Skip to main content
Log in

Ensiling Agricultural Residues for Bioethanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The potential of using ensiling, with and without supplemental enzymes, as a cost-effective pretreatment for bioethanol production from agricultural residues was investigated. Ensiling did not significantly affect the lignin content of barley straw, cotton stalk, and triticale hay ensiled without enzyme, but slightly increased the lignin content in triticale straw, wheat straw, and triticale hay ensiled with enzyme. The holocellulose (cellulose plus hemicellulose) losses in the feedstocks, as a result of ensiling, ranged from 1.31 to 9.93%. The percent holocellulose loss in hays during ensiling was lower than in straws and stalks. Ensiling of barley, triticale, wheat straws, and cotton stalk significantly increased the conversion of holocellulose to sugars during subsequent hydrolysis with two enzyme combinations. Enzymatic hydrolysis of ensiled and untreated feedstocks by Celluclast 1.5 L-Novozyme 188 enzyme combination resulted in equal or higher saccharification than with Spezyme® CP–xylanase combination. Enzyme loadings of 40 and 60 FPU/g reducing sugars gave similar sugar yields. The percent saccharification with Celluclast 1.5 L-Novozyme 188 at 40 FPU/g reducing sugars was 17.1 to 43.6%, 22.4 to 46.9%, and 23.2 to 32.2% for untreated feedstocks, feedstocks ensiled with, and without enzymes, respectively. Fermentation of the hydrolysates from ensiled feedstocks resulted in ethanol yields ranging from 0.21 to 0.28 g/g reducing sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. National Energy Policy (2001), Reliable, Affordable, and Environmentally Sound Energy for America’s Future. National-Energy-Policy.pdf, accessed July 12 2006, http://www.whitehouse.gov/energy/.

  2. Li, Y., Ruan, R. R., Chen, P., & Ma, H. (2001). In Proceedings of the ASAE Annual International Meeting (Paper number 01-6155); Sacramento, CA.

  3. Schell, D. J., Farmer, J., Newman, M., & Mcmillan, J. D. (2003). Applied Biochemistry and Biotechnology, 105, 69–86.

    Article  Google Scholar 

  4. Chang, V., & Holtzapple, M. (2000). Applied Biochemistry and Biotechnology, 84–86, 5–37.

    Article  Google Scholar 

  5. Lynd, L. R. (1996). Annual Review of Energy and the Environment, 21, 403–465.

    Article  Google Scholar 

  6. Wyman, C. E. (1999). Annual Review of Energy and the Environment, 24, 189–226.

    Article  Google Scholar 

  7. Lynd, L. R., Elander, R. T., & Wyman, C. E. (1996). Applied Biochemistry and Biotechnology, 57/58, 741–761.

    Article  CAS  Google Scholar 

  8. Keller, F. A., Hamilton, J. E., & Nguyen, Q. A. (2003). Applied Biochemistry and Biotechnology, 105, 27–41.

    Article  Google Scholar 

  9. Bjerre, A. B., Olessen, A. B., Fernqvist, T., Ploger, A., & Schmidt, A. S. (1996). Biotechnology and Bioengineering, 49, 568–577.

    Article  CAS  Google Scholar 

  10. Oliva, J. M., Negro, M. J., Saez, F., Ballesteros, I., Manzanares, P., Gonzalez, A., & Ballesteros, M. (2006). Process Biochemistry, 41(5), 1223–1228.

    Article  CAS  Google Scholar 

  11. Weinberg, Z. G., & Ashbell, G. (2003). Biochemical Engineering Journal, 13(2–3), 181–188.

    Article  Google Scholar 

  12. Thompson, D. N., Barnes, J. M., & Houghton, T. P. (2005). Applied Biochemistry and Biotechnology, 121–124, 21–46.

    Article  Google Scholar 

  13. Linden, J. C., Henk, L. L., Simith, D. H., Gabrielsen, B. C., Tengerdy, R. P., & Czako, L. (1987). Biotechnology and Bioengineering, 30, 860–867.

