Skip to main content
Log in

SNP markers linked to leaf rust and grain mold resistance in sorghum

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Grain mold and rust are diseases that can significantly reduce sorghum grain yield. Breeding for resistance to these diseases is hindered by inefficient disease screening. A viable option to greatly improve breeding efficiency is to identify molecular markers or genes linked to the host resistance. In this study, we applied 14,739 single nucleotide polymorphism markers to the sorghum mini core of 242 accessions that had been evaluated for rust resistance in both greenhouse and field and for grain mold in the field for 2 years. Through association mapping we have identified two loci linked to grain mold resistance and five loci linked to rust resistance. Among the two loci linked to grain mold resistance, one contained a homolog of the maize nonhost resistance gene Rxo1. Two of rust-linked loci each contained the rust resistance gene homologous to the maize rust resistance gene Rp1-D which is the B locus (the A locus containing Pu was not linked in this study) and to the wheat rust resistance gene Lr1. The remaining loci contained genes important in other steps of the defense response, such as cyclophilins that mediate resistance response preceding hypersensitive response (HR) and Hin1 directly involved in producing HR. The results from this study will facilitate marker-assisted selection of host resistance to grain mold and rust in sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acharya BR, Raina S, Maqbool SB, Jagadeeswaran G, Mosher SL, Appel HM, Schultz JC, Klessig DF, Raina R (2007) Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae. Plant J 50:488–499

    Article  PubMed  CAS  Google Scholar 

  • Audilakshmi S, Stenhouse JW, Reddy TP, Prasad MVR (1999) Grain mould resistance and associated characters of sorghum genotypes. Euphytica 107:91–103

    Article  Google Scholar 

  • Audilakshmi S, Stenhouse JW, Reddy TP (2005) Genetic analysis of grain mold resistance in white seed sorghum genotypes. Euphytica 145:95–101

    Article  Google Scholar 

  • Beló A, Zheng P, Luck S, Shen B, Meyer DJ, Li B, Tingey S, Rafalski A (2008) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics 279:1–10

    Article  PubMed  Google Scholar 

  • Bouchet S, Pot D, Deu M, Rami J-F, Billot C et al (2012) Genetic structure, linkage disequilibrium and signature of selection in sorghum: lessons from physically anchored DArT markers. PLoS ONE 7:e33470

    Article  PubMed  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Casa AM, Pressoir GH, Brown PJ, Mitchell SE, Rooney WL, Tuinstra MR, Franks CD, Kresovich S (2008) Community resources and strategies for association mapping in sorghum. Crop Sci 48:30–40

    Article  Google Scholar 

  • Chen K, Fan B, Du L, Chen Z (2004) Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis. Plant Mol Biol 56:271–283

    Article  PubMed  CAS  Google Scholar 

  • Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65:93–106

    Article  PubMed  CAS  Google Scholar 

  • Coaker G, Falick A, Staskawicz B (2005) Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science 308:548–550

    Article  PubMed  CAS  Google Scholar 

  • Coleman OH, Dean JL (1961) The inheritance of resistance to rust in sorgo. Crop Sci 1:152–154

    Article  Google Scholar 

  • Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11:1365–1376

    PubMed  CAS  Google Scholar 

  • Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH, Bustamante C, Kochian LV, McCouch SR (2011) Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 7:e1002221

    Article  PubMed  CAS  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  PubMed  CAS  Google Scholar 

  • Hamblin MT, Salas Fernandez MG, Casa AM, Mitchell SE, Paterson AH et al (2005) Equilibrium processes cannot explain high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics 171:1247–1256

    Article  PubMed  CAS  Google Scholar 

  • Hepperly PR (1990) Sorghum rust: II. Control and losses. J Agric Univ Puerto Rico 74:37–44

    Google Scholar 

  • Hiltunen M, Mannermaa A, Thompson D, Easton D, Pirskanen M, Helisalmi S, Koivisto AM, Lehtovirta M, Ryynänen M, Soininen H (2001) Genome-wide linkage disequilibrium mapping of late-onset Alzheimer’s disease in Finland. Neurology 57:1663–1668

