J. Eukaryot. Microbiol. 51, 169–172 (2004)

    Article  CAS  Google Scholar 

  130. Pan, G., Zou, H., Chen, H., Yuan, X.: Removal of harmful cyanobacterial blooms in Taihu Lake using local soils III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils. Environ. Pollut. 141, 206–212 (2006)

    Article  CAS  Google Scholar 

  131. Zou, H., Pan, G., Chen, H., Yuan, X.: Removal of cyanobacterial blooms in Taihu Lake using local soils II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan. Environ. Pollut. 141, 201–205 (2006)

    Article  CAS  Google Scholar 

  132. Li, H., Pan, G.: Simultaneous removal of harmful algal blooms and microcystins using Microorganism- and Chitosan-Modified Local Soil. Environ. Sci. Technol. 49, 6249–6256 (2015)

    Article  CAS  Google Scholar 

  133. Liu, G., Fan, C., Zhong, J., Zhang, L., Ding, S., Yan, S., Han, S.: Using hexadecyl trimethyl ammonium bromide (CTAB) modified clays to clean the Microcystis aeruginosa blooms in Lake Taihu, China. Harmful Algae 9, 413–418 (2010)

    Article  CAS  Google Scholar 

  134. Chen, J., Pan, G.: Harmful algal blooms mitigation using clay/soil/sand modified with xanthan and calcium hydroxide. J. Appl. Phycol. 24, 1183–1189 (2012)

    Article  CAS  Google Scholar 

  135. Wu, T., Yan, X., Cai, X., Tan, S., Li, H., Liu, J., Yang, W.: Removal of Chattonella marina with clay minerals modified with a gemini surfactant. Appl. Clay Sci. 50, 604–607 (2010)

    Article  CAS  Google Scholar 

  136. Li, L., Pan, G.: A universal method for flocculating harmful algal blooms in marine and fresh waters using modified sand. Environ. Sci. Technol. 47, 4555–4562 (2013)

    Article  CAS  Google Scholar 

  137. Chamizo, S., Cantón, Y., Miralles, I., Domingo, F.: Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biol. Biochem. 49, 96–105 (2012)

    Article  CAS  Google Scholar 

  138. Lan, S., Zhang, Q., Wu, L., Liu, Y., Zhang, D., Hu, C.: Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities. Environ. Sci. Technol. 48, 307 (2014)

    Article  CAS  Google Scholar 

  139. Rossi, F., Li, H., Liu, Y., Philippis, R.D.: Cyanobacterial inoculation (cyanobacterisation): Perspectives for the development of a standardized multifunctional technology for soil fertilization and desertification reversal. Earth-Sci. Rev. 171, 28–43 (2017)

    Article  Google Scholar 

  140. Xie, Z., Liu, Y., Hu, C., Chen, L., Li, D.: Relationships between the biomass of algal crusts in fields and their compressive strength. Soil Biol. Biochem. 39, 567–572 (2007)

    Article  CAS  Google Scholar 

  141. Li, H., Rao, B., Wang, G., Shen, S., Li, D., Hu, C., Liu, Y.: Spatial heterogeneity of cyanobacteria-inoculated sand dunes significantly influences artificial biological soil crusts in the Hopq Desert (China). Environ. Earth Sci. 71, 245–253 (2014)

    Article  CAS  Google Scholar 

  142. Felde, A.V.M.N., Peth, S., Uteau-Puschmann, D., Drahorad, S., Felix-Henningsen, P.: Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Biodivers. Conserv. 23, 1687–1708 (2014)

    Article  Google Scholar 

  143. Williams, A.J., Buck, B.J., Soukup, D.A., Merkler, D.J.: Geomorphic controls on biological soil crust distribution: A conceptual model from the Mojave Desert (USA). Geomorphology 195, 99–109 (2013)

    Article  Google Scholar 

  144. Williams, A.J.: Biological soil crusts in the mojave desert, USA: Micromorphology and Pedogenesis. Soil Sci. Soc. Am. J. 76, 1685–1695 (2012)

    Article  CAS  Google Scholar 

  145. Ram, A., Aaron, Y.: Negative and positive effects of topsoil biological crusts on water availability along a rainfall gradient in a sandy arid area. CATENA 70, 437–442 (2007)

    Article  Google Scholar 

  146. Pietrasiak, N., Drenovsky, R.E., Santiago, L.S., Graham, R.C.: Biogeomorphology of a Mojave Desert landscape-Configurations and feedbacks of abiotic and biotic land surfaces during landform evolution. Geomorphology 206, 23–36 (2014)

