Skip to main content

Genetic Diversity of the Apoptotic Pathway in Insects

  • Chapter
  • First Online:
Evolution, Origin of Life, Concepts and Methods

Abstract

Programmed cell death is an intrinsic part of normal development, physiology and organismal homeostasis. Apoptosis is a widespread form of regulated cell death, controlled by a genetically encoded machinery conserved throughout evolution. In the highly diverse group of insects, apoptotic pathways have been characterized in only a few dipteran and lepidopteran species, where they have been shown to be essential for development, metamorphosis and immunity-related processes. The lack of studies in other insect orders clearly limits our understanding of the role of apoptosis in the life history of insects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelwahid E, Yokokura T, Krieser RJ, Balasundaram S, Fowle WH, White K (2007) Mitochondrial disruption in Drosophila apoptosis. Dev Cell 12(5):793–806

    Article  CAS  PubMed  Google Scholar 

  • Accorsi A, Zibaee A, Malagoli D (2015) The multifaceted activity of insect caspases. J Insect Physiol 76:17–23

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Srinivasula SM, Wang L, Litwack G, Fernandes-Alnemri T, Alnemri ES (1997) Spodoptera frugiperda caspase-1, a novel insect death protease that cleaves the nuclear immunophilin FKBP46, is the target of the baculovirus antiapoptotic protein p35. J Biol Chem 272(3):1421–1424

    Article  CAS  PubMed  Google Scholar 

  • Arama E, Agapite J, Steller H (2003) Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell 4(5):687–697

    Article  CAS  PubMed  Google Scholar 

  • Bartholomay LC, Cho WL, Rocheleau TA, Boyle JP, Beck ET, Fuchs JF, Liss P, Rusch M, Butler KM, Wu RC, Lin SP, Kuo HY, Tsao IY, Huang CY, Liu TT, Hsiao KJ, Tsai SF, Yang UC, Nappi AJ, Perna NT, Chen CC, Christensen BM (2004) Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus. Infect Immun 72(7):4114–4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baum JS, Arama E, Steller H, McCall K (2007) The Drosophila caspases Strica and Dronc function redundantly in programmed cell death during oogenesis. Cell Death Differ 14(8):1508–1517

    Article  CAS  PubMed  Google Scholar 

  • Beck ET, Blair CD, Black WC, Beaty BJ, Blitvich BJ (2007) Alternative splicing generates multiple transcripts of the inhibitor of apoptosis protein 1 in Aedes and Culex spp. mosquitoes. Insect Biochem Mol Biol 37(11):1222–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedict MA, Hu Y, Inohara N, Nunez G (2000) Expression and functional analysis of Apaf-1 isoforms. Extra Wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9. J Biol Chem 275(12):8461–8468

    Article  CAS  PubMed  Google Scholar 

  • Berthelet J, Dubrez L (2013) Regulation of apoptosis by Inhibitors of Apoptosis (IAPs). Cells 2(1):163–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blitvich BJ, Blair CD, Kempf BJ, Hughes MT, Black WC, Mackie RS, Meredith CT, Beaty BJ, Rayms-Keller A (2002) Developmental- and tissue-specific expression of an inhibitor of apoptosis protein 1 homologue from Aedes triseriatus mosquitoes. Insect Mol Biol 11(5):431–442

    Article  CAS  PubMed  Google Scholar 

  • Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM (2000) Drosophila p53 binds a damage response element at the reaper locus. Cell 101(1):103–113

    Article  CAS  PubMed  Google Scholar 

  • Bryant B, Blair CD, Olson KE, Clem RJ (2008) Annotation and expression profiling of apoptosis-related genes in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 38(3):331–345

    CAS  PubMed  Google Scholar 

  • Bryant B, Zhang Y, Zhang C, Santos CP, Clem RJ, Zhou L (2009) A lepidopteran orthologue of reaper reveals functional conservation and evolution of IAP antagonists. Insect Mol Biol 18(3):341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant B, Ungerer MC, Liu Q, Waterhouse RM, Clem RJ (2010) A caspase-like decoy molecule enhances the activity of a paralogous caspase in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 40(7):516–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budhidarmo R, Day CL (2015) IAPs: modular regulators of cell signalling. Semin Cell Dev Biol 39:80–90

    Article  CAS  PubMed  Google Scholar 

  • Chai J, Yan N, Huh JR, Wu JW, Li W, Hay BA, Shi Y (2003) Molecular mechanism of Reaper-Grim-Hid-mediated suppression of DIAP1-dependent Dronc ubiquitination. Nat Struct Biol 10(11):892–898

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Nordstrom W, Gish B, Abrams JM (1996) grim, a novel cell death gene in Drosophila. Genes Dev 10(14):1773–1782