    Article  CAS  Google Scholar 

  14. Linden, J. C., Moreira, A. R., Smith, D. H., Hedrick, W. S., & Villet, R. H. (1980). Biotechnology and Bioengineering Symposium, 22, 199–212.

    Google Scholar 

  15. Singh, K., Honig, H., Wermke, M., & Zimmer, E. (1996). Animal Feed Science and Technology, 61, 137–153.

    Article  Google Scholar 

  16. ASAE Standards (2001). ASAE S269.4 DEC01—ASAE Power and Machinery Division, St. Joseph, MI, US.

  17. Henk, L. L., & Linden, J. C. (1992). Enzyme and Microbial Technology, 14, 923–930.

    Article  CAS  Google Scholar 

  18. Chen, Y., Sharma-Shivappa, R. R., Keshwani, D., & Chen, C. C. (2007). Applied Biochemistry and Biotechnology, (In press).

  19. Bakken, L. R., & Olsen, R. A. (1983). Applied and Environmental Microbiology, 45(4), 1188–1195.

    Google Scholar 

  20. Palmarola-Adrados, B., Choteborska, P., Galbe, M., & Zacchi, G. (2005). Bioresource Technology, 96, 843–850.

    Article  CAS  Google Scholar 

  21. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2004a). Determination of total solids in biomass. Biomass analysis technology team laboratory analytical procedures. Golden, CO: National Renewable Research Laboratory.

    Google Scholar 

  22. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2004b). Determination of ash in biomass. Biomass analysis technology team laboratory analytical procedures. Golden, CO: National Renewable Research Laboratory.

    Google Scholar 

  23. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2004c). Determination of structural carbohydrates and lignin in biomass. Biomass analysis technology team laboratory analytical procedures. Golden, CO: National Renewable Research Laboratory.

    Google Scholar 

  24. Han, J., & Rowell, J. (1997), Chemical composition of fibers. In R. Rowell, R. Young, & J. Rowell (Eds.), Paper composites from agro-based resources (pp. 83–134). New York: CRC Lewis Publisher.

    Google Scholar 

  25. Chaplin, M. F., & Kennedy, J. F. (1994). In Carbohydrate analysis: A practical approach. Oxford, UK: ILR Press.

  26. Chinn, M. S., Nokes, S. E., & Strobel, H. J. (2006). Biotechnology Progress, 22(1), 53–59.

    Article  CAS  Google Scholar 

  27. Huang, Y., Stankiewicz, B. A., Eglinton, G., Snape, C. E., Evans, B., Latter, P. M., et al. (1998). Soil Biology & Biochemistry, 30, 1517–1528.

    Article  CAS  Google Scholar 

  28. Arroquy, J. I., Cochran, R. C., Nagaraja, T. G., Titgemeyer, E. C., & Johnson, D. E. (2005). Animal Feed Science and Technology, 120(1–2), 93–106.

    Article  CAS  Google Scholar 

  29. Ohmomo, S., Tanaka, O., Kitamoto, H. K., & Cai, Y. (2002). Japan Agricultural Research Quarterly, 36(2), 59–71.

    Google Scholar 

  30. Roberts, C. A. (1995). In K. J. Moore, & M. A. Peterson (Eds.), Post-harvest physiology and preservation of forages (pp. 21–38). Madison, WI: CSSA-ASA.

  31. Pahlow, G., Muck, R. E., Driehus, F., Oude Elferink, S. J. W. H., & Spoelstra, S. F. (2003). In D. R. Buxton, R. E. Muck, & J. H. Harrison (Eds.), Silage science and technology (pp. 250–304). Madison, WI: ASA-CSSA-SSSA.

  32. Jung, H. G., Buxton, D. R., Hatfield, R. D., & Ralph, J. (1993). In Proceedings of the international symposium on forage cell wall structure and digestibility. Madison, WI: American Society of Agronomy, Inc.

  33. Richard, T. L., Proulx, S., Moore, K. J., & Shouse, S. (2001). In Proceedings of the ASAE annual international meeting (Paper number 01-6019). Sacramento, CA.

