Skip to main content

Aromatic Compound Catabolism in Corynebacterium glutamicum

  • Chapter
  • First Online:
Corynebacterium glutamicum

Part of the book series: Microbiology Monographs ((MICROMONO,volume 23))

Abstract

Many kinds of aromatic compounds can be assimilated by Corynebacterium glutamicum. Genome sequencing has enabled the elucidation of genetic and biochemical identification, and the transcriptional regulation of the degradation pathway genes. This chapter is divided into two sections, summarized based on current knowledge; Sect. 1, basic research on functionally identified or putative uptake systems and degradation pathways of aromatic compounds in C. glutamicum, and Sect. 2, applied research on strain construction for production of various aromatic compounds using aromatic catabolic genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Averesch NJH, Krömer JO (2018) Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds-present and future strain construction strategies. Front Bioeng Biotechnol 6:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker J, Kuhl M, Kohlstedt M, Starck S, Wittmann C (2018) Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Microb Cell Fact 17:115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brinkrolf K, Brune I, Tauch A (2006) Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Genet Mol Res 5:773–789

    Google Scholar 

  • Chao H, Zhou NY (2013) GenR, an IclR-type regulator, activates and represses the transcription of gen genes involved in 3-hydroxybenzoate and gentisate catabolism in Corynebacterium glutamicum. J Bacteriol 195:1598–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao H, Zhou NY (2014) Involvement of the global regulator GlxR in 3-hydroxybenzoate and gentisate utilization by Corynebacterium glutamicum. Appl Environ Microbiol 80:4215–4225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaudhry MT, Huang Y, Shen XH, Poetsch A, Jiang CY, Liu SJ (2007) Genome-wide investigation of aromatic acid transporters in Corynebacterium glutamicum. Microbiology 153:857–865

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Kohl TA, Rückert C, Rodionov DA, Li LH, Ding JY, Kalinowski J, Liu SJ (2012) Phenylacetic acid catabolism and its transcriptional regulation in Corynebacterium glutamicum. Appl Environ Microbiol 78:5796–5804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du L, Ma L, Qi F, Zheng X, Jiang C, Li A, Wan X, Liu SJ (2016) Characterization of a unique pathway for 4-cresol catabolism initiated by phosphorylation in Corynebacterium glutamicum. J Biol Chem 291:6583–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng J, Che Y, Milse J, Yin YJ, Liu L, Rückert C, Shen XH, Qi SW, Kalinowski J, Liu SJ (2006) The gene ncgl2918 encodes a novel maleylpyruvate isomerase that needs mycothiol as cofactor and links mycothiol biosynthesis and gentisate assimilation in Corynebacterium glutamicum. J Biol Chem 281:10778–10785

    Article  CAS  PubMed  Google Scholar 

  • Haußmann U, Qi SW, Wolters D, Rögner M, Liu SJ, Poetsch A (2009) Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source—a membrane proteome-centric view. Proteomics 9:3635–3651

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Zhao KX, Shen XH, Chaudhry MT, Jiang CY, Liu SJ (2006) Genetic characterization of the resorcinol catabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:7238–7245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Zhao KX, Shen XH, Jiang CY, Liu SJ (2008) Genetic and biochemical characterization of a 4-hydroxybenzoate hydroxylase from Corynebacterium glutamicum. Appl Microbiol Biotechnol 78:75–73

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    Article  CAS  PubMed  Google Scholar 

  • Itoh N, Yoshida K, Okada K (1996) Isolation and identification of styrene-degrading Corynebacterium strains, and their styrene metabolism. Biosci Biotechnol Biochem 60:1826–1830

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  CAS  PubMed  Google Scholar 

  • Kallscheuer N, Marienhagen J (2018) Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids. Microb Cell Fact 17:70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kallscheuer N, Vogt M, Kappelmann J, Krumbach K, Noack S, Bott M, Marienhagen J (2016a) Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol 100:1871–1881

    Article  CAS  PubMed  Google Scholar 

  • Kallscheuer N, Vogt M, Stenzel A, Gätgens J, Bott M, Marienhagen J (2016b) Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones. Metab Eng 38:47–55

