Skip to main content
Log in

Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Phenylpropanoids as abundant, lignin-derived compounds represent sustainable feedstocks for biotechnological production processes. We found that the biotechnologically important soil bacterium Corynebacterium glutamicum is able to grow on phenylpropanoids such as p-coumaric acid, ferulic acid, caffeic acid, and 3-(4-hydroxyphenyl)propionic acid as sole carbon and energy sources. Global gene expression analyses identified a gene cluster (cg0340-cg0341 and cg0344-cg0347), which showed increased transcription levels in response to phenylpropanoids. The gene cg0340 (designated phdT) encodes for a putative transporter protein, whereas cg0341 and cg0344-cg0347 (phdA-E) encode enzymes involved in the β-oxidation of phenylpropanoids. The phd gene cluster is transcriptionally controlled by a MarR-type repressor encoded by cg0343 (phdR). Cultivation experiments conducted with C. glutamicum strains carrying single-gene deletions showed that loss of phdA, phdB, phdC, or phdE abolished growth of C. glutamicum with all phenylpropanoid substrates tested. The deletion of phdD (encoding for putative acyl-CoA dehydrogenase) additionally abolished growth with the α,β-saturated phenylpropanoid 3-(4-hydroxyphenyl)propionic acid. However, the observed growth defect of all constructed single-gene deletion strains could be abolished through plasmid-borne expression of the respective genes. These results and the intracellular accumulation of pathway intermediates determined via LC-ESI-MS/MS in single-gene deletion mutants showed that the phd gene cluster encodes for a CoA-dependent, β-oxidative deacetylation pathway, which is essential for the utilization of phenylpropanoids in C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe S, Takayama KI, Kinoshita S (1967) Taxonomical studies on glutamic acid-producing bacteria. J Gen Appl Microbiol 13(3):279–301

    Article  Google Scholar 

  • Beltran J, Sanli N, Fonrodona G, Barron D, Özkan G, Barbosa J (2003) Spectrophotometric, potentiometric and chromatographic pKa values of polyphenolic acids in water and acetonitrile–water media. Anal Chim Acta 484(2):253–264

    Article  CAS  Google Scholar 

  • Bertani G (1951) Studies on lysogenesis. I The Mode of Phage Liberation by Lysogenic Escherichia coli. J Bacteriol 62(3):293–300

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brinkrolf K, Brune I, Tauch A (2006) Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Genet Mol Res 5(4):773–789

    PubMed  Google Scholar 

  • Brune I, Brinkrolf K, Kalinowski J, Puhler A, Tauch A (2005) The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics 6:86

    Article  PubMed Central  PubMed  Google Scholar 

  • Buschke N, Schäfer R, Becker J, Wittmann C (2013) Metabolic engineering of industrial platform microorganisms for biorefinery applications—optimization of substrate spectrum and process robustness by rational and evolutive strategies. Bioresour Technol 135:544–554

    Article  CAS  PubMed  Google Scholar 

  • Campillo T, Renoud S, Kerzaon I, Vial L, Baude J, Gaillard V, Bellvert F, Chamignon C, Comte G, Nesme X, Lavire C, Hommais F (2014) Analysis of hydroxycinnamic acid degradation in Agrobacterium fabrum reveals a coenzyme a-dependent, beta-oxidative deacetylation pathway. Appl Environ Microbiol 80(11):3341–3349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diaz E (2004) Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 7(3):173–180

    CAS  PubMed  Google Scholar 

  • Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. Taylor & Francis, Boca Raton FL

    Book  Google Scholar 

  • Eikmanns BJ, Kleinertz E, Liebl W, Sahm H (1991) A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102(1):93–98

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa H, Schaefer AL, Greenberg EP, Harwood CS (2012) Anaerobic p-coumarate degradation by Rhodopseudomonas palustris and identification of CouR, a MarR repressor protein that binds p-coumaroyl coenzyme a. J Bacteriol 194(8):1960–1967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Pühler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104(1–3):5–25

    Article  CAS  PubMed  Google Scholar 

  • Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175(17):5595–5603

    PubMed Central  CAS  PubMed  Google Scholar 

  • Levsen K, Schiebel HM, Terlouw JK, Jobst KJ, Elend M, Preiß A, Thiele H, Ingendoh A (2007) Even-electron ions: a systematic study of the neutral species lost in the dissociation of quasi-molecular ions. J Mass Spectrom 42(8):1024–1044

    Article  CAS  PubMed  Google Scholar 

  • Liu A, and Huo L (2014) Amidohydrolase superfamily. In: eLS. John Wiley & Sons Ltd, Chichester

  • Liu A, Zhang H (2006) Transition metal-catalyzed nonoxidative decarboxylation reactions. Biochemistry 45(35):10407–10411