    Article  Google Scholar 

  147. Hu, C., Liu, Y., Song, L., Zhang, D.: Effect of desert soil algae on the stabilization of fine sands. J. Appl. Phycol. 14, 281–292 (2002)

    Article  CAS  Google Scholar 

  148. Rozenstein, O., Zaady, E., Katra, I., Karnieli, A., Adamowski, J., Yizhaq, H.: The effect of sand grain size on the development of cyanobacterial biocrusts. Aeolian Res. 15, 217–226 (2014)

    Article  Google Scholar 

  149. Hayes, M.H., Clapp, C.E.: Humic substances: Considerations of compositions, aspects of structure, and environmental Influences. Soil Sci. 166, 723–737 (2001)

    Google Scholar 

  150. Fontes, M.R., Weed, S.B., Bowen, L. H.: Association of microcrystalline goethite and humic acid in some Oxisols from Brazil. Soil Sci. Soc. Am. J. 56, 982–990 (1992)

    Google Scholar 

  151. Aiken, G.R., Mcknight, D.M., Wershaw, R.L., Maccarthy, P.M.: Humic substances in soil, sediment, and water: geochemistry, isolation and characterization. Q. Rev. Biol. 142, (1985)

    Google Scholar 

  152. Vermeer, A.W.P.: Interactions between humic acid and hematite and their effects on metal ion speciation. Ph.D. Thesis, Wageningen Agricultural University (1996)

    Google Scholar 

  153. Evans, L.T., Russell, E.W.: The Adsorption of humic and fulvic acids by clays. J. Soil Sci. 10, 119–132 (1959)

    Article  CAS  Google Scholar 

  154. Greenland, D.J.: Interactions between humic and fulvic acids and clays. Soil Sci. 11, 34–41 (1971)

    Google Scholar 

  155. Zhang, L., Luo, L., Zhang, S.: Integrated investigations on the adsorption mechanisms of fulvic and humic acids on three clay minerals. Colloid Surfaces A 406, 84–90 (2012)

    Article  CAS  Google Scholar 

  156. Gu, B., Schmitt, J., Chen, Z., Liang, L., Mccarthy, J.F.: Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ. Sci. Technol. 28, 38 (1994)

    Article  CAS  Google Scholar 

  157. Weng, L., van Riemsdijk, W.H., Koopal, L.K., Hiemstra, T.: Adsorption of humic substances on goethite: comparison between humic acids and fulvic acids. Environ. Sci. Technol. 40, 7494 (2006)

    Article  CAS  Google Scholar 

  158. Fu, X., Quan, X.: Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite: FTIR observation. Chemosphere 63, 403–410 (2006)

    Article  CAS  Google Scholar 

  159. Qin, X., Liu, F., Wang, G., Huang, G.: Adsorption of humic acid from aqueous solution by hematite: effects of pH and ionic strength. Environ. Earth Sci. 73, 4011–4017 (2015)

    Article  CAS  Google Scholar 

  160. Vermeer, A.W.P., Riemsdijk, W.H.V., Koopal, L.K.: Adsorption of humic acid to mineral particles. 1. Specific and electrostatic interacions. 14, 2810–2819 (1998)

    CAS  Google Scholar 

  161. Kloster, N., Avena, M.: Interaction of humic acids with soil minerals: adsorption and surface aggregation induced by Ca2+. Environ. Chem. 12, 731–738 (2015)

    Article  CAS  Google Scholar 

  162. Spark, K.M., Wells, J.D., Johnson, B.B.: Sorption of heavy metals by mineral-humic acid substrates. Soil Res 35, 113–122 (1997)

    Article  CAS  Google Scholar 

  163. Liu, A., Gonzalez, R.D.: Adsorption/Desorption in a System Consisting of Humic Acid, Heavy Metals, and Clay Minerals. J. Colloid Interface Sci. 218, 225–232 (1999)

    Article  CAS  Google Scholar 

  164. Wingender, J., Neu, T.R., Flemming, H.: What are Bacterial Extracellular Polymeric Substances? In: Wingender, J., Neu, T.R., Flemming, H. (eds.) Microbial Extracellular Polymeric Substances: Characterization, pp. 1–19. Structure and Function, Springer, Berlin Heidelberg, Berlin, Heidelberg (1999)

    Chapter  Google Scholar 

  165. Tsuneda, S., Aikawa, H., Hayashi, H., Yuasa, A., Hirata, A.: Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol. Lett. 223, 287–292 (2003)

    Article  CAS  Google Scholar 

  166. Banfield, J.F., Barker, W.W., Welch, S.A., Taunton, A.: Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. P Natl Acad Sci 96, 3404–3411 (1999)

    Article  CAS  Google Scholar 

  167. Sheng, G., Yu, H., Li, X.: Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol. Adv. 28, 882–894 (2010)

    Article  CAS  Google Scholar 

  168. Omoike, A., Chorover, J.: Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis. Geochim Cosmochim Ac 70, 827–838 (2006)

    Article  CAS  Google Scholar 

  169. Cao. Y., Wei. X., Cai, P., Huang, Q., Rong, X., Liang, W.: Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide.Colloid Surf. B 83,122–127 (2011)

    Google Scholar 

  170. Fang, L., Cao, Y., Huang, Q., Walker, S.L., Cai, P.: Reactions between bacterial exopolymers and goethite: A combined macroscopic and spectroscopic investigation.Water Res. 46, 5613–5620 (2012) 

    Google Scholar 

  171. Mikutta, R., Baumgärtner, A., Schippers, A., Haumaier, L., Guggenberger, G.: Extracellular Polymeric Substances from Bacillus subtilis Associated with Minerals Modify the Extent and Rate of Heavy Metal Sorption. Environ. Sci. Technol. 46, 3866–3873 (2012)

    Article  CAS  Google Scholar 

  172. Sparks, D.L.: Environmental Soil Chemistry (Second Edition) (2003)

    Google Scholar 

  173. Kwon, K.D., Vadillo-Rodriguez, V., Logan, B.E., Kubicki, J.D.: Interactions of biopolymers with silica surfaces: Force measurements and electronic structure calculation studies. Geochim. Cosmochim. Ac. 70, 3803–3819 (2006)

    Article  CAS  Google Scholar 

  174. Zhu, P., Long, G., Ni, J.R., Tong, M.: Deposition Kinetics of Extracellular Polymeric Substances (EPS) on Silica in Monovalent and Divalent Salts. Environ. Sci. Technol. 43, 5699 (2009)

    Article  CAS  Google Scholar 

  175. Omoike, A., Chorover, J., Kwon, K.D., Kubicki, J.D.: Adhesion of Bacterial Exopolymers to α-FeOOH: Inner-Sphere Complexation of Phosphodiester Groups. Langmuir 20, 11108–11114 (2004)

    Article  CAS  Google Scholar 

  176. Liu, X., Eusterhues, K., Thieme, J., Ciobota, V., Höschen, C., Mueller, C.W., Küsel, K., Kögel-Knabner, Rösch I.P., Popp, J.: STXM and NanoSIMS investigations on EPS fractions before and after adsorption to goethite. Environ. Sci. Technol. 47, 3158–3166 (2013)

    Article  CAS  Google Scholar 

  177. Fang, L., Huang, Q., Wei, X., Liang, W., Rong, X., Chen, W., Cai, P.: Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites. Bioresource Technol 101, 5774 (2010)

    Article  CAS  Google Scholar 

  178. Jaisi, D.P., Dong, H., Kim, J., He, Z., Morton, J.P.: Nontronite particle aggregation induced by microbial Fe(III) reduction and exopolysaccharide production. Clay Clay Miner 55, 96–107 (2007)

    Article  CAS  Google Scholar 

  179. Yan, S., Cai, Y., Li, H., Song, S., Xia, L.: Enhancement of cadmium adsorption by EPS-montmorillonite composites. Environ. Pollut. 252, 1509–1518 (2019)

    Article  CAS  Google Scholar 

  180. Rigou, P., Rezaei, H., Grosclaude, J., Staunton, S., Quiquampoix, H.: Fate of prions in soil: adsorption and extraction by electroelution of recombinant ovine prion protein from montmorillonite and natural soils. Environ. Sci. Technol. 40, 1497–1503 (2006)

    Article  CAS  Google Scholar 

  181. Koskella, J., Stotzky, G.: Microbial utilization of free and clay-bound insecticidal toxins from bacillus thuringiensis and their retention of insecticidal activity after incubation with microbes. Appl. Environ. Microb. 63, 3561 (1997)