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Rodriguez A, Erskine R, Thach T, Abrams JM (1998) Dredd, a novel effector of the apoptosis activators reaper, grim, and hid in Drosophila. Dev Biol 201(2):202–216

    Article  CAS  PubMed  Google Scholar 

  • Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S, Blass C, Brey PT, Collins FH, Danielli A, Dimopoulos G, Hetru C, Hoa NT, Hoffmann JA, Kanzok SM, Letunic I, Levashina EA, Loukeris TG, Lycett G, Meister S, Michel K, Moita LF, Muller HM, Osta MA, Paskewitz SM, Reichhart JM, Rzhetsky A, Troxler L, Vernick KD, Vlachou D, Volz J, von Mering C, Xu J, Zheng L, Bork P, Kafatos FC (2002) Immunity-related genes and gene families in Anopheles gambiae. Science 298(5591):159–165

    Article  CAS  PubMed  Google Scholar 

  • Clavier A, Rincheval-Arnold A, Colin J, Mignotte B, Guenal I (2016) Apoptosis in Drosophila: which role for mitochondria? Apoptosis 21(3):239–251

    Article  CAS  PubMed  Google Scholar 

  • Clem RJ (2005) The role of apoptosis in defense against baculovirus infection in insects. Curr Top Microbiol Immunol 289:113–129

    CAS  PubMed  Google Scholar 

  • Colin J, Garibal J, Clavier A, Szuplewski S, Risler Y, Milet C, Gaumer S, Guenal I, Mignotte B (2015) Screening of suppressors of bax-induced cell death identifies glycerophosphate oxidase-1 as a mediator of debcl-induced apoptosis in Drosophila. Genes Cancer 6(5–6):241–253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colussi PA, Quinn LM, Huang DC, Coombe M, Read SH, Richardson H, Kumar S (2000) Debcl, a proapoptotic Bcl-2 homologue, is a component of the Drosophila melanogaster cell death machinery. J Cell Biol 148(4):703–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper DM, Pio F, Thi EP, Theilmann D, Lowenberger C (2007a) Characterization of Aedes Dredd: a novel initiator caspase from the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 37(6):559–569

    Article  CAS  PubMed  Google Scholar 

  • Cooper DM, Thi EP, Chamberlain CM, Pio F, Lowenberger C (2007b) Aedes Dronc: a novel ecdysone-inducible caspase in the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 16(5):563–572

    CAS  PubMed  Google Scholar 

  • Cooper DM, Chamberlain CM, Lowenberger C (2009a) Aedes FADD: a novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 39(1):47–54

    Article  CAS  PubMed  Google Scholar 

  • Cooper DM, Granville DJ, Lowenberger C (2009b) The insect caspases. Apoptosis 14(3):247–256

    Article  CAS  PubMed  Google Scholar 

  • Courtiade J, Pauchet Y, Vogel H, Heckel DG (2011) A comprehensive characterization of the caspase gene family in insects from the order Lepidoptera. BMC Genom 12:357

    Article  CAS  Google Scholar 

  • Crook NE, Clem RJ, Miller LK (1993) An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 67(4):2168–2174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denton D, Kumar S (2015) Studying apoptosis in Drosophila. Cold Spring Harbor Protoc 2015(7):609–613

    Google Scholar 

  • Denton D, Aung-Htut MT, Kumar S (2013) Developmentally programmed cell death in Drosophila. Biochim Biophys Acta 1833(12):3499–3506

    Article  CAS  PubMed  Google Scholar 

  • Ditzel M, Broemer M, Tenev T, Bolduc C, Lee TV, Rigbolt KT, Elliott R, Zvelebil M, Blagoev B, Bergmann A, Meier P (2008) Inactivation of effector caspases through nondegradative polyubiquitylation. Mol Cell 32(4):540–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domingues C, Ryoo HD (2012) Drosophila BRUCE inhibits apoptosis through non-lysine ubiquitination of the IAP-antagonist REAPER. Cell Death Differ 19(3):470–477

    Article  CAS  PubMed  Google Scholar 

  • Dorstyn L, Kumar S (2008) A biochemical analysis of the activation of the Drosophila caspase DRONC. Cell Death Differ 15(3):461–470

    Article  CAS  PubMed  Google Scholar 

  • Dorstyn L, Colussi PA, Quinn LM, Richardson H, Kumar S (1999a) DRONC, an ecdysone-inducible Drosophila caspase. Proc Natl Acad Sci U S A 96(8):4307–4312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorstyn L, Read SH, Quinn LM, Richardson H, Kumar S (1999b) DECAY, a novel Drosophila caspase related to mammalian caspase-3 and caspase-7. J Biol Chem 274(43):30778–30783

