Skip to main content
Log in

Mineral-microbe interactions: a review

  • Feature Article
  • Published:
Frontiers of Earth Science in China Aims and scope Submit manuscript

Abstract

The studies of mineral-microbe interactions lie at the heart of the emerging field of Geomicrobiology, as minerals and rocks are the most fundamental earth materials with which microbes interact at all scales. Microbes have been found in a number of the Earth’s extreme environments and beyond. In spite of the diverse geological environments in which microbes are found and diverse approaches taken to study them, a common thread, mineral-microbe interactions, connects all these environments and experimental approaches under the same umbrella, i.e., Geomicrobiology. Minerals and rocks provide microbes with nutrients and living habitats, and microbes impact rock and mineral weathering and diagenesis rates through their effects on mineral solubility and speciation. Given a rapid growth of research in this area in the last two decades, it is not possible to provide a comprehensive review on the topic. This review paper focuses on three area, i.e., microbial dissolution of minerals, microbial formation of minerals, and certain techniques to study mineral-microbe interactions. Under the first area, three subjects are reviewed; they include siderophores as important agents in promoting mineral dissolution, microbial oxidation of reduced minerals (acid mine drainage and microbial leaching of ores), and microbial reduction of oxidized minerals. Under the second topic, both biologically controlled and induced mineralizations are reviewed with a special focus on microbially induced mineralization (microbial surface mediated mineral precipitation and microbial precipitation of carbonates). Under the topic of characterization, the focus is on transmission electron microscopy (TEM) and electron energy loss spectroscopy. It is the author’s hope that this review will promote more focused research on mineral-microbe interactions and encourage more collaboration between microbiologists and mineralogists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloisi G, Pierre C, Rouchy J M, Foucher J P, Woodside J, the MEDINAUT Scientific Party (2000). Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth Planet Sci Lett, 184 (1): 321–338

    Article  Google Scholar 

  • Amonette J E, Templeton J C (1998). Improvements to the quantitative assay of nonrefractory minerals for Fe(II) and total Fe using 1,10-phenanthroline. Clays Clay Miner, 46 (1): 51–62

    Article  Google Scholar 

  • Ams D A, Maurice P A, Hersman L E, Forsythe J H (2002). Siderophore production by an aerobic Pseudomonas mendocina bacterium in the presence of kaolinite. Chem Geol, 188 (3–4): 161–170

    Article  Google Scholar 

  • Arnold R G, DiChristina T J, Hoffmann M R (1988). Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200. Biotechnol Bioeng, 32 (9): 1081–1096

    Article  Google Scholar 

  • Bach W, Edwards K J (2003). Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta, 67 (20): 3871–3887

    Article  Google Scholar 

  • Baeuerlein E (2000). Biomineralization: From Biology to Biotechnology and Medical Application. New York: Wiley-VCH, 294

    Google Scholar 

  • Baker B J, Banfield J F (2003). Microbial communities in acid mine drainage. FEMS Microbiol Ecol, 44 (2): 139–152

    Article  Google Scholar 

  • Baker P A, Burns S J (1985). The occurrence and formation of dolomite in organic-rich continental margin sediments. AAPG Bull, 69: 1917–1930

    Google Scholar 

  • Baker P A, Kastner M (1981). Constraints on the formation of sedimentary dolomite. Science, 213 (4504): 214–216

    Article  Google Scholar 

  • Banerjee N R, Furnes H, Muehlenbachs K, Staudigel H, de Wit M (2006). Preservation of ~3.4-3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton Greenstone Belt, South Africa. Earth Planet Sci Lett, 241 (3–4): 707–722

    Article  Google Scholar 

  • Banfield J F, Barker W W, Welch S A, Taunton A (1999). Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci USA, 96 (7): 3404–3411

    Article  Google Scholar 

  • Banfield J F, Cervini-Silva J, Nealson K M (2005). Molecular Geomicrobiology. The Mineralogical Society of America, Chantilly VA, 294

    Google Scholar 

  • Banfield J F, Nealson K H (1997). Geomicrobiology: Interaction Between Microbes and Minerals. Mineralogical Society of America, Atla Utah

    Google Scholar 

  • Barker W W, Welch S A, Banfield J F (1997). Biogeochemical weathering of silicate minerals. In: Banfield J F, Nealson K M, eds. Geomicrobiology: Interaction Between Microbes and Minerals. Mineralogical Society of America, Washington D C, 35: 391–428

    Google Scholar 

  • Barker W W, Welch S A, Chu S, Banfield J F (1998). Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral, 83: 1551–1563

    Google Scholar 

  • Barton H A, Northup D E (2007). Geomicrobiology in cave environments: past, current and future perspectives. J Caves Karst Stud, 69 (1): 163–178

    Google Scholar 

  • Bazylinski D A, Frankel R B (2000). Biologically controlled mineralization of magnetic iron minerals by magnetotactic bacteria. In: Lovley D R, ed. Environmental Microbe-Metal Interactions. Washington D C: ASM Press, 109–144

    Google Scholar 

  • Bazylinski D A, Frankel R B (2003). Biologically controlled mineralization in prokaryotes. In: Dove P M, DeYoreo J J, Weiner S, eds. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America. Washington D C, 54: 217–247

    Google Scholar 

  • Bazylinski D A, Frankel R B (2004). Magnetosome formation in prokaryotes. Nat Rev Microbiol, 2 (3): 217–230

    Article  Google Scholar 

  • Beard B L, Johnson C M, Cox L, Sun H, Nealson K H, Aguilar C (1999). Iron isotope biosignatures. Science, 285 (5435): 1889–1892

    Article  Google Scholar 

  • Bennett P C, Rogers J R, Choi W J, Hiebert F K (2001). Silicates, silicate weathering, and microbial ecology. Geomicrobiological Journal, 18 (1): 3–19

    Article  Google Scholar 

  • Benzerara K, Menguy N (2009). Looking for traces of life in minerals. C R Geosci, 8 (7): 617–628

    Google Scholar 

  • Beveridge T J (2006). Cryotransmission electron microscopy is enabling investigators to examine native, hydrated structures in bacteria and biofilms. Microbe, 1: 279–284

    Google Scholar 

  • Beveridge T J, Meloche J D, Fyfe W S, Murray R G E (1983). Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphates, sulfides, and organic condensates in artificial sediments. Appl Environ Microbiol, 45 (3): 1094–1108

    Google Scholar 

  • Beveridge T J, Murray R G E (1976). Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol, 127 (3): 1502–1518

    Google Scholar 

  • Beveridge T J, Murray R G E (1980). Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol, 141 (2): 876–887

    Google Scholar 

  • Bigham J M, Nordstrom D K (2000). Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers C N, Jambor J L, Nordstrom D K, eds. Sulfate Minerals, Crystallography, Geochemistry and Environmental Significance: Reviews in Mineralogy and Geochemistry. Mineralogical Society of America, Washington D C, 40: 351–403

    Google Scholar 

  • Bigham J M, Schwertmann U, Traina S J, Winland R L, Wolf M (1996). Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta, 60 (12): 2111–2121.