    Article  CAS  PubMed  Google Scholar 

  • Kitade Y, Hashimoto R, Suda M, Hiraga K, Inui M (2018) Production of 4-hydroxybenzoic acid by an aerobic growth-arrested bioprocess using metabolically engineered Corynebacterium glutamicum. Appl Environ Microbiol 84:e02587–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  CAS  PubMed  Google Scholar 

  • Kogure T, Kubota T, Suda M, Hiraga K, Inui M (2016) Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction. Metab Eng 38:204–216

    Article  CAS  PubMed  Google Scholar 

  • Kubota T, Tanaka Y, Hiraga K, Inui M, Yukawa H (2013) Characterization of shikimate dehydrogenase homologues of Corynebacterium glutamicum. Appl Microbiol Biotechnol 97:8139–8149

    Article  CAS  PubMed  Google Scholar 

  • Kubota T, Tanaka Y, Takemoto N, Watanabe A, Hiraga K, Inui M, Yukawa H (2014) Chorismate-dependent transcriptional regulation of quinate/shikimate utilization genes by LysR-type transcriptional regulator QsuR in Corynebacterium glutamicum: carbon flow control at metabolic point. Mol Microbiol 92:356–368

    Article  CAS  PubMed  Google Scholar 

  • Kubota T, Tanaka Y, Takemoto N, Hiraga K, Yukawa H, Inui M (2015) Identification and expression analysis of a gene encoding a shikimate transporter of Corynebacterium glutamicum. Microbiology 161:254–263

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Wendisch VF (2017) Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J Biotechnol 257:211–221

    Article  CAS  PubMed  Google Scholar 

  • Lee HN, Shin WS, Seo SY, Choi SS, Song JS, Kim JY, Park JH, Lee D, Kim SY, Lee SJ, Chun GT, Kim ES (2018) Corynebacterium cell factory design and culture process optimization for muconic acid biosynthesis. Sci Rep 8:18041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Zhao K, Huang Y, Li D, Jiang CY, Zhou N, Fan Z, Liu SJ (2012) The TetR-type transcriptional repressor RolR from Corynebacterium glutamicum regulates resorcinol catabolism by binding to a unique operator, rolO. Appl Environ Microbiol 78:6009–6016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Chen X, Chaudhry MT, Zhang B, Jiang CY, Liu SJ (2014) Genetic characterization of 4-cresol catabolism in Corynebacterium glutamicum. J Biotechnol 192:355–365

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhang B, Liu YM, Yang KQ, Liu SJ (2018) New intracellular shikimic acid biosensor for monitoring shikimate synthesis in Corynebacterium glutamicum. ACS Synth Biol 7:591–601

    Article  CAS  PubMed  Google Scholar 

  • Merkens H, Beckers G, Wirtz A, Burkovski A (2005) Vanillate metabolism in Corynebacterium glutamicum. Curr Microbiol 51:59–65

    Article  CAS  PubMed  Google Scholar 

  • Morabbi Heravi K, Lange J, Watzlawick H, Kalinowski J, Altenbuchner J (2015) Transcriptional regulation of the vanillate utilization genes (vanABK operon) of Corynebacterium glutamicum by VanR, a PadR-like repressor. J Bacteriol 197:959–972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okai N, Masuda T, Takeshima Y, Tanaka K, Yoshida K, Miyamoto M, Ogino C, Kondo A (2017) Biotransformation of ferulic acid to protocatechuic acid by Corynebacterium glutamicum ATCC 21420 engineered to express vanillate O-demethylase. AMB Expr 7:130

    Article  CAS  Google Scholar 

  • Romanov V, Hausinger RP (1996) NADPH-dependent reductive ortho dehalogenation of 2,4-dichlorobenzoic acid in Corynebacterium sepedonicum KZ-4 and Coryneform bacterium strain NTB-1 via 2,4-dichlorobenzoyl coenzyme A. J Bacteriol 178:2656–2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai S, Tsuchida Y, Okino S, Ichihashi O, Kawaguchi H, Watanabe T, Inui M, Yukawa H (2007) Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl Environ Microbiol 73:2349–2353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen X, Liu S (2005) Key enzymes of the protocatechuate branch of the β-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum. Sci China C Life Sci 48:241–249