    Article  CAS  PubMed  Google Scholar 

  • Dorstyn L, Mills K, Lazebnik Y, Kumar S (2004) The two cytochrome c species, DC3 and DC4, are not required for caspase activation and apoptosis in Drosophila cells. J Cell Biol 167(3):405–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doumanis J, Quinn L, Richardson H, Kumar S (2001) STRICA, a novel Drosophila melanogaster caspase with an unusual serine/threonine-rich prodomain, interacts with DIAP1 and DIAP2. Cell Death Differ 8(4):387–394

    Article  CAS  PubMed  Google Scholar 

  • Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384(Pt 2):201–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ 25(3):486–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Girard YA, Schneider BS, McGee CE, Wen J, Han VC, Popov V, Mason PW, Higgs S (2007) Salivary gland morphology and virus transmission during long-term cytopathologic West Nile virus infection in Culex mosquitoes. Am J Trop Med Hyg 76(1):118–128

    Article  PubMed  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of the Insects, 755pp. Cambridge University Press, New York, Melbourne

    Google Scholar 

  • Hansen AK, Moran NA (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23(6):1473–1496

    Article  PubMed  Google Scholar 

  • Harvey NL, Daish T, Mills K, Dorstyn L, Quinn LM, Read SH, Richardson H, Kumar S (2001) Characterization of the Drosophila caspase, DAMM. J Biol Chem 276(27):25342–25350

    Article  CAS  PubMed  Google Scholar 

  • Hawkins CJ, Yoo SJ, Peterson EP, Wang SL, Vernooy SY, Hay BA (2000) The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J Biol Chem 275(35):27084–27093

    CAS  PubMed  Google Scholar 

  • Hay BA, Guo M (2006) Caspase-dependent cell death in Drosophila. Annu Rev Cell Dev Biol 22:623–650

    Article  CAS  PubMed  Google Scholar 

  • Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L, DuBois G, Lazebnik Y, Zervos AS, Fernandes-Alnemri T, Alnemri ES (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277(1):432–438

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Yang X (2000) dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD. J Biol Chem 275(40):30761–30764

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Benedict MA, Ding L, Nunez G (1999) Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J 18(13):3586–3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Deveraux QL, Maeda S, Stennicke HR, Hammock BD, Reed JC (2001) Cloning and characterization of an inhibitor of apoptosis protein (IAP) from Bombyx mori. Biochim Biophys Acta 1499(3):191–198

    Article  CAS  PubMed  Google Scholar 

  • Huang N, Civciristov S, Hawkins CJ, Clem RJ (2013) SfDronc, an initiator caspase involved in apoptosis in the fall armyworm Spodoptera frugiperda. Insect Biochem Mol Biol 43(5):444–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang HJ, Bao YY, Lao SH, Huang XH, Ye YZ, Wu JX, Xu HJ, Zhou XP, Zhang CX (2015) Rice ragged stunt virus-induced apoptosis affects virus transmission from its insect vector, the brown planthopper to the rice plant. Sci Rep 5:11413

    Article  PubMed  PubMed Central  Google Scholar 

  • Igaki T, Miura M (2004) Role of Bcl-2 family members in invertebrates. Biochim Biophys Acta 1644(2–3):73–81

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Lamblin AF, Steller H, Thummel CS (2000) A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol Cell 5(3):445–455

    Article  CAS  PubMed  Google Scholar 

  • Jones G, Jones D, Zhou L, Steller H, Chu Y (2000) Deterin, a new inhibitor of apoptosis from Drosophila melanogaster. J Biol Chem 275(29):22157–22165

    Article  CAS  PubMed  Google Scholar 

  • Kale J, Osterlund EJ, Andrews DW (2018) BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 25(1):65–80

    Article  CAS  PubMed  Google Scholar 

  • Kalkavan H, Green DR (2018) MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 25(1):46–55

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick ZE, Cakouros D, Kumar S (2005) Ecdysone-mediated up-regulation of the effector caspase DRICE is required for hormone-dependent apoptosis in Drosophila cells. J Biol Chem 280(12):11981–11986

    Article  CAS  PubMed  Google Scholar 

  • Kornbluth S, White K (2005) Apoptosis in Drosophila: neither fish nor fowl (nor man, nor worm). J Cell Sci 118(Pt 9):1779–1787

    Article  CAS  PubMed  Google Scholar 

  • Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ 14(1):32–43

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Doumanis J (2000) The fly caspases. Cell Death Differ 7(11):1039–1044

    Article  CAS  PubMed  Google Scholar 

  • Kumarswamy R, Seth RK, Dwarakanath BS, Chandna S (2009) Mitochondrial regulation of insect cell apoptosis: evidence for permeability transition pore-independent cytochrome-c release in the Lepidopteran Sf9 cells. Int J Biochem Cell Biol 41(6):1430–1440