    Article  Google Scholar 

  • Boone D R, Liu Y, Zhao Z J, Balkwill D L, Drake G R, Stevens T O, Aldrich H C (1995). Bacillus infernus sp. nov., an Fe(III)- and Mn (IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol, 45 (3): 441–448

    Article  Google Scholar 

  • Borrok D, Turner B F, Fein J B (2005). A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings. Am J Sci, 305 (6–8): 826–853

    Article  Google Scholar 

  • Buseck P R, Dunin-Borkowski R E, Devouard B, Frankel R B, McCartney M R, Midgley P A, Posfai M, Weyland M (2001). Magnetite morphology and life on Mars

  • Campbell K A, Farmer J D, Des Marais D (2002). Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids, 2 (2): 63–94

    Article  Google Scholar 

  • Canales C, Acevedo F, Gentina J C (2002). Laboratory-scale continuous bio-oxidation of a gold concentrate of high pyrite and enargite content. Process Biochem, 37 (10): 1051–1055

    Article  Google Scholar 

  • Cavagna S, Clari P, Martire L (1999). The role of bacteria in the formation of cold seep carbonates: geological evidnece from Monferrato (Tertiary, NWItaly). Sediment Geol, 126 (1–4): 253–270

    Article  Google Scholar 

  • Chapelle F H, O’Neill K, Bradley PM, Methé B A, Ciufo S A, Knobel L L, Lovley D R (2002). A hydrogen-based subsurface microbial community dominated by methanogens. Nature, 415 (6869): 312–315

    Article  Google Scholar 

  • Childers S E, Ciufo S, Lovley D R (2002). Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature, 416 (6882): 767–769

    Article  Google Scholar 

  • Clark M E, Batty J D, van Buuren C B, Dew D W, Eamon M A (2006). Biotechnology in minerals processing: Technological breakthroughs creating value. Hydrometallurgy, 83 (1–4): 3–9

    Article  Google Scholar 

  • Costa K C, Navarro J B, Shock E L, Zhang C L, Soukup D, Hedlund B P (2009). Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles, 13 (3): 447–459

    Article  Google Scholar 

  • Cravotta C A I, Trahan M K (1999). Limestone drains to increase pH and remove dissolved metals from acidic mine drainage. Appl Geochem, 14: 2922–2923

    Google Scholar 

  • Daughney C J, Fowle D A, Fortin D E (2001). The effect of growth phase on proton and metal adsorption by Bacillus subtilis. Geochim Cosmochim Acta, 65 (7): 1025–1035

    Article  Google Scholar 

  • Daulton T L, Little B J, Lowe K, Jones-Meehan J (2002). Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction. J Microbiol Methods, 50 (1): 39–54

    Article  Google Scholar 

  • Desroches S, Biron F, Berthon G (1999). Aluminum speciation studies in biological fluids Part 5. A quantitative investigation of Al(III) complex equilibria with desferrioxamine, 2,3-dihydroxybenzoic acid, Tiron, CP20 (L1), and CP94 under physiological conditions, and computer-aided assessm. Journal of Inorganic Chemistry, 75 (1): 27–35

    Google Scholar 

  • Dhugues P, Joulian C, Spolaore P, Michel C, Garrido F, Morin D (2008). Continuous bioleaching of a pyrite concentrate in stirred reactors: population dynamics and exopolysaccharide production vs. bioleaching performance. Hydrometallurgy, 94 (1–4): 34–41

    Article  Google Scholar 

  • Dohnalkova A C, Gorby YA, McLean J, Fredrickson J K, Kennedy DW (2001). Biogenic mineral formation by iron reducing bacteria. Microsc Microanal, 7 (Suppl 2): 756–757

    Google Scholar 

  • Dong H L, Fredrickson J K, Kennedy D W, Zachara J M, Kukkadapu R K, Onstott T C (2000). Mineral transformation associated with the microbial reduction of magnetite. Chem Geol, 169 (3–4): 299–318

    Article  Google Scholar 

  • Dong H L, Jaisi D P, Kim J W, Zhang G (2009). Microbe-clay mineral interactions. Am Mineral, 94 (11–12): 1505–1519

    Article  Google Scholar 

  • Dong H L, Kostka J E, Kim J W (2003). Microscopic evidence for microbial dissolution of smectite. Clays Clay Miner, 51 (5): 502–512

    Article  Google Scholar 

  • Dong H L, Yu B (2007). Geomicrobiological processes in extreme environments: a review. Episodes, 30 (3): 202–216

    Google Scholar 

  • Dove P M, De Yoreo J J, Weiner S (2003) Biomineralization. Mineralogical Society of America, Washington D C, 381

    Google Scholar 

  • Druschel G K, Baker B J, Gihring T M, Banfield J F (2004). Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem Trans, 5 (2): 13–32

    Article  Google Scholar 

  • Duckworth O W, Bargar J R, Jarzecki A A, Oyerinde O, Spiro T G, Sposito G (2009a). The exceptionally stable cobalt(III) -desferrioxamine B complex. Mar Chem, 113 (1–2): 114–122

    Article  Google Scholar 

  • Duckworth O W, Bargar J R, Sposito G (2009b). Coupled biogeochemical cycling of iron and manganese as mediated by microbial siderophores. Biometals, 22 (4): 605–613

    Article  Google Scholar 

  • Duckworth O W, Sposito G (2005). Siderophore-manganese(III) interactions. I. Air-oxidation of manganese(II) promoted by desferrioxamine B. Environ Sci Technol, 39 (16): 6037–6044

    Article  Google Scholar 

  • Duckworth O W, Sposito G (2007). Siderophore-promoted dissolution of synthetic and biogenic layer-type Mn oxides. Chem Geol, 242 (3–4): 497–508

    Article  Google Scholar 

  • Edwards H G M, Villar S E J, Parnell J, Cockell C S, Lee P (2005). Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. Analyst, 130 (6): 917–923

    Article  Google Scholar 

  • Edwards K, Bach W, McCollom T, Rogers D (2004). Neutrophilic ironoxidizing bacteria in the ocean: their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiol J, 21 (6): 393–404

    Article  Google Scholar 

  • Edwards K J, Bazylinski D A (2008). Intracellular minerals and metal deposits in prokaryotes. Geobiology, 6 (3): 309–317

    Article  Google Scholar 

  • Edwards K J, Bond P L, Druschel G K, McGuire M M, Hamers R J, Banfield J F (2000a). Geochemical and biological aspects of sulfide mineral dissolution: lessons from Iron Mountain, California. Chem Geol, 169 (3–4): 383–397

    Article  Google Scholar 

  • Edwards K J, Bond P L, Gihring T M, Banfield J F (2000b). An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science, 287 (5459): 1796–1799

    Article  Google Scholar 

  • Ehrlich H L, Newman D K (2009) Geomicrobiology. Boca Raton F L: CRC Press, 606

    Google Scholar 

  • Espana J S, Pamo E L, Pastor E S, Andres J R, Rubi J A M (2006). The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid minewaters, Iberian Pyrite Belt. Appl Geochem, 12 (3): 269–298

    Google Scholar 

  • Fein J B, Daughney C J, Yee N, Davis T A (1997). A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta, 61 (16): 3319–3328

    Article  Google Scholar 

  • Ferris F G, Beveridge T J, Fyfe W S (1986). Iron-silica crystallite nucleation by bacteria in a geothermal sediment. Nature, 320 (6063): 609–611

    Article  Google Scholar 

  • Ferris F G, Fyfe W S, Beveridge T J (1987). Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chem Geol, 63 (3–4): 225–232

    Article  Google Scholar 

  • Fisk M R, Giovannoni S J, Thorseth I H (1998). Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science, 281 (5379): 978–980

    Article  Google Scholar 

  • Fisk M R, Popa R, Mason O U, Storrie-Lombardi M C, Vicenzi E P (2006). Iron-magnesium silicate bioweathering on Earth (and Mars?). Astrobiology, 6 (1): 48–68

    Article  Google Scholar 

  • Fisk M R, Storrie-Lombardi M C, Douglas S, Popa R, McDonald G, Di Meo-Savoie C (2003). Evidence of biological activity in Hawaiian subsurface basalts. Geochem Geophys Geosyst, 4 (12): 1103

    Article  Google Scholar 

  • Formolo M J, Lyons T W, Zhang C L, Kelley C, Sassen R, Horita J, Cole D R (2004). Quantifying carbon sources in the formation of authigenic carbonates at gas hydrate sites in the Gulf of Mexico. Chem Geol, 205 (3–4): 253–264

    Article  Google Scholar 

  • Fortin D, Langley S (2005). Formation and occurrence of biogenic iron-rich minerals. Earth Sci Rev, 72 (1–2): 1–19

    Article  Google Scholar 

  • Fredrickson J K, Balkwill D L (2006). Geomicrobial processes and biodiversity in the deep terrestrial subsurface. Geomicrobiol J, 23 (6): 345–356

    Article  Google Scholar 

  • Fredrickson J K, McKinley J P, Bjornstad B N, Long P E, Ringelberg D B, White D C, Krumholz L R, Suflita JM, Colwell F S, Lehman RM, Phelps T J, Onstott T C (1997). Pore-size constraints on the activity and survival of subsurface bacteria in a late Cretaceous shale-sandstone sequence, Northwestern New Mexico. Geomicrobiol J, 14 (3): 183–202

    Article  Google Scholar 

  • Fredrickson J K, Onstott T C (1996). Microbes deep inside the earth. Sci Am, 275 (4): 68–73

    Article  Google Scholar 

  • Fredrickson J K, Zachara J M, Kennedy D W, Dong H, Onstott T C, Hinman N W, Li S M (1998). Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim Cosmochim Acta, 62 (19–20): 3239–3257

    Article  Google Scholar 

  • Friedmann E I, Wierzchos J, Ascaso C, Winklhofer M (2001). Chains of magnetite crystals in the meteorite ALH84001: evidence of biological origin. Proc Natl Acad Sci USA, 98 (5): 2176–2181

    Article  Google Scholar 

  • Fukushi K, Sasaki M, Sato T, Yanase N, Amano H, Ikeda H (2003). A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Appl Geochem, 18 (8): 1267–1278

    Article  Google Scholar 

  • Furnes H, Banerjee N R, Muehlenbachs K, Kontinen A (2005). Preservation of biosignatures in metaglassy volcanic rocks from the Jormua ophiolite complex, Finland. Precambrian Research, 136 (2): 125–137

    Article  Google Scholar 

  • Furnes H, Banerjee N R, Muehlenbachs K, Staudigel H, de Wit M (2004). Early life recorded in archean pillow lavas. Science, 304 (5670): 578–581

    Article  Google Scholar 

  • Furnes H, Muehlenbachs K, Torsvik T, Thorseth I H, Tumyr O (2001). Microbial fractionation of carbon isotopes in altered basaltic glass from the Atlantic Ocean, Lau Basin and Costa Rica Rift. Chemical Geology, 173 (4): 313–330

    Article  Google Scholar 

  • Furnes H, Staudigel H (1999). Biological mediation in ocean crust alteration: how deep is the deep biosphere? Earth Planet Sci Lett, 166 (3–4): 97–103

    Article  Google Scholar 

  • Geesey G G, Borch T, Reardon C L (2008). Resolving biogeochemical phenomena at high spatial resolution through electron microscopy. Geobiology, 6 (3): 263–269

    Article  Google Scholar 

  • Ghauri M A, Okibe N, Johnson D B (2007). Attachment of acidophilic bacteria to solid surfaces: The significance of species and strain variations. Hydrometallurgy, 85 (2–4): 72–80

    Google Scholar 

  • Glasauer S, Langley S, Beveridge T J (2001). Sorption of Fe (hydr) oxides to the surface of Shewanella putrefaciens: cell-bound fine-grained minerals are not always formed de novo. Appl Environ Microbiol, 67 (12): 5544–5550

    Article  Google Scholar 

  • Glasauer S, Langley S, Beveridge T J (2002). Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science, 295 (5552): 117–119

    Article  Google Scholar 

  • Glasauer S, Langley S, Beveridge T J (2004). Intracellular manganese granules formed by a subsurface bacterium. Environ Microbiol, 6 (10): 1042–1048

    Article  Google Scholar 

  • Glasauer S, Langley S, Boyanov M I, Lai B, Kemner K, Beveridge T J (2007). Mixed-valence cytoplasmic iron granules are linked to anaerobic respiration. Appl Environ Microbiol, 73 (3): 993–996

    Article  Google Scholar 

  • Golden D C, Ming DW, Morris R V, Brearley A, Lauer H V, Treiman A H, Zolensky M E, Schwandt C S, Lofgren G E, McKay G A (2004). Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. Am Mineral, 89: 681–695

    Google Scholar 

  • Golden D C, Ming DW, Schwandt C S, Lauer H V, Socki R A, Morris R V, Lofgren G E, McKay G A (2001). A simple inorganic process for formation of carbonates, magnetite, and sulfides in Martian meteroite ALH84001. Am Mineral, 86 (3): 370–375

    Google Scholar 

  • Golla U, Putnis A (2001). Valence state mapping and quantitative electron spectroscopic imaging of exsolution in titanohematite by energy-filtered TEM. Phys Chem Miner, 28 (2): 119–129

    Article  Google Scholar 

  • Gorby Y A, Yanina S, McLean J S, Rosso K M, Moyles D, Dohnalkova A, Beveridge T J, Chang I S, Kim B H, Kim K S, Culley D E, Reed S B, Romine M F, Saffarini D A, Hill E A, Shi L, Elias D A, Kennedy D W, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson K H, Fredrickson J K (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA, 103 (30): 11358–11363

    Article  Google Scholar 

  • GranthamMC, Dove PM, Dichristina T J (1997). Microbially catalyzed dissolution of iron and aluminum oxyhydroxide mineral surface coatings. Geochim Cosmochim Acta, 61 (21): 4467–4477

    Article  Google Scholar 

  • Greinert J, Bohrmann G, Suess E (2001) Gas hydrate associated carbonates and methane venting at Hydrate Ridge: classification, distribution, and origin of authigenic carbonates. In: Paull C K, DillonW P, eds. Natural Gas Hydrates: Occurrence, Distribution and Detection. Geophysical Monograph, American Geophysical Union. Washington D C, 124: 99–113

