Skip to main content

Experimental Investigations of 3D-Deformations in Additively Manufactured Pantographic Structures

  • Conference paper
  • First Online:
Advanced Problems in Mechanics (APM 2019)

Abstract

In the recent past new experimental techniques have been developed with the objective of linking generalized continuum theories with technology. So-called pantographic structures, which can be characterized as a meta-material, will be presented and investigated experimentally: Samples of different materials and dimensions are subjected to large deformation loading tests (tensile, shearing, and torsion) up to rupture, while their response to loading is recorded by an optical measurement system. 3D-digital image correlation is used to quantify the deformation.

Results show that the deformation behavior is strongly non-linear and that the structures are capable of performing large (elastic) deformations without complete failure. This extraordinary behavior makes pantographic structures very attractive as engineering material in technical applications for lightweight applications and in the medical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abali, B.E., Müller, W.H., Eremeyev, V.A.: Strain gradient elasticity with geometric nonlinearities and its computational evaluation. Mech. Adv. Mater. Mod. Process. 1, 1–11 (2015)

    Article  Google Scholar 

  2. Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87, 1495–1510 (2017)

    Article  Google Scholar 

  3. Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids 24, 212–234 (2018)

    Article  MathSciNet  Google Scholar 

  4. Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L., Grygoruk, R., Müller, W.H.: Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. Continuum Mech. Thermodyn. (2018)

    Google Scholar 

  5. Chen, C., Fleck, N.A.: Size effects in the constrained deformation of metallic foams. J. Mech. Phys. Solids 50, 955–977 (2002)

    Article  Google Scholar 

  6. Cosserat, E., Cosserat, F.: Sur la theorie de l’elasticite. Mathematiques, Premier memoire. Annales de la Faculte des sciences de Toulouse (1896)

    Google Scholar 

  7. Cosserat, E., Cosserat, F.: Théorie des corps déformables (1909)

    Google Scholar 

  8. dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Zeitschrift für angewandte Mathematik und Physik 66, 3473–3498 (2015)

    Article  MathSciNet  Google Scholar 

  9. dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (2009)

    Google Scholar 

  10. dell’Isola, F., Cuomo, M., Greco, L., Della Corte, A.: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. 103, 127–157 (2017)

    Article  MathSciNet  Google Scholar 

  11. dell’Isola, F., Turco, E., Misra, A., Vangelatos, Z., Grigoropoulos, C., Melissinaki, V., Farsari, M.: Force-displacement relationship in micro-metric pantographs: experiments and numerical simulations. C. R. Mec. 347, 397–405 (2019)

    Article  Google Scholar 

  12. Bachurikhin, V.P., Keller, I., Merzlyakov, A.F., Yurlov, M.A.: Experimental study of nonlinear effects under torsion of the uniform cylinder with initially circular cross section. In: Solid State Phenomena (2015)

    Google Scholar 

  13. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids–I. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MathSciNet  Google Scholar 

  14. Eringen, A.C.: Mechanics of micromorphic continua. In: Mechanics of Generalized Continua. Springer (1968)

    Google Scholar 

  15. Ganzosch, G., dell’Isola, F., Turco, E., Lekszycki, T., Müller, W.H.: Shearing tests applied to pantographic structures. Acta Polytech. CTU Proc. 7, 1–6 (2017)

    Google Scholar 

  16. Ganzosch, G., Hoschke, K., Lekszycki, T., Giorgio, I., Turco, E., Müller, W.H.: 3D-measurements of 3D-deformations of pantographic structures. Tech. Mechanik 38, 233–245 (2018)

    Google Scholar 

  17. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press (1999)

    Google Scholar 

  18. Gibson, L.J.: Biomechanics of cellular solids. J. Biomech. 38, 377–399 (2005)

    Article  Google Scholar 

  19. Juritza, A., Yang, H., Ganzosch, G.: Qualitative investigations of experiments performed on 3D-FDM-printed pantographic structures made out of PLA. In: New Achievements in Continuum Mechanics and Thermodynamics. Springer (2019)

    Google Scholar 

  20. Kong, S., Zhou, S., Nie, Z., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)

    Article  MathSciNet  Google Scholar 

  21. Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986)

    Article  Google Scholar 

  22. Lakes, R.S., Drugan, W.J.: Bending of a cosserat elastic bar of square cross section: theory and experiment. J. Appl. Mech (2015)

    Google Scholar 

  23. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  Google Scholar 

  24. Liebold, C., Müller, W.H.: Measuring material coefficients of higher gradient elasticity by using AFM techniques and Raman-Spectroscopy. In: Generalized Continua as Models for Materials. Springer (2013)

    Google Scholar 

  25. Liebold, C., Müller, W.H.: Applications of higher-order continua to size effects in bending: theory and recent experimental results. In: Generalized Continua as Models for Classical and Advanced Materials. Springer (2016)

    Google Scholar 

  26. Liebold, C.: Größeneffekt in der Elastizität. Dissertation Technische Universität. Berlin (2015)

    Google Scholar 

  27. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  Google Scholar 

  28. Misra, A., Lekszycki, T., Giorgio, I., Ganzosch, G., Müller, W.H., dell’Isola, F.: Pantographic metamaterials show atypical Poynting effect reversal. Mech. Res. Commun. 89, 6–10 (2018)

    Article  Google Scholar 

  29. Müller, W.H., Vilchevskaya, E.N.: Micropolar theory with production of rotational inertia: a rational mechanics approach. In: Advanced Structured Materials, Generalized Models and Non-classical Approaches in Complex Materials (2018)

    Google Scholar 

  30. Müller, W.H., Vilchevskaya, E.N.: Micropolar theory from the viewpoint of mesoscopic and mixture theories. Phys. Mesomech. 20, 263–279 (2017)

    Article  Google Scholar 

  31. Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Complex Syst. 6, 77–100 (2018)

    Article  MathSciNet  Google Scholar 

  32. Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Z. Angew. Math. Phys. 69, 56 (2018)

    Article  MathSciNet  Google Scholar 

  33. Rahali, Y., Giorgio, I., Ganghoffer, J.F., Dell’Isola, F.: Homogenization a la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

    Article  MathSciNet  Google Scholar 

  34. Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)

    Article  Google Scholar 

  35. Tekoğlu, C., Onck, P.R.: Size effects in two-dimensional Voronoi foams: a comparison between generalized continua and discrete models. J. Mecha. Phys. Solids 56, 3541–3564 (2008)

    Article  Google Scholar 

  36. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Rational Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  Google Scholar 

  37. Turco, E., dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.: Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Commun. 76, 86–90 (2016)

    Article  Google Scholar 

  38. Wei, Y., Wang, X., Wu, X., Bai, Y.: Theoretical and experimental researches of size effect in micro-indentation test. Sci. China Ser. A: Math. 44, 74 (2001)

    Article  Google Scholar 

  39. Yang, H., Ganzosch, G., Giorgio, I., Abali, B.E.: Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Z. Angew. Math. Phys. 69, 105 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

We want to thank Dag Wulsten from the Julius Wolff Institute at Charité in Berlin, Germany, and Paul Zaslansky from the Zahnklinik at Charité in Berlin, Germany, for their support and help in the lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Ganzosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ganzosch, G., Barchiesi, E., Drobnicki, R., Pfaff, A., Müller, W.H. (2020). Experimental Investigations of 3D-Deformations in Additively Manufactured Pantographic Structures. In: Indeitsev, D., Krivtsov, A. (eds) Advanced Problems in Mechanics. APM 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-49882-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49882-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49881-8

  • Online ISBN: 978-3-030-49882-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics