Skip to main content

Bioethanol Production from Water Hyacinth

  • Chapter
  • First Online:
Water Hyacinth: A Potential Lignocellulosic Biomass for Bioethanol
  • 362 Accesses

Abstract

Enhanced development of bioethanol for its use as a carbon-neutral renewable and clean fuel is ever-increasing as it reduces CO2 emissions and associated climate change; it is used as fuel mix and octane enhancer in gasoline and improves the ambient air quality. In comparison with conventional agricultural biomass, lignocellulose biomass is a potential and sustainable substrate for bioethanol production. Lignocellulose biomass commonly comes from terrestrial origins, but aquatic plants and weeds like water hyacinth can also provide adequate biomass for bioethanol production. Aquatic feedstock like water hyacinth has a decentralized availability and thus requires a distributed production strategy for efficient availability. Water hyacinth has been widely exploited for biofuel production with research dedicated to efficient pretreatment, enzymatic hydrolysis and fermentation strategies. Novel processes like CBP can increase the bioethanol conversion yield to about 92% of the theoretical value compared to ~50% by conventional methods along with a reduction in operational costs and inhibitors. Additionally, recent advances in genetically engineering have shown promising results for the generation of fermenting organisms with higher alcohol productivity and tolerance. The current chapter discusses bioethanol production from water hyacinth, various fermentation strategies and their limitations, microbes in fermentation and current advances and commercial status of bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEA (2010) Sustainable production of second-generation biofuels. Potential and perspectives in major economies and developing countries. (http://www.iea.org/publications/freepublications/publication/biofuels_exec_summary.pdf)

  2. Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  CAS  PubMed  Google Scholar 

  3. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  4. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol-the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556

    Article  CAS  PubMed  Google Scholar 

  5. Sukumaran RK, Singhania RR, Mathew GM, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34(2):421–424

    Article  CAS  Google Scholar 

  6. Cotanaa F, Cavalaglioa G, Gelosiaa M, Nicolinia A, Cocciaa V, Petrozzia A (2014) Production of bioethanol in a second generation prototype from pine wood chips. Energy Procedia 45:42–51

    Article  CAS  Google Scholar 

  7. Gauss WF, Suzuki S, Takagi (1976) Manufacture of alcohol from cellulosic materials using plural ferments. Ed: Office USPT. USA, Bio Research Center Company Limited 3990944(610731)

    Google Scholar 

  8. Cong Y (2010) Bioethanol production from microwave-pretreated and hydrolyzed water hyacinth by fermentation. Master’s thesis—Dissertation Zhejiang University

    Google Scholar 

  9. Ohgren K, Bura R, Lesnicki G, Saddler J, Zacchi G (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Proc Biochem 42:834–839

    Article  CAS  Google Scholar 

  10. Philippidis GP, Smith TK (1995) Limiting factors in the simultaneous saccharification and fermentation process for conversion of cellulosic biomass to fuel ethanol. Appl Biochem Biotechnol 51–52:117–124

    Article  Google Scholar 

  11. Taherzadeh MJ, Karimi K (2007) Enzyme based hydrolysis process for ethanol from lignocellulosic materials: a review. BioResources 2(4):707–738

    CAS  Google Scholar 

  12. Zhang J, Lynd LR (2010) Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms. Biotechnol Bioeng 107:235–244

    Article  CAS  PubMed  Google Scholar 

  13. Kim TH, Lee YY, Sunwoo C, Kim JS (2006) Pretreatment of corn stover by low liquid ammonia recycle percolation process. Appl Biochem Biotech 133(1):41–57

    Article  CAS  Google Scholar 

  14. Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-middle- and long term. Biomass Bioenergy 28:384–410

    Article  CAS  Google Scholar 

  15. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2010) Technoeconomic analysis of biofuels: a wiki based platform for lignocellulosic biorefineries. Biomass Bioenerg 34(12):1914–1921

    Article  CAS  Google Scholar 

  16. Szczodrak J, Fiedurek J (1996) Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenerg 10:367–375

    Article  CAS  Google Scholar 

  17. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  PubMed  Google Scholar 

  18. Sreenath HK, Jeffreis TW (2000) Production of ethanol from wood hydrolysate by yeasts. Bioresour Technol 72:253–260

    Article  CAS  Google Scholar 

  19. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  PubMed  Google Scholar 

  20. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326

    Article  CAS  PubMed  Google Scholar 

  21. Hahn-Hagerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF (2007) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:147–177

    PubMed  Google Scholar 

  22. Choudhary J, Singh S, Nain L (2017) Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. J Biosci Bio-eng 123(3):342–346

    Article  CAS  Google Scholar 

  23. Claassen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755

    Article  CAS  Google Scholar 

  24. Thammasittirong SN, Thirasaktana T, Thammasittirong A, Srisoduk M (2013) Improvement of ethanol production by ethanol-tolerant Saccharomyces cerevisiae UVNR56. Springer Plus 2:583

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Mukhtar K, Asgher M, Afghan S, Hussain K, Zia-ul-Hussain S (2010) Comparative study on two commercial strains of Saccharomyces cerevisiae for optimum ethanol production on industrial scale. J Biomed Bioechnol 1–5

    Article  CAS  Google Scholar 

  26. Lee YY, Iyer P, Torget RW (1999) Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng Biotechnol 65:93–115

    CAS  Google Scholar 

  27. Belkacemi K, Turcotte G, De Halleux D, Savoie P (1997) Ethanol production from AFEX-treated forages and agricultural residues. Making a business from biomass in energy, environment, chemicals, fibres and materials. In: Proceedings of the 3rd biomass conference of the Americas, Monteral, pp 1117–1130

    Google Scholar 

  28. Rocha MVP, Rodrigues TH, de Macedo GR, Goncalves LR (2009) Enzymatic hydrolysis and fermentation of pretreated cashew apple bagasse with alkali and diluted sulfuric acid for bioethanol production. Appl Biochem Biotechnol 155:407–417

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, Sharma-Shivappa RR, Chen C (2007) Ensiling agricultural residues for bioethanol production. Appl Biochem Biotechnol 143:80–92

    Article  CAS  PubMed  Google Scholar 

  30. Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, woody substrate for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour Technol 100:1214–1220

    Article  CAS  PubMed  Google Scholar 

  31. Kuhad RC, Gupta R, Khasa YP, Singh A (2010) Bioethanol production from Lantana camera (red sage): pretreatment, saccharification and fermentation. Bioresour Technol 101:8348–8354

    Article  CAS  PubMed  Google Scholar 

  32. Jayusa Nurhayatia, Mayzuhroha A, Arindhania S, Caroenchaic C (2016) Studies on bioethanol production of commercial baker’s and alcohol yeast under aerated culture using sugarcane molasses as the media. Agricult Sci Procedia 9:493–499

    Article  Google Scholar 

  33. Mussatto SI, Dragone G, Guimaraes PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market and challenges of bio-ethanol production-R1. Biotechnol Adv 28:817–830

    Article  CAS  PubMed  Google Scholar 

  34. Basilio ACM, Araujo PRL, Morais JOF, da Silva Filho EA, de Morais Jr MA, Simoes DA (2008) Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Cur Microbiol 56(4):322–326

    Article  CAS  Google Scholar 

  35. Pesta G, Meyer-Pittroff R, Russ W (2006) Utilization of whey. In: Oreopoulou V, Russ W (eds) Utilization of byproducts and treatment of waste in the food industry, vol 1. Springer, New York, pp 1–11

    Google Scholar 

  36. Zhao XQ, Zi LH, Bai FW, Lin HL, Hao XM, Yue GJ, Ho NWY (2011) Bioethanol from lignocellulosic biomass. Adv Biochem Eng/Biotechnol 128:25–51

    Google Scholar 

  37. Lynd LR, Weimer PJ, van zyl WH WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology and microbiology. Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  38. Wu KJ, Saratale GD, Lo YC, Chen SD, Chen WM, Tseng ZJ, Chang JS (2008) Fermentative production of 2, 3 butanediol, ethanol and hydrogen with Klebsiella sp. isolated from sewage sludge. Bioresour Technol 99:7966–7970

    Article  CAS  PubMed  Google Scholar 

  39. Demain AL, Newcomb M, Wu JH (2005) Cellulase, clostridia and ethanol. Microbiol Mol Biol Rev 69:124–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Senthilkumar V, Gunasekaran P (2005) Bioethanol production from cellulosic substrates: engineered bacteria and process integration challenges. J Sci Ind Res 64:845–853

    CAS  Google Scholar 

  41. Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39

    Article  Google Scholar 

  42. Mosier NS, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch MR (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  43. Kuhad RC, Gupta R, Khasa YP, Singh A (2011) Bioconversion of pentose sugars to ethanol: current and future prospects. Renew Sustain Energy Rev 15:4950–4962

    Article  CAS  Google Scholar 

  44. Chen Y (2011) Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review. J Ind Microbiol Biotechnol 38:581–597

    Article  CAS  PubMed  Google Scholar 

  45. Du Preez JC, Bosch M, Prior BA (1986) The fermentation of hexose and pentose sugars by Candida shehatae and Pichia stipitis. Appl Microbiol Biotechnol 23:228–233

    Article  Google Scholar 

  46. Bhattacharya A, Ganguly A, Das S, Chatterjee PK, Dey A (2013) Fungal isolates from local environment: isolation, screening and application for the production of ethanol from water hyacinth. Int J Emerg Tech Adv Engi 3(3):58–65

    Google Scholar 

  47. Kumari N, Bhattacharya A, Dey A, Ganguly A, Chatterjee PK (2014) Bioethanol production from water hyacinth biomass using isolated fungal strain from local environment. Biolife 2(2):516–522

    Google Scholar 

  48. Chaillou S, Pouwels PH, Postma PW (1999) Transport of D-xylose in Lactobacillus pentosus, Lactobacillus casei and Lactobacillus plantarum: Evidence for a mechanism of facilitated diffusion via the phosphoenolpyruvate: mannose phosphotransferase system. J Bacteriol 181:4768–4773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Millati R, Edebo L, Taherzadeh MJ (2005) Performance of Rhizopus, Rhizomucor and Mucor in ethanol production from glucose, xylose and wood hydrolysates. Enz Microb Technol 36:294–300

    Article  CAS  Google Scholar 

  50. Ruiz E, Romero I, Moya M, Sanchez S, Bravo V, Castro E (2007) Sugar fermentation by Fusarium oxysporum to produce ethanol. World J Microbiol Biotechnol 23:259–267

    Article  CAS  Google Scholar 

  51. Agbobo FK, Coward-Kelly G, Torry-Smith M, Wenger K, Jeffries TW (2007) The effect of initial cell concentration on xylose fermentation by Pichia stipitis. Appl Biochem Biotechnol 137–140(1–12):653–662

    Google Scholar 

  52. Taherzadeh MJ, Fox M, Hjorth H, Edebo L (2003) Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae. Bioresour Technol 88(3):167–177

    Article  CAS  PubMed  Google Scholar 

  53. Ferreira JA, Lennartsson PR, Niklasson C, Lundin M, Edebo L, Taherzadeh MJ (2012) Spent sulphite liquor for cultivation of an edible Rhizopus sp. BioResources 7(1):173–188

    CAS  Google Scholar 

  54. Wikandari R, Millati R, Lennartsson PR, Harmayani E, Taherzadeh MJ (2012) Isolation and characterization of zygomycetes fungi from tempe for ethanol production and biomass applications. Appl Biochem Biotechnol 167(6):1501–1512

    Article  CAS  PubMed  Google Scholar 

  55. Singh A, Bishnoi NR (2012) Optimization of ethanol production from microwave alkali pretreated rice straw using statistical experimental designs by Saccharomyces cerevisiae. Ind Crop Prod 37:334–341

    Article  CAS  Google Scholar 

  56. Bhattacharya A, Kumar P (2010) Water hyacinth as a potential biofuel crop. Electron J Environ Agricult Food Chem 9:112–122