    Google Scholar 

  • Hao C B, Dong H L, Zhang H (2010). Succession of acidophilic bacterial community during biooxidation of refractory gold-containing sulfides. Geomicrobiol J (In press)

  • Harrison J, Turner R J, Marques L, Ceri H (2005). A new understanding of these mcirobial communities is driving a revolution that may transform the science of microbiology. Am Sci, 93 (6): 508–515

    Google Scholar 

  • Herrmann AM, Ritz K, Nunan N, Clode P L, Pett-Ridge J, Kilburn M R, Murphy D V, O’Donnell A G, Stockdale E A (2007). Nano-scale secondary ion mass spectrometry-A new analytical tool in biogeochemistry and soil ecology: a review article. Soil Biol Biochem, 39 (8): 1835–1850

    Article  Google Scholar 

  • Hersman L E (2000) The role of siderophores in iron oxide dissolution. In: Lovley D R, ed. Environmental microbe-metal interactions. Washington D C: ASM Press, 145–157

    Google Scholar 

  • Hersman L E, Forsythe J H, Ticknor L O, Maurice P A (2001a). Growth of Pseudomonas mendocina on Fe(III) (hydr)oxides. Appl Environ Microbiol, 67 (10): 4448–4453

    Article  Google Scholar 

  • Hersman L E, Huang A, Maurice P A, Forsythe J H (2001b). Siderophore and reductant production by Pseudomonas mendocina in response to Fe deprivation. Geomicrobiological Journal, 18 (1): 1–13

    Article  Google Scholar 

  • Hochella MF Jr (2002). There’s plenty of room at the bottom: Nanoscience in geochemistry. Geochim Cosmochim Acta, 66 (5): 735–743

    Article  Google Scholar 

  • Hofstetter T B, Neumann A, Schwarzenbach R P (2006). Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites. Environ Sci Technol, 40 (1): 235–242

    Article  Google Scholar 

  • Hofstetter T B, Schwarzenbach R P, Haderlein S B (2003). Reactivity of Fe(II) species associated with clay minerals. Environ Sci Technol, 37 (3): 519–528

    Article  Google Scholar 

  • Jaisi D P, Dong H, Morton J P (2008). Partitioning of Fe(II) in reduced nontronite (NAu-2) to reactive sites: Reactivity in terms of Tc(VII) Reduction. Clays Clay Miner, 56 (2): 175–189

    Article  Google Scholar 

  • Jaisi D P, Dong H, Plymale A E, Fredrickson J K, Zachara J M, Heald S M, Liu C (2009). Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite. Chem Geol, 264 (1–4): 127–138

    Article  Google Scholar 

  • Johnson D B, Hallberg K B (2005). Acid mine drainage remediation options: a review. Sci Total Environ, 338 (1–2): 3–14

    Google Scholar 

  • Johnson D B, Hallberg K B (2009a) Carbon, iron, and sulfur metabolism in acidophilic microorganisms. In: Poole R K, ed. Advances in Microbial Physiology. Amsterdam: Academic Press, 54: 201–255

    Google Scholar 

  • Johnson D B, Hallberg K B (2009b) Carbon, iron, and sulfur metabolism in acidophilic microorganisms. In: Poole R K, ed. Advances in Microbial Physiology. Amsterdam: Academic Press, 201–255

    Google Scholar 

  • Johnson D B, McGinness S (1991). Ferric iron reduction by acidophilic heterotrophic bacteria. Appl Environ Microbiol, 57 (1): 207–211

    Google Scholar 

  • Jorgensen NO (1992). Methane-derived carbonate cementation of Holocene marine sediments from Kattegat, Denmark. Cont Shelf Res, 12 (10): 1209–1218

    Article  Google Scholar 

  • Kalinowski B E, Liermann L J, Brantley S L, Barnes A, Pantano C G (2000). X-ray photoelectron evidence for bacteriaenhanced dissolution of hornblende. Geochim Cosmochim Acta, 64 (8): 1331–1343

    Article  Google Scholar 

  • Kappler A, Straub K L (2005) Geomicrobiological cycling of iron. In: Banfield J F, Cervini-Silva J, Nealson K H, eds. Molecular Geomicrobiology. Chantilly VA: The Mineralogical Society of America, 59: 85–108

    Google Scholar 

  • Kashefi K, Holmes D E, Reysenbach A L, Lovley D R (2002). Use of Fe (III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol, 68 (4): 1735–1742

    Article  Google Scholar 

  • Kastner M, Elderfield H, Martin J B, Suess E, Kvenvolden K A, Garrison R E (1990) Diagenesis and interstitial-water chemistry at the Peruvian continental margin-major constituents and strontium isotopes. In: Suess E, von Huene R E A, eds. Proceedings of Ocean Drilling Program, Scientific Results. Ocean Drilling Program. College Station TX, 112: 413–440

    Google Scholar 

  • Kenward P A, Goldstein R H, González L A, Roberts J A (2009). Precipitation of low-temperature dolomite from an anaerobic microbial consortium: the role of methanogenic Archaea. Geobiology, 7 (5): 556–565

    Article  Google Scholar 

  • Kim C, Lorenz W W, Hoopes J T, Dean J F D (2001). Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J Bacteriol, 183 (16): 4866–4875

    Article  Google Scholar 

  • Kim J W, Dong H, Seabaugh J, Newell S W, Eberl D D (2004). Role of microbes in the smectite-to-illite reaction. Science, 303 (5659): 830–832

    Article  Google Scholar 

  • Kim J W, Furukawa Y, Daulton T, Lavoie D, Newell S (2003). Characterization of microbially Fe(III)-reduced nontronite: environmental cell transmission electron microscopy study. Clays Clay Miner, 51 (4): 382–389

    Article  Google Scholar 

  • Kim J W, Peacor D R, Tessier D, Elsass F (1995). A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations. Clays Clay Miner, 43 (1): 51–57

    Article  Google Scholar 

  • Konhauser K (2007) Introduction to Geomicrobiology. Oxford: Blackwell Publishing

    Google Scholar 

  • Kostka J E, Wu J, Nealson K H, Stucki J W (1999). The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochim Cosmochim Acta, 63 (22): 3705–3713

    Article  Google Scholar 

  • Kraemer S (2004). Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci, 66 (1): 3–18

    Article  Google Scholar 

  • Kraemer S M, Butler A, Borer P, Cervini-Silva J (2005). Siderophores and the dissolution of iron-bearing minerals in marine systems. Rev Mineral Geochem, 59 (1): 53–84

    Article  Google Scholar 

  • Krauskopf K B, Bird D K (1995) Introduction to geochemistry. New York: McGraw-Hill

    Google Scholar 

  • Krumholz L R, McKinley J P, Ulrich F A, Suflita J M (1997). Confined subsurface microbial communities in Cretaceous rock. Nature, 386 (6620): 64–66

    Article  Google Scholar 

  • Kukkadapu R K, Zachara J M, Fredrickson J K, Kennedy D W (2004). Biotransformation of two-line silica-ferrihydrite by a dissimilatory Fe (III)-reducing bacterium: Formation of carbonate green rust in the presence of phosphate. Geochim Cosmochim Acta, 68 (13): 2799–2814

