Skip to main content

Sorghum Improvement Through Efficient Breeding Technologies

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 1

Abstract

Sorghum is one of the most adaptive crops cultivated by mankind. It is the crop of subsistence in arid and semi-arid regions of the world. Sorghum has immense diversity which human has harnessed for various end uses. Globally, sorghum ranks fifth among the major cereal crops. The crop has emerged as a solution to climate change it has inherent heat and moisture stress tolerance. Sorghum is a potential bio-energy crop, first- and second- generation biofuel production. All these attributes have attracted researchers from the new and old world. There is immense progress in sorghum improvement since the nineteenth century. Advanced breeding technologies have been deployed to study genetics of traits with a focus to improve economic yield. The sorghum improvement took in phases, and every phase faced different challenge. It is important to know the succession of sorghum improvement to lead the future. This chapter will familiarize the readers with tools and techniques that were found efficient in sorghum improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allchin FR, Allchin B (1982) The rise of civilization in India and Pakistan. Cambridge University Press, Cambridge

    Google Scholar 

  • Andrews DJ, Nath B, Hare BW (1977) Methods of population improvement in pearl millet and sorghum, second FAO/SIDA seminar on field crops in Africa and the near east, Lahore, Pakistan. ICRISAT, Patancheru

    Google Scholar 

  • Andrews DJ, Webster OJ (1971) A new factor for genetic male-sterility in Sorghum bicolor (L.) Moench. Crop Sci 11:308

    Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Arulselvi IP, Michael P, Umamaheswari S, Krishnaveni S (2010) Agrobacterium mediated transformation of Sorghum bicolor for disease resistance. Int J Pharm BioSci 1:272–281

    Google Scholar 

  • Aruna C, Padmaja PG (2009) Evaluation of genetic potential of shoot fly resistant sources in sorghum (Sorghum bicolor (L.)). J Agric Sci 147:71–80

    Article  CAS  Google Scholar 

  • Ayyangar GNR, BWX Ponnaiya (1937a) The occurrence and inheritance of earheads with empty anther sacs in sorghum. Curr Sci 5:390

    Google Scholar 

  • Ayyangar GNR, BWX Ponnaiya (1937b) The occurrence and inheritance of purple pigment on the glumes of sorghum close on emergence from the boot. Curr Sci 5:590

    Google Scholar 

  • Ayyangar GNR (1942) In conjunction with Bhatia GS, Kumar LSS, Sabnis TS. The description of crop plant characters and their ranges of variation: IV. The variability of Indian sorghum (Jowar). Indian J Agric Sci 12:529

    Google Scholar 

  • Balakrishna D, Srinivasan Babu K, Venkatesh Bhat B, Vinodh R, Sreedhar M, Shyam Prasad G, Pawar DB, Shekharappa, Mohammad Ilyas MO, Patil JV (2015) Improved shoot fly resistant sources by gamma irradiation induced mutations in sorghum (Sorghum bicolor (L.) Moench). Indian J Plant Protec 43(4):403–410

    Google Scholar 

  • Barrabbas Z (1962) Observations of sex differentiation in Sorghum by use of induced male-sterility mutants. Nature Lond 195:257

    Article  Google Scholar 

  • Belide S, Vanhercke T, Petrie JR, Singh SP (2017) Robust genetic transformation of sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos. Plant Methods 13:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernardo RN (2001) What if we knew all the genes for a quantitative trait in hybrid crops? Crop Sci 41(1):1–4

    Article  CAS  Google Scholar 

  • Bouchet S, Olatoye MO, Marla SR, Perumal R, Tesso T (2017) Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics 206:573–585

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyles RE, Brenton ZW, Kresovich S (2019) Genetic and genomic resources of sorghum to connect genotype with phenotype in contrasting environments. Planta J97(1):19–39

    Google Scholar 

  • Brenton ZW, Cooper EA, Myers MT, Boyles RE, Shakoor N, Zielinski KJ, Rauh BL, Bridges WC, Morris GP, Kresovich S (2016) A genomic resource for the development, improvement, and exploitation of sorghum for bioenergy. Genetics 204(1):21–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bretaudeau A (1997) Radiation induced mutations for breeding of sorghum. Proceedings of a final research co-ordination meeting, joint FAO/IAEA division of nuclear techniques in food and agriculture, Vienna, 145:25–29