  34. Agblevor, F. A., Evans, R. J., & Johnson, K. D. (1994). Journal of Analytical and Applied Pyrolysis, 30, 125–144.

    Article  CAS  Google Scholar 

  35. Agblevor, F. A., Batz, S., & Trumbo, J. (2003). Applied Biochemistry and Biotechnology, 105–108, 219–230.

    Article  Google Scholar 

  36. Dittmar, T., & Lara, R. J. (2001). Geochimica et Cosmochimica Acta, 65, 1417–1428.

    Article  CAS  Google Scholar 

  37. Linden, J. C., Henk, L. L., Murphy, V. G., Smith, D. H., Gabrielsen, B. C., Tengerdy, R. P., et al. (1987). Biotechnology and Bioengineering, 30, 860–867.

    Article  CAS  Google Scholar 

  38. Yang, X., Chen, H., Gao, H., & Li, Z. (2000). Bioresource Technology, 78, 277–280.

    Article  Google Scholar 

  39. Anderson, J. W., & Beardall, J. (1991). In Molecular activities of plant cells (pp. 275–283). Oxford, UK: Blackwell Scientific Publications.

  40. Béguin, P., & Aubert, J.-P. (1994). FEMS Microbiology Reviews, 13, 25–58.

    Article  Google Scholar 

  41. Tengborg, C., Galbe, M., & Zacchi, G. (2001). Biotechnology Progress, 17, 110–117.

    Article  CAS  Google Scholar 

  42. Duarte, L. C., Carvalheiro, F., Lopes, S., Marques, S., Parajo, J. C., & Girio, F. M. (2004). Applied Biochemistry and Biotechnology, 113–116, 1041–1058.

    Article  Google Scholar 

  43. Saddler, J. N., Yu, E. K. C., Mes-Hartree, M., Levitin, N., & Brownell, H. H. (1983). Applied and Environmental Microbiology, 45(1), 153–160.

    CAS  Google Scholar 

  44. Gosakov, A. V., Sinitsyn, A. P., & Klyosov, A. A. (1986). Biotechnology and Bioengineering, 29, 906–910.

    Article  Google Scholar 

  45. Lloyd, T. A., & Wyman, C. E. (2005). Bioresource Technology, 96, 1967–1977.

    Article  CAS  Google Scholar 

  46. Spindler, D., Wyman, C., & Grohmann, K. (1990). Applied Biochemistry and Biotechnology, 24/25, 275–286.

    Google Scholar 

  47. Spindler, D. D., Wyman, C. E., Grohmann, K., & Mohagheghi, A. (1989). Applied Biochemistry and Biotechnology, 20/21, 529–540.

    Google Scholar 

  48. Lima, K. G. D., Takahashi, C. M., & Alterthum, F. (2002). Journal of Industrial Microbiology & Biotechnology, 29, 124–128.

    Article  CAS  Google Scholar 

  49. Saha, B. C., & Cotta, M. A. (2006). Biotechnology Progress, 22(2), 449–453.

    Article  CAS  Google Scholar 

  50. Boyle, M., Barron, N., & McHale, A. P. (1997). Biotechnology Letters, 19(1), 49–51.

    Article  CAS  Google Scholar 

  51. Belkacemi, K., Turcotte, G., de Halleux, D., & Savoie, P. (1998). Applied Biochemistry and Biotechnology, 70–72, 441–462.

    Article  Google Scholar 

  52. Claassen, P. A. M., van Lier, J. B., Contreras, A. M. L., van Niel, E. W. J., Sijtsma, L., Stams, A. J. M., et al. (1999). Applied Microbiology and Biotechnology, 52(6), 741–755.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Funding for this study was provided by the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratna R. Sharma-Shivappa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Sharma-Shivappa, R.R. & Chen, C. Ensiling Agricultural Residues for Bioethanol Production. Appl Biochem Biotechnol 143, 80–92 (2007). https://doi.org/10.1007/s12010-007-0030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-0030-7

Keywords

Navigation