    Article  Google Scholar 

  • Kukkadapu R K, Zachara J M, Smith S C, Fredrickson J K, Liu C X (2001). Dissimilatory bacterial reduction of Al-substituted goethite in subsurface sediments. Geochim Cosmochim Acta, 65 (17): 2913–2924

    Article  Google Scholar 

  • Kulczycki E, Fowle D A, Knapp C, Graham D W, Roberts J A (2007). Methanobactin-promoted dissolution of Cu-substituted borosilicate glass. Geobiology, 5 (3): 251–263

    Article  Google Scholar 

  • Kulm L D, Suess E (1990). Relationship between carbonate deposits and fluid venting: Oregon accretionary prism. J Geophys Res, 95 (B6): 8899–8915

    Article  Google Scholar 

  • Land L S (1998). Failure to precipitate dolomite at 25°C from dilute solutions despite 1000-fold oversaturation after 32 years. Aquat Geochem, 4 (3/4): 361–368

    Article  Google Scholar 

  • Lian B, Hu Q N, Chen J, Ji J F, Teng H H (2006). Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochim Cosmochim Acta, 70 (22): 5522–5535

    Article  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C Q, Teng H H (2008). Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillusfumigatus. Geochim Cosmochim Acta, 72 (1): 87–98

    Article  Google Scholar 

  • Liermann L J, Guynn R L, Anbar A, Brantley S L (2005). Production of a molybdophore during metal-targeted dissolution of silicates by soil bacteria. Chem Geol, 220 (3–4): 285–302

    Article  Google Scholar 

  • Liermann L J, Kalinowski B E, Brantley S L, Ferry J G (2000a). Role of bacterial siderophores in dissolution of hornblende. Geochim Cosmochim Acta, 64 (4): 587–602

    Article  Google Scholar 

  • Liermann L J, Kalinowski B E, Brantley S L, Ferry J G (2000b) Role of bacterial siderophores in dissolution of hornblende

  • Liu C, Zachara J M, Fredrickson J K, Kennedy D W, Dohnalkova A (2002). Modeling the inhibition of the bacteral reduction of U(VI) by beta-MnO2(s). Environ Sci Technol, 36 (7): 1452–1459

    Article  Google Scholar 

  • Lloyd J R (2002). Bioremediation of metals; the application of microorganisms that make and break minerals. Microbiology Today, 29: 67–69

    Google Scholar 

  • Lovley D R (2000) Environmental Microbe-Metal Interactions. Washington D C: ASM press, 408

    Google Scholar 

  • Lovley D R, Blunt-Harris E L (1999). Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. Appl Environ Microbiol, 65 (9): 4252–4254

    Google Scholar 

  • Lovley D R, Coates J D, Bluent-Harris E L, Philips E J P, Woodward J C (1996). Humic substances as electron acceptors for microbial respiration. Nature, 382 (6590): 445–448

    Article  Google Scholar 

  • Lovley D R, Holmes D E, Nevin K P (2004). Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol, 49: 219–286

    Article  Google Scholar 

  • Lower S K, Hochella M F Jr, Beveridge T J (2001). Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha-FeOOH. Science, 292 (5520): 1360–1363

    Article  Google Scholar 

  • Lüttge A, Conrad P G (2004). Bacterial control of calcite dissolution kinetics. Appl Environ Microbiol, 70: 1627–1637

    Article  Google Scholar 

  • Lüttge A, Zhang L, Nealson K H (2005). Mineral surfaces and their implications for microbial attachment: results from Monte Carlo simulations and direct surface observations. Am J Sci, 305 (6–8): 766–790

    Article  Google Scholar 

  • Mailloux B J, Alexandrova E, Keimowitz A R, Wovkulich K, Freyer G A, Herron M, Stolz J F, Kenna T C, Pichler T, Polizzotto M L, Dong H L, Bishop M, Knappett P S K (2009). Microbial mineral weathering for nutrient acquisition releases arsenic. Appl Environ Microbiol, 75 (8): 2558–2565

    Article  Google Scholar 

  • Marchand E A, Silverstein J (2003). The role of enhanced heterotrophic bacterial growth on iron oxidation by Acidithiobacillus ferrooxidans. Geomicrobiol J, 20 (3): 231–244

    Article  Google Scholar 

  • Marshall M, Beliaev J A S, Dohnalkova A C, Kennedy D W, Shi L, Wang Z, Boyanov M I, Lai B, Kemner K M, Mclean J S, Reed S B, Culley D E, Bailey V L, Simonson C J, Saffarini D A, Romine M F, Zachara J M, Fredrickson J K (2006). c-type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol, 4 (8): e268

    Article  Google Scholar 

  • Marsili E, Baron D B, Shikhare I D, Coursolle D J, Gralnick J A, Bond D R (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA, 105 (10): 3968–3973

    Article  Google Scholar 

  • Mauck B S, Roberts J A (2007). Mineralogic control on abundance and diversity of surface-adherent microbial communities. Geomicrobiol J, 24 (3): 167–177

    Article  Google Scholar 

  • Maurice P A, Haack E A, Mishra B (2009). Siderophore sorption to clays. Biometals, 22 (4): 649–658

    Article  Google Scholar 

  • Maurice P A, Lee Y-J, Hersman L E (2000). Dissolution of Al-substituted goethites by an aerobic Pseudomonas mendocina var. bacteria. Geochim Cosmochim Acta, 64 (8): 1363–1374

    Article  Google Scholar 

  • Maurice P A, Vierkorn M A, Hersman L E, Fulghum J E, Ferryman A (2001). Enhancement of kaolinite dissolution by an aerobic Pseudomonas mendocina bacteria. Geomicrobiological Journal, 18 (1): 21–35

    Article  Google Scholar 

  • Mazzullo S J (2000). Organogenic Dolomitization in peritidal to deep-sea sediments. J Sediment Res, 70 (1): 10–23

    Article  Google Scholar 

  • McLean J, Beveridge T J (2001). Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol, 67 (3): 1076–1084

    Article  Google Scholar 

  • McLean J S, Beveridge T J, Phipps D (2000). Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate-contaminated site. Environ Microbiol, 2 (6): 611–619

    Article  Google Scholar 

  • McLoughlin N, Brasier M D, Wacey D, Green O R, Perry R S (2007). On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology, 7 (1): 10–26

    Article  Google Scholar 

  • Meyer-Dombard D R, Shock E L, Amend J P (2005). Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology, 3 (3): 211–227

    Article  Google Scholar 

  • Moore T S, Murray R W, Kurtz A C, Schrag D P (2004). Anaerobic methane oxidation and the formation of dolomite. Earth Planet Sci Lett, 229 (1–2): 141–154

    Article  Google Scholar 

  • Morgan J J (2000). Manganese in natural waters and earth’s crust: its availability to organisms. Met Ions Biol Syst, 37: 1–34