    Article  CAS  PubMed  Google Scholar 

  • Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163(2):166–178

    Article  CAS  PubMed  Google Scholar 

  • Merkens H, Beckers G, Wirtz A, Burkovski A (2005) Vanillate metabolism in Corynebacterium glutamicum. Curr Microbiol 51(1):59–65

    Article  CAS  PubMed  Google Scholar 

  • Mitra A, Kitamura Y, Gasson MJ, Narbad A, Parr AJ, Payne J, Rhodes MJ, Sewter C, Walton NJ (1999) 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL)—an enzyme of phenylpropanoid chain cleavage from pseudomonas. Arch Biochem Biophys 365(1):10–16

    Article  CAS  PubMed  Google Scholar 

  • Niebisch A, Bott M (2001) Molecular analysis of the cytochrome bc1-aa3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c1. Arch Microbiol 175(4):282–294

    Article  CAS  PubMed  Google Scholar 

  • Otani H, Lee YE, Casabon I, Eltis LD (2014) Characterization of p-hydroxycinnamate catabolism in a soil Actinobacterium. J Bacteriol 196(24):4293–4303

    Article  PubMed Central  PubMed  Google Scholar 

  • Otani H, Stogios PJ, Xu X, Nocek B, Li S-N, Savchenko A, Eltis LD (2015) The activity of CouR, a MarR family transcriptional regulator, is modulated through a novel molecular mechanism. Nucleic Acids Res. doi:10.1093/nar/gkv955gkv955

    PubMed Central  Google Scholar 

  • Parke D, Ornston LN (2003) Hydroxycinnamate (hca) catabolic genes from Acinetobacter sp. strain ADP1 are repressed by HcaR and are induced by hydroxycinnamoyl-coenzyme A thioesters. Appl Environ Microbiol 69(9):5398–5409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Puhler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145(1):69–73

    Article  PubMed  Google Scholar 

  • Shen XH, Liu SJ (2005) Key enzymes of the protocatechuate branch of the beta-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum. Sci China Ser C 48(3):241–249

    CAS  Google Scholar 

  • Shen XH, Liu ZP, Liu SJ (2004) Functional identification of the gene locus (ncgl2319) and characterization of catechol 1,2-dioxygenase in Corynebacterium glutamicum. Biotechnol Lett 26(7):575–580

    Article  CAS  PubMed  Google Scholar 

  • Shen XH, Huang Y, Liu SJ (2005a) Genomic analysis and identification of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Microbes Environ 20(3):160–167

    Article  Google Scholar 

  • Shen XH, Jiang CY, Huang Y, Liu ZP, Liu SJ (2005b) Functional identification of novel genes involved in the glutathione-independent gentisate pathway in Corynebacterium glutamicum. Appl Environ Microbiol 71(7):3442–3452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shen XH, Zhou NY, Liu SJ (2012) Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium? Appl Microbiol Biot 95(1):77–89

    Article  CAS  Google Scholar 

  • Siegel D, Permentier H, Reijngoud DJ, Bischoff R (2014) Chemical and technical challenges in the analysis of central carbon metabolites by liquid-chromatography mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 966:21–33

    Article  CAS  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7:539

    Article  PubMed Central  PubMed  Google Scholar 

  • Trautwein K, Wilkes H, Rabus R (2012) Proteogenomic evidence for beta-oxidation of plant-derived 3-phenylpropanoids in “Aromatoleum aromaticum” EbN1. Proteomics 12(9):1402–1413

    Article  CAS  PubMed  Google Scholar 

  • Unthan S, Grünberger A, van Ooyen J, Gätgens J, Heinrich J, Paczia N, Wiechert W, Kohlheyer D, Noack S (2014) Beyond growth rate 0.6: what drives Corynebacterium glutamicum to higher growth rates in defined medium. Biotechnol Bioeng 111(2):359–371

    Article  CAS  PubMed  Google Scholar 

  • van Summeren-Wesenhagen PV, Marienhagen J (2013) Putting bugs to the blush: metabolic engineering for phenylpropanoid-derived products in microorganisms. Bioengineered 4(6):355–362

    Article  PubMed Central  PubMed  Google Scholar 

  • Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M (2014) Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for l-leucine overproduction. Metab Eng 22:40–52

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF (2014) Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30:51–58

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson SP, Grove A (2006) Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. Curr Issues Mol Biol 8(1):51–62

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Petra Geilenkirchen (Forschungszentrum Jülich) for the LC-ESI-MS/MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Marienhagen.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by the European Union Framework Program 7 “BacHBerry” (www.bachberry.eu), Project No. FP7-613,793.

Additional information

Nicolai Kallscheuer and Michael Vogt contributed equally to this work.

Electronic supplementary material

ESM 1

(PDF 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallscheuer, N., Vogt, M., Kappelmann, J. et al. Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum . Appl Microbiol Biotechnol 100, 1871–1881 (2016). https://doi.org/10.1007/s00253-015-7165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7165-1

Keywords

Navigation