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  PubMed  CAS  Google Scholar 

  • Indira S, Rana BS, Rao NGP (1982) Further studies on the incidence and genetics of rust resistance in sorghum. Indian J Genet Plant Breed 42:106–113

    Google Scholar 

  • Jambunathan R, Kherdekar MS, Stenhouse JW (1992) Sorghum grain hardness and its relationship to mold susceptibility and mold resistance. J Agric Food Chem 40:1403–1408

    Article  CAS  Google Scholar 

  • Johnston CO, Mains EB (1931) Relative susceptibility of varieties of sorghum to rust, Puccinia purpurea. Phytopathology 21:525–543

    Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed  Google Scholar 

  • Klein RR, Rodriguez-Herrera R, Schlueter JA, Klein PE, Yu ZH, Rooney WL (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 102:307–319

    Article  CAS  Google Scholar 

  • Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q (2007) The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177:1871–1880

    Article  PubMed  CAS  Google Scholar 

  • Little CR, Magill CW (2009) The grain mold pathogen, Fusarium thapsinum, reduces caryopsis formation in Sorghum bicolor. J Phytopathol 157:518–519

    Article  Google Scholar 

  • Little C, Perumal R, Tesso T, Prom LK, Odvody GN, Magill CW (2012) Sorghum pathology and biotechnology-A fungal disease perspective: part I. Grain mold, head smut, and ergot. Eur J Plant Sci Biotechnol 6:10–30

    Google Scholar 

  • Luo S, Peng J, Li K, Wang M, Kuang H (2011) Contrasting evolutionary patterns of the Rp1 resistance gene family in different species of Poaceae. Mol Biol Evol 28:313–325

    Article  PubMed  CAS  Google Scholar 

  • Mace ES, Jordan DR (2010) Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 121:1339–1356

    Article  PubMed  CAS  Google Scholar 

  • McIntyre CL, Hermann SM, Casu RE, Knight D, Drenth J, Tao Y, Brumbley SM, Godwin ID, Williams S, Smith GR, Manners JM (2004) Homologues of the maize rust resistance gene Rp1-D are genetically associated with a major rust resistance QTL in sorghum. Theor Appl Genet 109:875–883

    Article  PubMed  CAS  Google Scholar 

  • McIntyre CL, Casu RE, Drenth J, Knight D, Whan VA, Croft BJ, Jordan DR, Manners JM (2005) Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome 48:391–400

    Article  PubMed  CAS  Google Scholar 

  • Menkir A, Ejeta G, Butler L, Melakeberhan A (1996) Physical and chemical kernel properties associated with resistance to grain mold in sorghum. Cereal Chem 73:613–617

    CAS  Google Scholar 

  • Miller FR, Cruzado HJ (1969) Allelic interactions at the Pu locus in Sorghum bicolor (L.) Moench. Crop Sci 9:336–338

    Article  Google Scholar 

  • Murali Mohan S, Madhusudhana R, Mathur K, Chakravarthi DVN, Rathore S, Nagaraja Reddy R, Satish S, Srinivas G, Sarada Mani N, Seetharama N (2010) Identification of quantitative trait loci associated with resistance to foliar diseases in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 176:199–211

    Article  CAS  Google Scholar 

  • Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2011) Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol 12:16

    Article  Google Scholar 

  • Ramakrishna W, Emberton J, SanMiguel P, Ogden M, Llaca V, Messing J, Bennetzen JL (2002) Comparative sequence analysis of the sorghum Rph region and the maize Rp1 resistance gene complex. Plant Physiol 130:1728–1738

    Article  PubMed  CAS  Google Scholar 

  • Rana BS, Tripathi DP, Rao NGP (1976) Genetic analysis of some exotic × Indian crosses in sorghum XV. Inheritance of resistance to sorghum rust. Indian J Genet Plant Breed 36:244–249

    Google Scholar 

  • Rodriguez-Herrera R, Rooney WL, Rosenow DT, Frederiksen RA (2000) Inheritance of grain mold resistance in grain sorghum without a pigmented testa. Crop Sci 40:1573–1578