    Google Scholar 

  • Neumann A, Hofstetter T B, Lüssi M, Cirpka O A, Petit S, Schwarzenbach R P (2008). Assessing the redox reactivity of structural iron in smectites using nitroaromatic compounds as kinetic probes. Environ Sci Technol, 42 (22): 8381–8387

    Article  Google Scholar 

  • Nevin K P, Lovley D R (2002). Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiological Journal, 19 (2): 141–159

    Article  Google Scholar 

  • Newman D K (2001). Microbiology. How bacteria respire minerals. Science, 292 (5520): 1312–1313

    Article  Google Scholar 

  • Newman D K (2008). From iron oxides to infections. Geobiology, 6 (3): 196–200

    Article  Google Scholar 

  • Nicormat D, Dick W A, Tuovinen O H (2006). Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage. microbial. Ecology, 51: 83–89

    Google Scholar 

  • Nordstrom D K (2000). Advances in the hydrochemistry and microbiology of acid mine waters. Int Geol Rev, 42 (6): 499–515

    Article  Google Scholar 

  • Nordstrom D K, Alpers C N (1999). Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc Natl Acad Sci USA, 96 (7): 3455–3462

    Article  Google Scholar 

  • Olson G J, Brierley J A, Brierley C L (2003). Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol, 63 (3): 249–257

    Article  Google Scholar 

  • Peckmann J, Gischler E, Oschmann W, Reitner J (2001). An early carboniferous seep community and hydrocarbon-derived carbonates from the Harz Mountains, Germany. Geology, 29 (3): 271–274

    Article  Google Scholar 

  • Peckmann J, Thiel V (2004). Carbon cycling at ancient methane-seeps. Chem Geol, 205 (3–4): 443–467

    Article  Google Scholar 

  • Peckmann J, Thiel V, Michaelis W, Clari P, Gaillard C, Martire L, Reitner J (1999). Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; norther Itlay): microbially induced authigenic carbonates. Int J Earth Sci, 88 (1): 60–75

    Article  Google Scholar 

  • Pedersen K (1997). Microbial life in deep granitic rock. FEMS Microbiol Rev, 20 (3–4): 399–414

    Article  Google Scholar 

  • Pena J, Duckworth O W, Bargar J R, Sposito G (2007). Dissolution of hausmannite (Mn3O4) in the presence of the trihydroxamate siderophore desferrioxamine B. Geochim Cosmochim Acta, 71 (23): 5661–5671

    Article  Google Scholar 

  • Pennisi E (2002). Geobiologists: as diverse as the bugs they study. Science, 296 (5570): 1058–1060

    Article  Google Scholar 

  • Peretyazhko T, Zachara J M, Boily J F, Xia Y, Gassman P L, Arey B W, Burgos W D (2009). Mineralogical transformations controlling acid mine drainage chemistry. Chem Geol, 262 (3–4): 169–178

    Article  Google Scholar 

  • Pierre C, Rouchy J M (2004). Isotopic compositions of diagenetic dolomites in the Tortonian marls of the western Mediterranean margins: evidence of the past gas hydrate formation and dissociation. Chem Geol, 205 (3–4): 469–484

    Article  Google Scholar 

  • Pósfai M, Dunin-Borkowski R E (2006). Sulfides in biosystems. Rev Mineral Geochem, 61 (1): 679–714

    Article  Google Scholar 

  • Priscu J C, Christner B C (2004) Earth’s icy biosphere. In: Bull A T, ed. Microbial diversity and bioprospecting. Washington D C: ASM press

    Google Scholar 

  • Regenspurg S, Peiffer S (2005). Arsenate and chromate incorporation in schwertmannite. Appl Geochem, 20 (6): 1226–1239

    Article  Google Scholar 

  • Reguera G, McCarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R (2005). Extracellular electron transfer via microbial nanowires. Nature, 435 (7045): 1098–1101

    Article  Google Scholar 

  • Reguera G, Nevin K P, Nicoll J S, Covalla S F, Woodard T L, Lovley D R (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol, 72 (11): 7345–7348

    Article  Google Scholar 

  • Reysenbach A L, Ehringer M, Hershberger K L (2000a). Microbial diversity at 83°C in calcite spring, Yellowstone Nationla Park: another environment where the Aquificales and “Korarchaeota” coexist. Extremephiles, 4: 61–67

    Google Scholar 

  • Reysenbach A L, Longnecker K, Kirshtein J (2000b). Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol, 66 (9): 3798–3806

    Article  Google Scholar 

  • Reysenbach A L, Shock E (2002). Merging genomes with geochemistry in hydrothermal ecosystems. Science, 296 (5570): 1077–1082

    Article  Google Scholar 

  • Rickard D, Morse J W (2005). Acid volatile sulfide (AVS). Mar Chem, 97 (3–4): 141–197

    Article  Google Scholar 

  • Roberts H H, Aharon P (1994). Hydrocarbon-derived carbonate buildups of the northern Gulf-of-Mexico continental slope- a review of submersible investigations. Geo-Mar Lett, 14 (2–3): 135–148

    Article  Google Scholar 

  • Roberts J A (2004). Inhibition and enhancement of microbial surface colonization: the role of silicate composition. Chem Geol, 212 (3–4): 313–327

    Article  Google Scholar 

  • Roberts J A, Bennett P C, Gonzalez L A, Macpherson G L, Milliken K L (2004). Microbial precipitation of dolomite in methanogenic groundwater. Geology, 32 (4): 277–280

    Article  Google Scholar 

  • Roberts J A, Fowle D A, Hughes B T, Kulczycki E (2006). Attachment behavior of Shewanella putrefaciens onto magnetite under aerobic and anaerobic conditions. Geomicrobiol J, 23 (8): 631–640

    Article  Google Scholar 

  • Roden E E (2006). Geochemical and microbiological controls on dissimilatory iron reduction. C R Geosci, 338 (6–7): 456–467

    Article  Google Scholar 

  • Roden E E, Zachara J M (1996). Microbial reduction of crystalline Fe (III) oxides: influence of oxide surface area and potential for cell growth. Environ Sci Technol, 30 (5): 1618–1628

    Article  Google Scholar 

  • Rodriguez NM, Paull C K, Borowski W S (2000) Zonation of authigenic carbonates within gas-hydrate bearing sedimentary sections on the Blake Ridge: offshore southeastern North America. In: Paull C K, Matsumoto R, Wallace P J, Dillon W P, eds. Proceedings of Ocean Drilling Program, Scientific Research, 164: 301–312

  • Rogers J R, Bennett P C (2004). Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chem Geol, 203 (1–2): 91–108

    Article  Google Scholar 

  • Rosso K M, Zachara J M, Fredrickson J K, Gorby Y A, Smith S C (2003). Nonlocal bacterial electron transfer to hematite surfaces. Geochim Cosmochim Acta, 67 (5): 1081–1087

    Article  Google Scholar 

  • Sample J C, Reid M R (1998). Contrasting hydrogeologic regimes along strike-slip and thrust faults in the Oregon convergent margin: Evidence from the chemistry of syntectonic carbonate cements and veins. Geol Soc Am Bull, 110 (1): 48–59