    Google Scholar 

  • Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theor Appl Genet 113:931–942

    Article  CAS  PubMed  Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci U S A 90:11212–11216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che P, Anand A, Wu E, Sander JD, Simon MK, Zhu W, Sigmund AL, Hayes GZ, Miller M, Liu D, Lawit SJ, Zhao ZY, Albertsen MC, Jones TJ (2018) Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnol J 16:1388–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conner AB, Karper RE (1927) Hybrid vigour in sorghum. Texas Agric Expt Stat Bull 359:21–26

    Google Scholar 

  • Devi PB, Sticklen MB (2003) In vitro culture and genetic transformation of sorghum by microprojectile bombardment. Plant Biosyst 137:249–254

    Article  Google Scholar 

  • Doggett H (1968) Mass selection systems for sorghum, Sorghum bicolor (L) Moench. Crop Sci 8:291

    Article  Google Scholar 

  • Doggett H (1972) The improvement of sorghum in East Africa. In: Rao NGP, Housey LR (eds) Sorghum in seventies. Oxford and IBH Publishing Co, New Delhi

    Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn. Longman Scientific & Technical, Essex

    Google Scholar 

  • Doggett H, Jowett D (1963) Record of research. Ann Rep E Afr Agr for Res Org 1963:33–36

    Google Scholar 

  • Doggett H, Jowett D (1964) Record of research. Ann Rep E Afr Agr for Res Org 1964:89–91

    Google Scholar 

  • Doggett H, Majisu BN (1968) Disruptive selection in crop development. Heredity 23:1–23

    Article  Google Scholar 

  • El’konin LA, Beliaeva EV, Fadeeva II (2012) Expression of the apomictic potential and selection for apomixis in sorghum line AS-1a. Genetika 48(1):40–49

    PubMed  Google Scholar 

  • Elkonin LA, ItalianskayaI JV, Domanina VN, Selivanov NY, Rakitin AL, Ravi NV (2016) Transgenic sorghum with improved digestibility of storage proteins obtained by Agrobacterium-mediated transformation. Russ J Plant Physiol 63:678–689

    Article  CAS  Google Scholar 

  • Elkonin LA, Pakhomova NV (2000) Influence of nitrogen and phosphorus on induction embryogenic callus of sorghum. Plant Cell Tiss Org Cult 61:115–123

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2018) FAOSTAT. Food and Agricultural Organization, Rome. http://fao.org/faostat/en/#home

    Google Scholar 

  • Finnell HH (1929) Sorghum crops on the high plains of Oklahoma. Oklahama Agric Exp Stat Bull 191

    Google Scholar 

  • Finnell HH (1930) New varieties of grain Sorghum. The panhandle bulletin, no. 22. Panhandle Aund M, College, Goodwell, OK

    Google Scholar 

  • Galla G, Siena LA, Ortiz JPA, Baumlein H, Barcaccia G, Pessino SC, Bellucci M, Pupilli F (2019) A portion of the Apomixis locus of Paspalum simplex is microsyntenic with an unstable chromosome segment highly conserved among Poaceae. Sci Rep 9(1):1–12

    Article  CAS  Google Scholar 

  • Gao Z, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005a) Efficient genetic transformation of sorghum using a visual screening marker. Genome 48:321–333

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Xie X, Ling Y, Muthukrishnana S, Liang GH (2005b) Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol J3:591–599

    Article  CAS  Google Scholar 

  • Gilmore EC (1964) Suggested method of using reciprocal recurrent selection in some naturally self-pollinated species. Crop Sci 4:323–325

    Article  Google Scholar 

  • Girijashankar V, Sharma HC, Sharma KK, Swathisree V, Sivarama Prasad L, Bhat BV, Royer M, Secundo BS, Lakshmi Narasu M, Altosaar I, Seetharama N (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Rep 24(9):513–522

    Article  CAS  PubMed  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a metaanalysis. Genetics 155:463–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grewal RPS, Lodhi GP, Paroda RS (1987) Inheritance of field resistance to oval leaf spot. Indian J Genet 47(1):41–45

    Google Scholar 

  • Grootboom AW, Mkhonza NL, O'Kennedy MO, Chakauya E, Kunert K, Chikwamba RK (2010) Biolistic mediated sorghum (Sorghum bicolor (L.) Moench) transformation via mannose and bialaphos based selection systems. Int J Bot 6(2):89–94

