Skip to main content
Log in

Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Alkaline–oxidative (A/O) pretreatment and enzymatic saccharification were optimized for bioethanol fermentation from water hyacinth by Saccharomyces cerevisiae. Water hyacinth was subjected to A/O pretreatment at various NaOH and H2O2 concentrations and reaction temperatures for the optimization of bioethanol fermentation by S. cerevisiae. The most effective condition for A/O pretreatment was 7% (w/v) NaOH at 100 °C and 2% (w/v) H2O2. The carbohydrate content was analyzed after reaction at various enzyme concentrations and enzyme ratios using Celluclast 1.5 L and Viscozyme L to determine the effective conditions for enzymatic saccharification. After ethanol fermentation using S. cerevisiae KCTC 7928, the concentration of glucose, ethanol and glycerol was analyzed by HPLC using a RI detector. The yield of ethanol in batch fermentation was 0.35 g ethanol/g biomass. Continuous fermentation was carried out at a dilution rate of 0.11 (per h) and the ethanol productivity was 0.77 [g/(l h)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46

    Article  CAS  Google Scholar 

  2. Mete Altintas M, Ulgen KO, Kirdar B, Ilsen Onsan Z, Oliver SG (2002) Improvement of ethanol production from starch by recombinant yeast through manipulation of environmental factors. Enzyme Microb Technol 31(5):640–647

    Article  CAS  Google Scholar 

  3. Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251(4999):1318–1323

    Article  CAS  Google Scholar 

  4. Ingram L, Aldrich H, Borges A, Causey T, Martinez A, Morales F, Saleh A, Underwood S, Yomano L, York S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15(5):855–866

    Article  CAS  Google Scholar 

  5. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg 25(4):335–361

    Article  Google Scholar 

  6. van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek 90(4):391–418

    Article  CAS  Google Scholar 

  7. Gunnarsson CC, Petersen CM (2007) Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manage 27(1):117–129

    Article  Google Scholar 

  8. Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int 33(1):122–138

    Article  CAS  Google Scholar 

  9. Chen X, Wan X, Weng B, Huang Q (2010) Water hyacinth (Eichhornia crassipes) waste as an adsorbent for phosphorus removal from swine wastewater. Bioresour Technol 101(23):9025–9030

    Article  CAS  Google Scholar 

  10. Munavalli G, Saler P (2009) Treatment of dairy wastewater by water hyacinth. Water Sci Technol 59(4):713–722

    Article  CAS  Google Scholar 

  11. Vaidyanathan S, Kavadia K, Shroff K, Mahajan S (1985) Biogas production in batch and semicontinuous digesters using water hyacinth. Biotechnol Bioeng 27(6):905–908

    Article  CAS  Google Scholar 

  12. Tantimongcolwat T, Kongpanpee T, Prabkate P, Prachayasittikul V (2007) Appropriate technology for the bioconversion of water hyacinth (Eichhornia crassipes) to liquid ethanol: future prospects for community strengthening and sustainable development. EXCLI J 6:167–176

    Google Scholar 

  13. http://www.nrel.gov/biomass/

  14. Selig MJ, Vinzant TB, Himmel ME, Decker SR (2009) The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl Biochem Biotechnol 155(1):94–103

    Article  Google Scholar 

  15. Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194

    Article  CAS  Google Scholar 

  16. Girisuta B, Danon B, Manurung R, Janssen L, Heeres H (2008) Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresour Technol 99(17):8367–8375

    Article  CAS  Google Scholar 

  17. Mishima D, Tateda M, Ike M, Fujita M (2006) Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes. Bioresour Technol 97(16):2166–2172

    Article  CAS  Google Scholar 

  18. Cheng KK, Zhang JA, Ping WX, Ge JP, Zhou YJ, Ling HZ, Xu JM (2008) Sugarcane bagasse mild alkaline/oxidative pretreatment for ethanol production by alkaline recycle process. Appl Biochem Biotechnol 151(1):43–50

    Article  CAS  Google Scholar 

  19. Gould JM (1985) Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotechnol Bioeng 27(3):225–231

    Article  CAS  Google Scholar 

  20. http://www.novozymes.com/

  21. Sukumaran RK, Singhania RR, Mathew GM, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34(2):421–424

    Article  CAS  Google Scholar 

  22. Kumar A, Singh L, Ghosh S (2009) Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresour Technol 100(13):3293–3297

    Article  CAS  Google Scholar 

  23. Mishima D, Kuniki M, Sei K, Soda S, Ike M, Fujita M (2008) Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresour Technol 99(7):2495–2500

    Article  CAS  Google Scholar 

  24. Abraham M, Kurup GM (1996) Bioconversion of tapioca (Manihot esculenta) waste and water hyacinth (Eichhornia crassipes)—influence of various physico-chemical factors. J Ferment Bioeng 82(3):259–263

    Article  CAS  Google Scholar 

  25. Nigam J (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J Biotechnol 97(2):107–116

    Article  CAS  Google Scholar 

  26. Eklund R, Zacchi G (1995) Simultaneous saccharification and fermentation of steam-pretreated willow. Enzyme Microb Technol 17(3):255–259

    Article  CAS  Google Scholar 

  27. Martin C, Galbe M, Wahlbom CF, Hahn-Hagerdal B, Jonsson LJ (2002) Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 31(3):274–282

    Article  CAS  Google Scholar 

  28. Brumm P, Hebeda R (1988) Glycerol production in industrial alcohol fermentations. Biotechnol Lett 10(9):677–682

    Article  CAS  Google Scholar 

  29. Guo Z, Zhang L, Ding Z, Wang ZX, Shi GY (2009) Interruption of glycerol pathway in industrial alcoholic yeasts to improve the ethanol production. Appl Microbiol Biotechnol 82(2):287–292

    Article  CAS  Google Scholar 

  30. Poddar K, Mandal L, Banerjee GC (1991) Studies on water hyacinth (Eichhornia crassipes)—chemical composition of the plant and water from different habitats. Indian Vet J 68(9):833–837

    Google Scholar 

  31. Abdelhamid AM, Gabr AA (1991) Evaluation of water hyacinth as feed for reminants. Arch Anim Nutr 41(7/8):745–756

    Google Scholar 

  32. Chanakya HN, Borgaonkar S, Meena G, Jagadish KS (1996) Solidphase biogas production with garbage or water hyacinth. Bioresour Technol 46(3):227–231

    Article  Google Scholar 

  33. Mukherjee R, Nandi B (2004) Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two Pleurotus species. Int Biodeterior Biodegrad 53(1):7–12

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Inha University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Shik Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, D.J., Kim, S.K. & Yun, H.S. Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae . Bioprocess Biosyst Eng 35, 35–41 (2012). https://doi.org/10.1007/s00449-011-0600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0600-5

Keywords

Navigation