    Article  Google Scholar 

  • Sánchez-Román M, McKenzie J A, Wagener A D R, Rivadeneyra M A, Vasconcelos C (2009). Presence of sulfate does not inhibit lowtemperature dolomite precipitation. Earth Planet Sci Lett, 285 (1–2): 131–139

    Article  Google Scholar 

  • Sánchez-Román M, Vasconcelos C, Schmid T, Dittrich M, McKenzie J A, Zenobi R, Rivadeneyra M A (2008). Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record. Geology, 36 (11): 879–882

    Article  Google Scholar 

  • Santelli C M, Welch S A, Westrich H R, Banfield J F (2001). The effect of Fe-oxidizing bacteria on Fe-silicate mineral dissolution rates. Chem Geol, 180 (1–4): 99–115

    Article  Google Scholar 

  • Sassen R, Roberts H H, Carney R, Milkov A V, DeFreitas D A, Lanoil B, Zhang C L (2004). Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes. Chem Geol, 205 (3–4): 195–217

    Article  Google Scholar 

  • Schwertmann U, Carlson L (2005). The pH-dependent transformation of schwertmannite to goethite at 25°C. Clay Miner, 40 (1): 63–66

    Article  Google Scholar 

  • Seabaugh J L, Palmieri M, Crawford P A, Dong H, Champine J E (2003) Interaction of lead and calcium with lead-resistant microorganisms from soil contaminated with Chat. The American Society for Microbiology 103nd General Meeting, Washington D C

  • Senko J M, Wanjugi P, Lucas M, Bruns M A, Burgos W D (2008). Characterization of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites. ISME J, 2 (11): 1134–1145

    Article  Google Scholar 

  • Senko J M, Zhang G X, McDonough J T, Bruns M A, Burgos W D (2009). Metal reduction at low pH by a Desulfosporosinus species: implications for the biological treatment of acidic mine drainage. Geomicrobiol J, 26 (2): 71–82

    Article  Google Scholar 

  • Sharma R (2001). Design and applications of environmental cell transmission electron microscopy for in situ observations of gas-solid reactions. Microsc Microanal, 7 (6): 494–506

    Google Scholar 

  • Sharma R, Weiss K (1998). Development of a TEM to study in situ structural and chemical changes at an atomic level during gas-solid interactions at elevated temperatures. Microsc Res Tech, 42 (4): 270–280

    Article  Google Scholar 

  • Shelobolina E S, Pickering S M, Lovely D R (2005). Fe-Cycle bacteria from industrial clays mined in Georgia, USA. Clays Clay Miner, 53 (6): 580–587

    Article  Google Scholar 

  • Singer P C, Stumm W (1970). Acidic mine drainage: the rate-determining step. Science, 167 (3921): 1121–1123

    Article  Google Scholar 

  • Sokolov I, Smith D S, Henderson G S, Gorby Y A, Ferris F G (2001). Cell surface electrochemical heterogeneity of the Fe(III)-reducing bacteria Shewanella putrefaciens. Environ Sci Technol, 35 (2): 341–347

    Article  Google Scholar 

  • Sonnenfeld E M, Beveridge T J, Koch A L, Doyle R J (1985). Asymmetric distribution of charge on the cell wall of Bacillus subtilis. J Bacteriol, 163 (3): 1167–1171

    Google Scholar 

  • Stakes D S, Orange D, Paduan J B, Salamy K A, Maher N (1999). Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Mar Geol, 159 (1–4): 93–109

    Article  Google Scholar 

  • Staudigel H, Chastain R A, Yayanos A, Bourcier W (1995). Biologically mediated dissolution of glass. Chem Geol, 126 (2): 147–154

    Article  Google Scholar 

  • Staudigel H, Furnes H, Banerjee N R, Dilek Y, Muehlenbachs K (2006). Microbes and volcanoes: a tale of the oceans, ophiolites, and greenstone belts. GSA Today, 16 (10): 4–10

    Article  Google Scholar 

  • Staudigel H, Yayanos A, Chastain R A, Davies G, Verdurmen E A, Schiffman P, Bourcier R, De Baar H (1998). Biologically mediated dissolution of volcanic glass in seawater. Earth Planet Sci Lett, 164 (1–2): 233–244

    Article  Google Scholar 

  • Stevens TO, McKinley JP (1995). Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science, 270 (5235): 450–455

    Article  Google Scholar 

  • Stookey L L (1970). Ferrozine-a new spectrophotometric reagent for iron. Anal Chem, 42 (7): 779–781

    Article  Google Scholar 

  • Storrie-Lombardi M C, Fisk M R (2004). Elemental abundance distributions in suboceanic basalt glass: evidence of biogenic alteration. Geochem Geophys Geosyst, 5 (10): Q10005

    Article  Google Scholar 

  • Stucki J W (1981). The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline: II. A photochemical method. Soil Sci Soc Am J, 45: 638–641

    Article  Google Scholar 

  • Stucki J W (2006) Properties and behavior of iron in clay minerals. In: Bergaya F, Lagaly G, Theng B G K, eds. Handbook of Clay Science, Elsevier: Amsterdam, 423–476

    Chapter  Google Scholar 

  • Stucki J W, Anderson W L (1981). The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline: I. SOurces of variability. Soil Sci Soc Am J, 45: 633–637

    Google Scholar 

  • Stucki J W, Kostka J E (2006). Microbial reduction of iron in smectite. C R Geosci, 338 (6–7): 468–475

    Article  Google Scholar 

  • Stucki J W, Tessier D (1991). Effects of iron oxidation state on the texture and structural order of Na-nontronite gels. Clays Clay Miner, 39 (2): 137–143

    Article  Google Scholar 

  • Templeton A, Knowles E (2009). Microbial Transformations of Minerals and Metals: Recent Advances in Geomicrobiology Derived from Synchrotron-Based X-Ray Spectroscopy and X-Ray Microscopy. Annu Rev Earth Planet Sci, 37 (1): 367–391

    Article  Google Scholar 

  • Templeton A S, Staudigel H, Tebo B M (2005) Diverse Mn(II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount Geomicrobiology Journal, 22 (3–4), 127–139

    Google Scholar 

  • Terzi C, Lucchi F R, Vai G B, Aharon P (1994). Petrography and stable-isotope aspects of cold vent activity imprinted on Miocene age calcari-a-lucina from Tuscan and Romagna Apennines, Italy. Geo-Mar Lett, 14 (2–3): 177–184

    Article  Google Scholar 

  • Thomas-Keprta K L, Bazylinski D A, Kirschvink J L, Clemett S J, McKay D S, Wentworth S J, Vali H, Gibson E K Jr, Romanek C S (2000). Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim Cosmochim Acta, 64 (23): 4049–4081

    Article  Google Scholar 

  • Thomas-Keprta K L, Clemett S J, Bazylinski D A, Kirschvink J L, McKay D S, Wentworth S J, Vali H, Gibson E K, Romanek C S (2002). Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Appl Environ Microbiol, 68 (8): 3663–3672

    Article  Google Scholar 

  • Thorseth I H, Furnes H, Tumyr O (1995a). Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chem Geol, 119 (1–4): 139–160

    Article  Google Scholar 

  • Thorseth I H, Pedersen R B, Christie D M (2003) Microbial alteration of 0–30-Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic Discordance Earth and Planetary Science Letters, 215 (1–2), 237–247

    Google Scholar 

  • Thorseth I H, Torsvik T, Furnes H, Muehlenbachs K (1995b). Microbes play an important role in the alteration of oceanic crust. Chem Geol, 126 (2): 137–146

    Article  Google Scholar 

  • Ubaldini S, Veglio F, Beolchini F, Toro L, Abbruzzese C (2000). Gold recovery from a refractory pyrrhotite ore by biooxidation. Int J Miner Process, 60 (3–4): 247–262

    Article  Google Scholar 

  • Ullman W J, Welch S A (2002) Organic ligands and feldspar dissolution. In: Hellman R, Wood S A, eds. Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry: A Tribute to David A. Crerar. The Geochemical Society, St. Louis, MO. 7: 3–35

    Google Scholar 

  • Uroz S, Calvaruso C, Turpault M P, Frey-Klett P (2009). Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol, 17 (8): 378–387

    Article  Google Scholar 

  • Vali H, Weiss B, Li Y L, Sears S K, Kim S S, Kirschvink J L, Zhang C L (2004). Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15. Proc Natl Acad Sci USA, 101 (46): 16121–16126

    Article  Google Scholar 

  • van Aken P A, Liebscher B (2002). Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L-23 electron energy-loss near-edge spectra. Phys Chem Miner, 29 (3): 188–200

    Article  Google Scholar 

  • van Aken P A, Liebscher B, Styrsa V J (1998). Quantitative determination of iron oxidation states in minerals using Fe L-2,L-3-edge electron energy-loss near-edge structure spectroscopy. Phys Chem Miner, 25 (5): 323–327

    Article  Google Scholar 

  • van Aken P A, Styrsa V J, Liebscher B, Woodland A B, Redhammer G J (1999). Microanalysis of Fe3+/Sigma Fe in oxide and silicate minerals by investigation of electron energy-loss near-edge structures (ELNES) at the Fe M-2,M-3 edge. Phys Chem Miner, 26 (7): 584–590

    Article  Google Scholar 

  • Vasconcelos C, McKenzie J A (1997). Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J Sediment Res, 67: 378–390

    Google Scholar 

  • Vasconcelos C, McKenzie J A, Bernasconi S, Grujic D, Tiens A J (1995). Microbial mediation as a possible mechanism for natural dolomite formation at low temperature. Nature, 377 (6546): 220–222

    Article  Google Scholar 

  • VonRad U, Rosch H, Berner U, Geyh M, Marchig V, Schulz H (1996). Authigenic carbonates derived from oxidized methane vented from the Makran accretionary prism off Pakistan. Mar Geol, 136 (1–2): 55–77

    Article  Google Scholar 

  • Wacey D, Wright D T, Boyce A J (2007). A stable isotope study of microbial dolomite formation in the Coorong Region, South Australia. Chem Geol, 244 (1–2): 155–174

    Article  Google Scholar 

  • Wall J D, Krumholz L R (2006). Uranium reduction. Annu Rev Microbiol, 60 (1): 149–166

    Article  Google Scholar 

  • Wang H M, Zeng C P, Liu Q Y, Liu D, Qiu X, Gong L F (2010a). Calcium Carbonate Precipitation Induced by a Bacterium Strain Isolated from an Oligotrophic Cave in Central China. Front Earth Sci China (In press)

  • Wang X, Li Y, Lu A H, Wang C Q (2010b). Features of precipitates formed by different cultivations of Acidithiobacillus ferrooxidans. Front Earth Sci China (In press)

  • Warthmann R, van Lith Y, Vasconcelos C, McKenzie J A, Karpoff A M (2000). Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28 (12): 1091–1094

    Article  Google Scholar 

  • Warthmann R, Vasconcelos C, Sass H, McKenzie J A (2005). Desulfovibrio brasiliensis sp. nov., a moderate halophilic sulfatereducing bacterium from Lagoa Vermelha (Brazil) mediating dolomite formation. Extremephiles, 9 (3): 255–261

    Article  Google Scholar 

  • Welch S A, Barker W W, Banfield J F (1999). Microbial extracellular polysaccharides and plagioclase dissolution. Geochim Cosmochim Acta, 63 (9): 1405–1419

    Article  Google Scholar 

  • Welch S A, Ullman W J (1993). The effect of organic acids on plagioclase dissolution rates and stoichiometry. Geochim Cosmochim Acta, 57 (12): 2725–2736

    Article  Google Scholar 

  • Wright D (1999). The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sediment Geol, 126 (1–4): 147–157

    Article  Google Scholar 

  • Wright D T (1997). An organogenic origin for widespread dolomite in the Cambrian Eilean Dubh Formation, Northwestern Scotland. J Sediment Res, 67: 54–64

    Google Scholar 

  • Wright D T, Oren A (2005). Nonphotosynthetic bacteria and the formation of carbonates and evaporites through time. Geomicrobiol J, 22 (1–2): 27–53

    Article  Google Scholar 

  • Wright D T, Wacey D (2005). Precipitation of dolomite using sulphatereducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology, 52 (5): 987–1008

    Article  Google Scholar 

  • Wu L L, Jacobson A D, Chen H C, Hausner M (2007). Characterization of elemental release during microbe-basalt interactions at T = 28°C. Geochim Cosmochim Acta, 71 (9): 2224–2239

    Article  Google Scholar 

  • Wu L L, Jacobson A D, Hausner M (2008). Characterization of elemental release during microbe-granite interactions at T = 28°C. Geochim Cosmochim Acta, 72 (4): 1076–1095

    Article  Google Scholar 

  • Xu H F, Wang Y F (1999). Electron energy-loss spectroscopy (EELS) study of oxidation states of Ce and U in pyrochlore and uraninitenatural analogues for Pu- and U-bearing waste forms. J Nucl Mater, 265 (1–2): 117–123

    Article  Google Scholar 

  • Younger P L (1997). The longevity of minewater pollution: a basis for decision-making. Sci Total Environ, 194–195: 457–466

    Google Scholar 

  • Zhang G, Dong H, Jiang H, Kukkadapu R K, Kim J W, Eberl D, Xu Z (2009a). Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. Am Mineral, 94 (7): 1049–1058

    Article  Google Scholar 

  • Zhang G X, Senko J M, Kelly S D, Tan H, Kemner K M, Burgos W D (2009b). Microbial reduction of iron(III)-rich nontronite and uranium (VI). Geochim Cosmochim Acta, 73 (12): 3523–3538

    Article  Google Scholar 

  • Zhou Y F, Wang R C, Lu X C, Chen T H (2010). Role of Adhered Paenibacillus polymyxa in the Dissolution and Flotation of Bauxite: A Dialytic Investigation. Front Earth Sci China (In press)

  • Zierenberg RA, Adams M W W, Arp A J (2000). Life in extreme environments: hydrothermal vents. Proc Natl Acad Sci USA, 97 (24): 12961–12962

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailiang Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, H. Mineral-microbe interactions: a review. Front. Earth Sci. China 4, 127–147 (2010). https://doi.org/10.1007/s11707-010-0022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-010-0022-8

Keywords

Navigation