    CAS  Google Scholar 

  57. Nigam JN (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J Biotechnol 97:107–116

    Article  CAS  PubMed  Google Scholar 

  58. Ganguly A, Das S, Bhattacharya A, Dey A, Chatterjee PK (2013) Enzymatic hydrolysis of water hyacinth biomass for the production of ethanol: optimization of driving parameters. Indian J Exp Bio 51(7):556–566

    CAS  Google Scholar 

  59. Sornvoraweat B, Kongkiattikajorn J (2010) Separated hydrolysis and fermentation of water hyacinth leaves for ethanol production. Khon Kaen University Research Journal 15:794–802

    Google Scholar 

  60. Mahmood T, Malik SA, Hussain ST (2010) Biosorption and recovery of heavy metals from aqueous solutions by Eichhornia crassipes (water hyacinth) ash. BioResources 5:1244–1256

    CAS  Google Scholar 

  61. Ahn DJ, Kim SK, Yun HS (2012) Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae. Bioproc Biosys Eng 35(1–2):35–41

    Article  CAS  Google Scholar 

  62. Aswathy US, Rajeev K, Sukumaran G, Lalitha Devi KP, Rajasree R, Singhania R, Pandey A (2010) Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy. Bioresour Technol 101(3):925–930

    Article  CAS  PubMed  Google Scholar 

  63. Ma F, Yang N, Xu C, Yu H, Wu J, Zhang X (2010) Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour Technol 101(24):9600–9604

    Article  CAS  PubMed  Google Scholar 

  64. Satyanagalakshmi K, Sindhu R, Binod P, Janu KU, Sukumaran RK, Pandey A (2011) Bioethanol production from acid pretreated water hyacinth by separate hydrolysis and fermentation. J Sci Ind Res 70:156–161

    CAS  Google Scholar 

  65. Kasthuri T, Gowdhaman D, Ponnusami V (2012) Production of ethanol from water hyacinth (Eichhornia crassipes) by Zymomonas mobilis CP4: optimization studies. Asian J Sci Res 5:285–289

    Article  CAS  Google Scholar 

  66. Takagi T, Uchida M, Matsushima R, Ishida M, Urano N (2012) Efficient bioethanol production from water hyacinth Eichhornia crassipes by both preparation of the saccharified solution and selection of fermenting yeasts. Fisheries Sci 78(4):905–910

    Article  CAS  Google Scholar 

  67. Idreesa M, Adnana A, Sheikhb S, Qureshi FA (2013) Optimization of dilute acid pretreatment of water hyacinth biomass for enzymatic hydrolysis and ethanol production. EXCLI J 12:30–40

    Google Scholar 

  68. Singh A, Bishnoi NR (2013) Comparative study of various pretreatment techniques for ethanol production from water hyacinth. Ind Crops Prod 44:283–289

    Article  CAS  Google Scholar 

  69. Caparanga AR and Bathan RS (2013) Bioconversion of water hyacinth (Eichhornia crassipes) at its optimum age into bioethanol via separate hydrolysis and fermentation with continuous overliming. Annual International congress on energy, San Francisco, CA Nov 3–8, No. 342407

    Google Scholar 

  70. Pothiraj C, Arumugam R, Gobinath M (2014) Sustaining ethanol production from lime pretreated water hyacinth biomass using mono and co-cultures of isolated fungal strains with Pichia stipites. Bioresour Bioproc 1:27

    Article  Google Scholar 

  71. Manivannan A, Narendhirakannan RT (2015) Bioethanol production from aquatic weed water hyacinth (Eichhornia crassipes) by yeast fermentation. Waste Biomass Valor 6:209–216

    Article  CAS  Google Scholar 

  72. Das S, Bhattacharya A, Haldar S, Ganguly A, Glu S, Ting YP, Chatterjee PK (2015) Optimization of enzymatic saccharification of water hyacinth biomass for bioethanol: comparison between artificial neural network and RSM. Sustain mater Technol 3:17–28