    Article  CAS  Google Scholar 

  • Guan YA, Wang HL, Qin L, Zhang HW, Yang YB, Gao FJ, Li RY, Wang HG (2011) QTL mapping of bio-energy related traits in sorghum. Euphytica 182:431–440

    Article  Google Scholar 

  • Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan HQ, Lemaux PG (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep 28:429–444

    Article  CAS  PubMed  Google Scholar 

  • Harlan JR, de Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176

    Article  Google Scholar 

  • Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31(2):423–447

    Article  CAS  PubMed  Google Scholar 

  • Ram H, Lodhi GP (1992) Stem borer resistance in sorghum. Forage Res 18:6–8

    Google Scholar 

  • House LR (1985) A guide to sorghum breeding, 2nd edn. ICRISAT, Patancheru

    Google Scholar 

  • Human S, Sihono S, Parno P (2012) Application of mutation techniques in sorghum breeding for improved drought tolerance. Atom Indonesia 32(1):35–43

    Google Scholar 

  • Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. In: Andersen SB (ed) Plant breeding from laboratories to fields. InTech, London, pp 45–83

    Google Scholar 

  • Jordan DR, Mace ES, Henzell RG, Klein PE, Klein RR (2010) Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 120:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Kajale MD (1990) Observations on the plant remains from excavation at chalcolithic Kaothe, district Dhule, Maharashtra with cautionary remarks on their interpretations. In: Dhavalikar MK, Shinde VS, Atre SM (eds) Excavations at Kaothe. Pune, Deccan College, pp 265–280

    Google Scholar 

  • Kajale MD (1991) Current status of Indian palaeoethnobotany: introduced and indigenous food plants with a discussion of the historical and evolutionary development of Indian agriculture and agricultural systems in general. In: Renfrew JM (ed) New light on early farming–recent developments in palaeoethnobotany. Edinburgh University Press, Edinburgh, pp 155–189

    Google Scholar 

  • Karper RE, Quinby JR (1937) Hybrid vigor in sorghum. J Hered 28:82–91

    Article  Google Scholar 

  • Karper RE, Quinby JR (1946) The history and evolution of milo in the United States. Agron J 38:441–453

    Article  Google Scholar 

  • Karper RE, Stephens JC (1936) Floral abnormalities in Sorghum. J Hered 17:183

    Article  Google Scholar 

  • Kimber CT (2000) Origin of domesticated sorghum and its early diffusion to India and China. Smith CW, Frederiksen RA Sorghum: origin, history, technology and production. John Wiley and Sons, Inc., New York, NY 1.1, pp: 3–98

    Google Scholar 

  • Knoll J, Gunaratna N, Ejeta G (2008) QTL analysis of early season cold tolerance in sorghum. Theor Appl Genet 116:577–587

    Article  PubMed  Google Scholar 

  • Kosambo-Ayoo LM, Bader M, Loerz H, Becker D (2011) Transgenic sorghum (Sorghum bicolor L. Moench) developed by transformation with chitinase and chitosanase genes from Trichoderma harzianum expresses tolerance to anthracnose. Afr J Biotechnol 10:3659–3670

    CAS  Google Scholar 

  • Lam TBT, Jiyama K, Stone BA (1996) Lignin and hydroxycinnamic acids in walls of brown midrib mutants of sorghum, pearl millet and maize stems. J Sci Food Agric 71(2):174–178

    Article  CAS  Google Scholar 

  • Li A, Jia S, Yobi A, Ge Z, Sato SJ, Zhang C, Angelovici R, Clemente TE, Holding DR (2018) Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum. Plant Physiol 177:1425–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Godwin ID (2012) Highly efficient sorghum transformation. Plant Cell Rep 31:999–1007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu G, Li J, Godwin ID (2019) Genome editing by CRISPR/Cas9 in sorghum through biolistic bombardment. Methods Mol Biol 1931:169–183

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165(4):2117–2128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lodhi GP, Dangi OP (1981) Genetics of yield and quality characters in forage sorghum. Forage Res 7:57–71

    Google Scholar 

  • Mace E, Jordan D (2010) Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 121:1339–1356

    Article  CAS  PubMed  Google Scholar 

  • Mace E, Innes D, Hunt C, Wang X, Tao Y, Baxter J, Hassall M, Hathorn A, Jordan D (2019) The Sorghum QTL atlas: a powerful tool for trait dissection, comparative genomics and crop improvement. Theor Appl Genet 132(3):751–766