    Article  CAS  Google Scholar 

  182. Stotzky, G.: Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. J. Environ. Qual. 29, 691–705 (2000)

    Article  CAS  Google Scholar 

  183. Fiorito, T.M., Icoz, I., Stotzky, G.: Adsorption and binding of the transgenic plant proteins, human serum albumin, β-glucuronidase, and Cry3Bb1, on montmorillonite and kaolinite: Microbial utilization and enzymatic activity of free and clay-bound proteins. Appl. Clay Sci. 39, 142–150 (2008)

    Article  CAS  Google Scholar 

  184. Vaiana, C.A., Leonard, M.K., Drummy, L.F., Singh, K.M., Bubulya, A., Vaia, R.A., Naik, R.R., Kadakia, M.P.: Epidermal Growth Factor: Layered Silicate Nanocomposites for Tissue Regeneration. Biomacromol 12, 3139–3146 (2011)

    Article  CAS  Google Scholar 

  185. Ruizhitzky, E., Aranda, P., Darder, M., Ogawa, M.: Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom-up processes. Cheminform 42, 801–828 (2011)

    Google Scholar 

  186. Yu, W.H., Li, N., Tong, D.S., Zhou, C.H., Lin, C.X.C., Xu, C.Y.: Adsorption of proteins and nucleic acids on clay minerals and their interactions: A review. Appl. Clay Sci. 80, 443–452 (2013)

    Google Scholar 

  187. Johnston, C.T., Premachandra, G.S., Szabo, T., Lok, J., Schoonheydt, R.A.: Interaction of Biological Molecules with Clay Minerals: A Combined Spectroscopic and Sorption Study of Lysozyme on Saponite. Langmuir 28, 611–619 (2012)

    Article  CAS  Google Scholar 

  188. Wang, X.C., Lee, C.: Adsorption and desorption of aliphatic amines, amino acids and acetate by clay minerals and marine sediments. Mar. Chem. 44, 1–23 (1993)

    Article  CAS  Google Scholar 

  189. Dumat, Camille, Hervé Quiquampoix, A., Staunton, S.: Adsorption of Cesium by Synthetic Clay − Organic Matter Complexes: Effect of the Nature of Organic Polymers. Environ. Sci. Technol. 34, 2985–2989 (2000)

    Article  CAS  Google Scholar 

  190. Aquino, A.J., Tunega, D., Haberhauer, G., Gerzabek, M.H., Lischka, H.: Adsorption of organic substances on broken clay surfaces: A quantum chemical study. J. Comput. Chem. 24, 1853–1863 (2003)

    Google Scholar 

  191. Zhou, X., Huang, Q., Chen, S., Yu, Z.: Adsorption of the insecticidal protein of Bacillus thuringiensis on montmorillonite, kaolinite, silica, goethite and Red soil. Appl. Clay Sci. 30, 87–93 (2005)

    Article  CAS  Google Scholar 

  192. Awad, A.M., Shaikh, S.M., Jalab, R., Gulied, M.H., Nasser, M.S., Benamor, A., Adham, S.: Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Sep. Purif. Technol. 228, 115719 (2019)

    Google Scholar 

  193. Szabó, T., Mitea, R., Leeman, H., Premachandra, G.S., Johnston, C.T., Szekeres, M., Dékány, I., Schoonheydt, R.A.: Adsorption of protamine and papain proteins on saponite. Clay Miner. 56, 494–504 (2008)

    Google Scholar 

  194. Fusi, P., Ristori, G.G., Calamai, L., Stotzky, G.: Adsorption and binding of protein on “clean” (homoionic) and “dirty” (coated with Fe oxyhydroxides) montmorillonite, illite and kaolinite. Soil Biol. Biochem. 21, 911–920 (1989)

    Article  CAS  Google Scholar 

  195. Ralla, K., Sohling, U., Riechers, D., Kasper, C., Ruf, F., Scheper, T.: Adsorption and separation of proteins by a smectitic clay mineral. Bioproc Biosyst Eng 33, 847–861 (2010)

    Article  CAS  Google Scholar 

  196. Barral, S., Villa-García, M.A., Rendueles, M., Díaz, M.: Interactions between whey proteins and kaolinite surfaces. Acta Mater. 56, 2784–2790 (2008)

    Article  CAS  Google Scholar 

  197. Helassa, N., Quiquampoix, H., Noinville, S., Szponarski, W., Staunton, S.: Adsorption and desorption of monomeric Bt (Bacillus thuringiensis) Cry1Aa toxin on montmorillonite and kaolinite. Soil Biol. Biochem. 41, 498–504 (2009)