    Google Scholar 

  73. Das A, Ghosh P, Paul T, Ghosh U, Pati BR, Mondal KC (2016) Production of bioethanol as useful biofuel through the bioconversion of water hyacinth (Eichhornia crassipes). 3Biotech 6:70

    Google Scholar 

  74. Zhang Q, Weng C, Huang H, Achal V, Wang D (2016) Optimization of bioethanol production using whole plant of water hyacinth as substrate in simultaneous saccharification and fermentation process. Front Microbiol 6:1411

    PubMed  PubMed Central  Google Scholar 

  75. Lopes ML, de Lima Paulillo SC, Godoy A, Cherubin RA, Lorenzi MS, Giometti FHC, Bernardino CD, de Amorim Neto HB, de Amorim HV (2016) Ethanol production in Brazil: a bridge between science and industry. Brazil J Microbiol 47S:64–76

    Article  CAS  Google Scholar 

  76. Dogan A, Demirci S, Aytekin AO, Sahin F (2014) Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Appl Biochem Biotechnol 174(1):28–42

    Article  CAS  PubMed  Google Scholar 

  77. Ge JP, Zhang LY, Ping WX, Zhang MY, Shen Y, Song G (2014) Genetically engineered Saccharomyces cerevisiae strain that can utilize both xylose and glucose for fermentation. Appl Mechan Mat 448–453:1637–1643

    Google Scholar 

  78. Goyal G, Tsai SL, Madan B, DaSilva NA, Chen W (2011) Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Factor 10:89

    Article  CAS  Google Scholar 

  79. Ha SJ, Galazka JM, Kim SR et al (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA 108(2):504–509

    Article  CAS  PubMed  Google Scholar 

  80. Oreb M, Dietz H, Farwick A, Boles E (2012) Novel strategies to im-prove co-fermentation of pentoses with d-glucose by re-combinant yeast strains in lignocellulosic hydrolysates. Bio-engineered 3(6):347–351

    Google Scholar 

  81. Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol 56(2):174–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kricka W, Fitzpatrick J, Bond U (2014) Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective. Front Microbiol 5:174

    Article  PubMed  PubMed Central  Google Scholar 

  83. Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JHD (2010) Cellodextrin transport in yeast for improved biofuel production. Science 330(6000):84–86

    Article  CAS  PubMed  Google Scholar 

  84. Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79(3):339–354

    Article  CAS  PubMed  Google Scholar 

  85. Yanase S, Hasunuma T, Yamada R et al (2010) Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88(1):381–388

    Article  CAS  PubMed  Google Scholar 

  86. Dien BS, Iten LB, Bothast RJ (1999) Conversion of corn fiber to ethanol by recombinant E. coli strain FBR3. J Ind Microbiol Bio-technol 22(6):575–581

    Article  CAS  Google Scholar 

  87. Deanda K, Zhang M, Eddy C, Picataggio S (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62(12):4465–4470

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sarris D, Papanikolaou S (2016) Biotechnological production of ethanol: biochemistry, processes and technologies. Eng Life Sci 16(4):307–329

    Article  CAS  Google Scholar 

  89. Weber C, Farwick A, Benisch F et al (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87(4):1303–1315

    Article  CAS  PubMed  Google Scholar 

  90. Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J. https://doi.org/10.1155/2014/298153

    Article  Google Scholar 

  91. Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101:4980–4991

    Article  CAS  PubMed  Google Scholar 

  92. Aden A, Foust T (2009) Techno-economic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16:535–545

    Article  CAS  Google Scholar 

  93. Sassner P, Galbe M, Zacchi G (2008) Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioener 32:422–430

    Article  CAS  Google Scholar 

  94. Humbird D, Aden A (2009) Biochemical production of ethanol from corn stover: 2008 State of Technology Model National Renewable Energy Laboratory (NREL) 2009. NREL Report TP-510–46214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuja Sharma .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Aggarwal, N.K. (2020). Bioethanol Production from Water Hyacinth. In: Water Hyacinth: A Potential Lignocellulosic Biomass for Bioethanol. Springer, Cham. https://doi.org/10.1007/978-3-030-35632-3_7

Download citation

Publish with us

Policies and ethics