    Article  Google Scholar 

  • Setter TL, Yan J, Warburton M, Ribaut JM, Xu Y, Sawkins M, Buckler ES, Zhang Z, Gore MA (2011) Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. J Exp Bot 62:701–716

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, Rao VP, Upadhyaya HD, Reddy VG, Thakur RP (2010) Resistance to grain mold and downy mildew in a mini-core collection of sorghum germplasm. Plant Dis 94:439–444

    Article  Google Scholar 

  • Sharma R, Thakur RP, Senthilvel S, Nayak S, Reddy SV, Rao VP, Varshney RK (2011) Identification and characterization of toxigenic Fusaria associated with sorghum grain mold complex in India. Mycopathologia 171:223–230

    Article  PubMed  Google Scholar 

  • Sharma R, Upadhyaya HD, Manjunatha SV, Rao VP, Thakur RP (2012) Resistance to foliar diseases in a mini-core collection of sorghum germplasm. Plant Dis 96:1629–1633

    Article  Google Scholar 

  • Suh MC, Oh SK, Kim YC, Pai HS, Choi D (2003) Expression of a novel tobacco gene, NgCDM, is preferentially associated with pathogen-induced cell death. Physiol Mol Plant Pathol 62:227–235

    Article  CAS  Google Scholar 

  • Sun Q, Collins NC, Ayliffe M, Smith SM, Drake J, Pryor T, Hulbert SH (2001) Recombination between paralogues at the Rp1 rust resistance locus in maize. Genetics 158:423–438

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Berberich T, Yamashita K, Uehara Y, Miyazaki A, Kusano T (2004) Identification of tobacco HIN1 and two closely related genes as spermine-responsive genes and their differential expression during the Tobacco mosaic virus-induced hypersensitive response and during leaf-and flower-senescence. Plant Mol Biol 54:613–622

    Article  PubMed  CAS  Google Scholar 

  • Tao YZ, Jordan DR, Henzell RG, McIntyre CL (1998) Identification of genomic regions for rust resistance in sorghum. Euphytica 103:287–292

    Article  CAS  Google Scholar 

  • Thakur RP, Reddy BVS, Mathur K (2007) Screening techniques for sorghum diseases. Information bulletin no. 76. ICRISAT, Andhra Pradesh, pp 53–57

  • Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780

    Article  Google Scholar 

  • Wang ML, Dean R, Erpelding J, Pederson G (2006) Molecular genetic evaluation of sorghum germplasm differing in response to fungal diseases: rust (Puccinia purpurea) and anthracnose (Collectotrichum graminicola). Euphytica 148:319–330

    Article  CAS  Google Scholar 

  • Wang Y-H, Upadhyaya HD, Burrell AM, Sahraeian SM, Klein RR, Klein PE (2013) Genetic structure and linkage disequilibrium in a diverse, representative collection of the C4 model plant, Sorghum bicolor. G3: Genes Genomes Genet 3:783–793

    Google Scholar 

  • White JA, Ryley MJ, George DL, Kong GA, White SC (2012) Yield losses in grain sorghum due to rust infection. Australasian Plant Pathol 41:85–91

    Article  Google Scholar 

  • Yang X, Gao S, Xu S, Zhang Z, Prasanna BM, Li L, Li J, Yan J (2011) Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed 28:511–526

    Article  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci USA 102:15383–15388

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Wang Y, Li Y, Bhatti KH, Tian Y, Wu J (2011) Overexpression of a cotton cyclophilin gene (GhCyp1) in transgenic tobacco plants confers dual tolerance to salt stress and Pseudomonas syringae pv. tabaci infection. Plant Physiol Biochem 49:1264–1271

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the International Crops Research Institute for the Semi-Arid Tropics and the University of Louisiana at Lafayette. We thank the reviewer for suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upadhyaya, H.D., Wang, YH., Sharma, R. et al. SNP markers linked to leaf rust and grain mold resistance in sorghum. Mol Breeding 32, 451–462 (2013). https://doi.org/10.1007/s11032-013-9883-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9883-3

Keywords

Navigation