    Article  CAS  Google Scholar 

  198. Simonson, T., Brooks, C.L.: Charge screening and the dielectric constant of proteins: Insights from molecular dynamics. J. Am. Chem. Soc. 118, 8452–8458 (1996)

    Google Scholar 

  199. Sun, X.F., Li, C., Wu, Z.S., Xu, X.L,  Ren, L.N., Zhao, H.S.: Adsorption of protein from model wine solution by different bentonites. Chinese J. Chem. Eng. 15, 632–638 (2007)

    Article  CAS  Google Scholar 

  200. Nd, C.H., Jonsson, C.M., Jonsson, C.L., Sverjensky, D.A., Hazen, R.M.: Adsorption of nucleic acid components on rutile (TiO2) surfaces. Astrobiolog 10, 311 (2010)

    Article  CAS  Google Scholar 

  201. Saeki, K., Kunito, T., Sakai, M.: Effects of pH, ionic strength, and solutes on DNA adsorption by andosols. Biol Fert of Soils 46, 531–535 (2010)

    Article  CAS  Google Scholar 

  202. Peng, C., Huang, Q., Zhu, J., Jiang, D., Zhou, X., Rong, X., Liang, W.: Effects of low-molecular-weight organic ligands and phosphate on DNA adsorption by soil colloids and minerals. Colloid Surfaces B 54, 53 (2007)

    Article  CAS  Google Scholar 

  203. Sciascia, L., Liveri, M.L.T., Merli, M.: Kinetic and equilibrium studies for the adsorption of acid nucleic bases onto K10 montmorillonite. Appl. Clay Sci. 53, 657–668 (2011)

    Article  CAS  Google Scholar 

  204. Beall, G.W., Sowersby, D.S., Roberts, R.D., Robson, M.H., Lewis, L.K.: Analysis of oligonucleotide DNA binding and sedimentation properties of montmorillonite clay using ultraviolet light spectroscopy. Biomacromol 10, 105–112 (2009)

    Article  CAS  Google Scholar 

  205. Aquino, Adélia J.A., Tunega, Daniel, Georg Haberhauer, A., Gerzabek, Martin H., Lischka, Hans: Solvent Effects on Hydrogen Bonds A Theoretical Study. J. Phys. Chem. A 106, 1862–1871 (2002)

    Article  CAS  Google Scholar 

  206. Cai, P., Huang, Q., Zhang, X.: Microcalorimetric studies of the effects of MgCl2 concentrations and pH on the adsorption of DNA on montmorillonite, kaolinite and goethite. Appl. Clay Sci. 32, 147–152 (2006)

    Article  CAS  Google Scholar 

  207. Mignon, P., Ugliengo, P., Sodupe, M.: Theoretical Study of the Adsorption of RNA/DNA Bases on the External Surfaces of Na+-Montmorillonite. J. Phys. Chem. C 113, 13741–13749 (2009)

    Article  CAS  Google Scholar 

  208. Benetoli, L.O.D.B., Santana, H.D., Zaia, C.T.B.V., Zaia, D.A.: MnAdsorption of nucleic acid bases on clays: an investigation using Langmuir and Freundlich isotherms and FT-IR spectroscopy. Monatsh Chem - Chemical Monthly 139, 753–761 (2008)

    Article  CAS  Google Scholar 

  209. Cai, P., Huang, Q., Zhang, X.: Microcalorimetric studies of the effects of MgCl2 concentrations and pH on the adsorption of DNA on montmorillonite, kaolinite and goethite. Appli Clay Sci 32, 147–152 (2006)

    Article  CAS  Google Scholar 

  210. Saeki, K., Sakai, M., Ada, S.I.: DNA adsorption on synthetic and natural allophanes. Appl. Clay Sci. 50, 493–497 (2010)

    Article  CAS  Google Scholar 

  211. Franchi, M., Ferris, J.P., Gallori, E.: Cations as Mediators of the Adsorption of Nucleic Acids on Clay Surfaces in Prebiotic Environments. Origins Life Evol B 33, 1–16 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xia, L., Ma, L., Meng, D. (2021). Adsorption of Microorganisms to Minerals. In: Song, S., Li, B. (eds) Adsorption at Natural Minerals/Water Interfaces. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-54451-5_7

Download citation

Publish with us

Policies and ethics