    Article  PubMed  Google Scholar 

  • Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, Campbell BC, Hu W, Innes DJ, Han X, Cruickshank A, Dai C, Frère C, Zhang H, Hunt CH, Wang X, Shatte T, Wang M, Su Z, Li J, Lin X, Godwin ID, Jordan DR, Wang J (2013) Whole genome resequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320

    Article  PubMed  Google Scholar 

  • Massman JM, Jung HJG, Bernardo R (2013) Genomewide selection versus marker-assisted recurrent selection to improve grain yield and Stover-quality traits for cellulosic ethanol in maize. Crop Sci 53(1):58–66

    Article  CAS  Google Scholar 

  • McCormick RF, Truong SK, Sreedasyam A, Jenkins J, Shu S, Sims D, Kennedy M, Amirebrahimi M, Weers BD, McKinley B, Mattison A, Morishige DT, Grimwood J, Schmutz J, Mullet JE (2018) The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J 93(2):338–354

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agro climatic traits in sorghum. Proc Natl Acad Sci 110(2):453–458

    Article  CAS  PubMed  Google Scholar 

  • Muleta KT, Pressoir G, Morris GP (2019) Optimizing genomic selection for a sorghum breeding program in Haiti: a simulation study. G3 Genes Genomes Genet 9(2):391–401

    Google Scholar 

  • Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008a) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Sci 48:2165–2179

    Article  Google Scholar 

  • Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE, Mullet JE, Kresovich S (2008b) Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Sci 48:2180–2193

    Article  Google Scholar 

  • Murthy UR, Schertz KF, Bashaw EG (1972) Apomictic and sexual reproduction in sorghum. Indian J Genet Plant Breed 39(2):271–278

    Google Scholar 

  • Murty BR, Govil JN (1967) Description of 70 groups in genus sorghum based on a modified Snowden classification. Indian J Genet 27:75–91

    Google Scholar 

  • Murty UR, Rao NGP (1972) Apomixis in breeding grain sorghums. In: PRao NG, House LR (eds) Sorghum in seventies. Oxford and I. B. H. Publishing Co., New Delhi

    Google Scholar 

  • Nath B (1977) Advanced population breeding. A paper presented at the international sorghum workshop, 6–13 1977. ICRISAT, Hyderabad

    Google Scholar 

  • Nguyen TV, Tran TT, Claeys M, Angenon G (2007) Agrobacterium-mediated transformation of sorghum (Sorghum bicolor (L.) Moench) using and improved in vitro regeneration system. Plant Cell Tiss Org Cult 91:155–164

    Article  CAS  Google Scholar 

  • Nirwan RS, Kothari SL (2003) High copper levels improve callus induction and plant regeneration in Sorghum bicolor (L.) Moench. In Vitro Cell Dev Biol Plant 39:161–164

    Article  CAS  Google Scholar 

  • Obilana AT, El-Rouby MM (1980) Recurrent mass selection for yield in two random mating populations of sorghum [Sorghum bicolor (L.) Moench]. Maydica 25:127–133

    Google Scholar 

  • Oliver AL, Pedersen JF, Grant RJ, Klopfenstein TJ (2005) Comparative effects of the Sorghum bmr-6 and bmr-12 genes: I. forage Sorghum yield and quality. Crop Sci 45:2234–2239

    Article  CAS  Google Scholar 

  • Pahuja S, Aruna C, Shrotria P, Kaur S, Ranwah B, Patil J (2013) Inducing variability in multi-cut forage sorghum through mutagenesis. Plant Genet Resour 11(2):114–120

    Article  CAS  Google Scholar 

  • Pandey S, Shrotria PK (2009) Genetic parameters for hydrocyanic acid content in forage sorghum [Sorghum bicolor (l.) Moench]. Forage Res 35(1):17–19

    Google Scholar 

  • Paroda RS, Lodhi GP (1981) Genetic improvement in forage sorghum. Forage Res 7:17–56

    Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang HB, Wang XY, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang LF, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboobur R, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Pena PA, Quach T, Sato S, Ge Z, Nersesian N, Changa T, Dweikat I, Soundararajan M, Clemente T (2017) Expression of the maize Dof1 transcription factor in wheat and sorghum. Front Plant Sci 8:434

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira MG, Ahnert D, Lee M, Klier K (1995) Genetic-mapping of quantitative trait loci for panicle characteristics and kernel weight in sorghum. Braz J Genet 18:249–257

    CAS  Google Scholar 

  • Porter KS, Axtell JS, Lechtenberg VL, Colenbrander VF (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci 18:205–208

    Article  CAS  Google Scholar 

  • Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston JS (2005) Genome evolution in the genus sorghum (Poaceae). Ann Bot 95:219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinby JR (1967) The maturity genes of sorghum. Adv Agron 19:267–305

    Article  Google Scholar 

  • Quinby JR, Schertz KF (1970) Sorghum, genetics, breeding, and hybrid seed production. In: Wall JS, Ross WM (eds) Sorghum production and utilization. AVI Publ. Co., Westport, CT

    Google Scholar 

  • Rakshit S, Hariprasanna K, Gomashe S, Ganapathy KN, Das IK, Ramana OV, Dhandapani A, Patil JV (2014) Changes in area, yield gains, and yield stability of sorghum in major sorghum-producing countries, 1970 to 2009. Crop Sci 54:1571–1584

    Article  Google Scholar 

  • Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616

    Article  CAS  Google Scholar 

  • Rao NGP, Murty UR (1972) Further studies on obligate apomixis in grain sorghum, Sorghum bicolor (L.) Moench. Indian J Genet 32:379–383

    Google Scholar 

  • Rao NGP, Narayana LL (1968) Apomixis in grain sorghums. Indian J Genet 28:121–127

    Google Scholar 

  • Rao NGP, Narayana LL, Reddy RN (1978) Apomixis and its utilization in grain sorghum-1. Embryology of two apomictic parents. Caryologia 31(4):427–433

    Article  Google Scholar 

  • Reddy BVS, Ashok Kumar A, Sanjana Reddy P (2008) Genetic improvement of sorghum in the semi-arid tropics. In: Sorghum improvement in the new millennium. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 105–123

    Google Scholar 

  • Rhodes DH, Hoffmann L, Rooney WL, Herald TJ, Bean S, Boyles R, Brenton ZW, Kresovich S (2017) Genetic architecture of kernel composition in global sorghum germplasm. BMC Genome 18:15

    Article  CAS  Google Scholar 

  • Robinson GK (1991) That BLUP is a good thing: the estimation of random effects. Stat Sci 6(1):15–32

    Article  Google Scholar 

  • Rooney WL, Aydin S (1999) Genetic control of a photoperiod-sensitive response in Sorghum bicolor (L.) Moench. Crop Sci 39:397–400

    Article  Google Scholar 

  • Ross WM (1971) Multiple alleles for height in sorghum. Sorghum Newsl 14:89

    Google Scholar 

  • Rowley-Conwy P, Deakin WJ, Shaw CH (1997) Ancient DNA from archaeological sorghum (Sorghum bicolor) from Qasr Ibrim, Nubia: implications for domestication and evolution and a review of archaeological evidence. Sahara 9:23–36

    Google Scholar 

  • Saballos A, Vermerris W, Rivera-Vega L, Ejeta G (2008) Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Bio Energy Res 1:193–204

    Google Scholar 

  • Sander JD (2019) Gene editing in sorghum through agrobacterium. Methods Mol Biol 1931:155–168

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Clemente T, Dweikat I (2004) Identification of an elite sorghum genotype with high in vitro performance capacity. In Vitro Cell Dev Biol Plant 40(1):57–60

    Article  Google Scholar 

  • Shakoor N, Nair R, Crasta O, Morris G, Feltus A, Kresovich S (2014) A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums. BMC Plant Biol 14(1):1–14

    Article  CAS  Google Scholar 

  • Sharma G, Jotwani M, Rana B, Rao N (1977) Resistance to the sorghum shoot-fly, Atherigona soccata (Rondani) and its genetic analysis. J Entomol Res 1:1–12

    Google Scholar 

  • Singh RK, Shrotria PK (2008) Combining ability analysis for forage yield and its components in forage sorghum [Sorghum bicolor (L.) Moench]. Forage Res 34(2):79–82

    Google Scholar 

  • Smith CW, Frederiksen RA (2000) Sorghum: origin, history, technology, and production. John Wiley and Sons, New York, NY, p 840

    Google Scholar 

  • Stephens JC (1937) Male-sterility in sorghum: its possible utilization in production of hybrid seed. J Amer Soc Agron 29:690

    Article  Google Scholar 

  • Stephens JC, Holland RF (1954) Cytoplasmic male-sterility for hybrid sorghum seed production. Agron J 46(1):20–23

    Article  Google Scholar 

  • Truong SK, McCormick RF, Morishige DT, Mullet JE (2014) Resolution of genetic map expansion caused by excess heterozygosity in plant recombinant inbred populations. G3 4:1963–1969

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucker MR, Koltunow AMG (2009) Sexual and asexual (apomictic) seed development in flowering plants: molecular, morphological and evolutionary relationships. Funct Plant Biol 36:490–504

    Article  PubMed  Google Scholar 

  • Upadhyaya HD, Wang YH, Sharma R, Sharma S (2013) SNP markers linked to leaf rust and grain mold resistance in sorghum. Mol Breed 32:451–462

    Article  CAS  Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity, and breeding of cultivated plants. Chron Bot 13:1–366

    Google Scholar 

  • Velazco JG, Jordan DR, Mace ES, Hunt CH, Malosetti M, van Eeuwijk FA (2019) Genomic prediction of grain yield and drought-adaptation capacity in sorghum is enhanced by multi-trait analysis. Front Plant Sci 10:1–12

    Article  Google Scholar 

  • Veyrieras JB, Goffinet B, Charcosset A (2007) Meta QTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics 8:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vilas A, Tonapi, Patil JV, Dayakar Rao B, Elangovan M, Venkatesh Bhat B, Raghavendra Rao KV (2011) Sorghum: vision 2030. Directorate of Sorghum Research, Rajendranagar, Hyderabad, p 38

    Google Scholar 

  • Vinall HN, Edwards RW (1916) New sorghum varieties for the central and southern Great Plains. US Dept Agri Bull 383

    Google Scholar 

  • Vinall HN, Stephens JC, Martin JH (1936) Identification, history and distribution of common sorghum varieties. US Dept Agric Bull 506:1–102

    Google Scholar 

  • Visarada KBRS, Padmaja PG, Saikishore N, Pashupatinath RM, Seetharama N, Patil JV (2014) Production and evaluation of trans-genic sorghum for resistance to stem borer. In Vitro Cell Dev Biol Plant 50:176–189

    Article  CAS  Google Scholar 

  • Wanga MA, Kumar AA, Kangueehi GN, Shimelis H, Horn LN, Sarsu F, Andowa JFN (2018) Breeding sorghum using induced mutations: future prospect for Namibia. Am J Plant Sci 9(13):2696–2707

    Article  CAS  Google Scholar 

  • Weber S (1998) Out of Africa: the initial impact of millets in South Asia. Curr Anthropol 39(2):267–274

    Article  Google Scholar 

  • Webster OJ (1965) Genetic studies in Sorghum Vulgare (Pers). Crop Sci 5:207

    Google Scholar 

  • Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xin Z, Wang ML, Burow G, Burke J (2009) An induced sorghum mutant population suitable for bioenergy research. Bioenergy Res 2(1):10–16

    Article  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178(1):539–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Perez MBM, Hu J, Fernandez MGS (2016) Genome-wide association study for nine plant architecture traits in sorghum. Plant Genome 2:1–14

    Google Scholar 

  • Zhao Z, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZY, Glassman K, Sewalt V, Wang N, Miller M, Chang S, Thompson T, Catron S, Wu E, Bidney D, Kedebe Y (2002) Nutritionally improved transgenic sorghum. In: Vasil IK (ed) Plant biotechnology 2002 and beyond, proceeding of the 10th IAPTC & B congress. Kluwer Academic Publisher, Orlando, FL, pp 413–416

    Google Scholar 

  • Zhu H, Muthukrishnan S, Krishnaveni S, Wilde G, Jeoung JM, Liang GH (1998) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breed 52:243–252

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Balakrishna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balakrishna, D., Singode, A., Bhat, B.V., Tonapi, V.A. (2020). Sorghum Improvement Through Efficient Breeding Technologies. In: Gosal, S., Wani, S. (eds) Accelerated Plant Breeding, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-41866-3_16

Download citation

Publish with us

Policies and ethics