    CAS  PubMed  Google Scholar 

  • Shen XH, Liu ZP, Liu SJ (2004) Functional identification of the gene locus (ncg12319) and characterization of catechol 1,2-dioxygenase in Corynebacterium glutamicum. Biotechnol Lett 26:575–580

    Article  CAS  PubMed  Google Scholar 

  • Shen XH, Huang Y, Liu SJ (2005a) Genomic analysis and identification of catabolic pathways for aromatic compounds in Corynebacterium sepedonicum. Microbes Environ 20:160–167

    Article  Google Scholar 

  • Shen XH, Jiang CY, Huang Y, Liu ZP, Liu SJ (2005b) Functional identification of novel genes involved in the glutathione-independent gentisate pathway in Corynebacterium glutamicum. Appl Environ Microbiol 71:3442–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen XH, Zhou NY, Liu SJ (2012) Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium? Appl Microbiol Biotechnol 95:77–89

    Article  CAS  PubMed  Google Scholar 

  • Shen XH, Li T, Xu Y, Zhou NY, Liu SJ (2015) Transport, degradation and assimilation of aromatic compounds and their regulation in Corynebacterium glutamicum. In: Burkovski A (ed) Corynebacterium glutamicum. From systems biology to biotechnological applications. Caister Academic, Norfolk, pp 83–109

    Chapter  Google Scholar 

  • Shin WS, Lee D, Lee SJ, Chun GT, Choi SS, Kim ES, Kim S (2018) Characterization of a non-phosphotransferase system for cis,cis-muconic acid production in Corynebacterium glutamicum. Biochem Biophys Res Commun 499:279–284

    Article  CAS  PubMed  Google Scholar 

  • Sikkema J, de Bont JAM (1993) Metabolism of tetralin (1,2,3,4-tetrahydronaphthalene) in Corynebacterium sp. Strain C125. Appl Environ Microbiol 59:567–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syukur Purwanto H, Kang MS, Ferrer L, Han SS, Lee JY, Kim HS, Lee JH (2018) Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production. J Biotechnol 282:92–100

    Article  CAS  PubMed  Google Scholar 

  • Teramoto H, Inui M, Yukawa H (2009) Regulation of expression of genes involved in quinate and shikimate utilization in Corynebacterium glutamicum. Appl Environ Microbiol 75:3461–3468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SH, Xu Y, Liu SJ, Zhou NY (2011) Conserved residues in the aromatic acid/H+ symporter family are important for benzoate uptake by NCgl2325 in Corynebacterium glutamicum. Int Biodeterior Biodegrad 65:527–532

    Article  CAS  Google Scholar 

  • Xiao X, Si M, Yang Z, Zhang Y, Guan J, Chaudhry MT, Wang Y, Shen X (2015) Molecular characterization of a eukaryotic-like phenol hydroxylase from Corynebacterium glutamicum. J Gen Appl Microbiol 61:99–107

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Wang SH, Chao HJ, Liu SJ, Zhou NY (2012) Biochemical and molecular characterization of the gentisate transporter GenK in Corynebacterium glutamicum. PLoS One 7:e38701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YF, Zhang JJ, Wang SH, Zhou NY (2010) Purification and characterization of the ncgl2923-encoded 3-hydroxybenzoate 6-hydoxylase from Corynebacterium glutamicum. J Basic Microbiol 50:599–604

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Liu ZQ, Liu C, Zheng YG (2016) Application of CRISPRi in Corynebacterium glutamicum for shikimic acid production. Biotechnol Lett 38:2153–2161

    Article  CAS  PubMed  Google Scholar 

  • Zhao KX, Huang Y, Chen X, Wang NX, Liu SJ (2010) PcaO positively regulates pcaHG of the β-ketoadipate pathway in Corynebacterium glutamicum. J Bacteriol 192:1565–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Inui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kitade, Y., Hiraga, K., Inui, M. (2020). Aromatic Compound Catabolism in Corynebacterium glutamicum . In: Inui, M., Toyoda, K. (eds) Corynebacterium glutamicum. Microbiology Monographs, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-39267-3_11

Download citation

Publish with us

Policies and ethics