    Article  CAS  PubMed  Google Scholar 

  • Kurada P, White K (1998) Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95(3):319–329

    Article  CAS  PubMed  Google Scholar 

  • Kvansakul M, Hinds MG (2015) The Bcl-2 family: structures, interactions and targets for drug discovery. Apoptosis 20(2):136–150

    Article  CAS  PubMed  Google Scholar 

  • Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9(4):358–361

    Article  CAS  PubMed  Google Scholar 

  • Leulier F, Lhocine N, Lemaitre B, Meier P (2006a) The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection. Mol Cell Biol 26(21):7821–7831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leulier F, Ribeiro PS, Palmer E, Tenev T, Takahashi K, Robertson D, Zachariou A, Pichaud F, Ueda R, Meier P (2006b) Systematic in vivo RNAi analysis of putative components of the Drosophila cell death machinery. Cell Death Differ 13(10):1663–1674

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Li H, Blitvich BJ, Zhang J (2007) The Aedes albopictus inhibitor of apoptosis 1 gene protects vertebrate cells from bluetongue virus-induced apoptosis. Insect Mol Biol 16(1):93–105

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Clem RJ (2011) Defining the core apoptosis pathway in the mosquito disease vector Aedes aegypti: the roles of iap1, ark, dronc, and effector caspases. Apoptosis 16(2):105–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Qi Y, Chejanovsky N (2005) Spodoptera littoralis caspase-1, a Lepidopteran effector caspase inducible by apoptotic signaling. Apoptosis 10(4):787–795

    Article  CAS  PubMed  Google Scholar 

  • Lockshin RA, Williams CM (1965) Programmed cell death. V. Cytolytic enzymes in relation to the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 11(7):831–844

    Article  CAS  PubMed  Google Scholar 

  • Malin JZ, Shaham S (2015) Cell death in C. elegans development. Curr Top Dev Biol 114:1–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinander A, Runchel C, Tenev T, Chen L, Kim CH, Ribeiro PS, Broemer M, Leulier F, Zvelebil M, Silverman N, Meier P (2012) Ubiquitylation of the initiator caspase DREDD is required for innate immune signalling. EMBO J 31(12):2770–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes CS, Arama E, Brown S, Scherr H, Srivastava M, Bergmann A, Steller H, Mollereau B (2006) Cytochrome c-d regulates developmental apoptosis in the Drosophila retina. EMBO Rep 7(9):933–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng K, Li X, Wang S, Zhong C, Yang Z, Feng L, Liu Q (2016) The Strica homolog AaCASPS16 is involved in apoptosis in the yellow fever vector, Aedes albopictus. PLoS ONE 11(6):e0157846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu PS, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TK, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346(6210):763–767

    Article  CAS  PubMed  Google Scholar 

  • Miura, M. (2012). Apoptotic and nonapoptotic caspase functions in animal development. Cold Spring Harb Perspect Biol 4(10)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muro I, Berry DL, Huh JR, Chen CH, Huang H, Yoo SJ, Guo M, Baehrecke EH, Hay BA (2006) The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process. Development 133(17):3305–3315

    Article  CAS  PubMed  Google Scholar 

  • Olson MR, Holley CL, Gan EC, Colon-Ramos DA, Kaplan B, Kornbluth S (2003) A GH3-like domain in reaper is required for mitochondrial localization and induction of IAP degradation. J Biol Chem 278(45):44758–44768

    Article  CAS  PubMed  Google Scholar 

  • Opferman JT, Korsmeyer SJ (2003) Apoptosis in the development and maintenance of the immune system. Nat Immunol 4(5):410–415

    Article  CAS  PubMed  Google Scholar 

  • Orme M, Meier P (2009) Inhibitor of apoptosis proteins in Drosophila: gatekeepers of death. Apoptosis 14(8):950–960

    Article  PubMed  Google Scholar 

  • Pang Y, Bai XC, Yan C, Hao Q, Chen Z, Wang JW, Scheres SH, Shi Y (2015) Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from Drosophila. Genes Dev 29(3):277–287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol 5(6)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pei Z, Reske G, Huang Q, Hammock BD, Qi Y, Chejanovsky N (2002) Characterization of the apoptosis suppressor protein P49 from the Spodoptera littoralis nucleopolyhedrovirus. J Biol Chem 277(50):48677–48684

    Article  CAS  PubMed  Google Scholar 

  • Pellettieri J, Sanchez Alvarado A (2007) Cell turnover and adult tissue homeostasis: from humans to planarians. Annu Rev Genet 41:83–105

    Article  CAS  PubMed  Google Scholar 

  • Puglise JM, Estep AS, Becnel JJ (2016) Expression profiles and RNAi silencing of inhibitor of apoptosis transcripts in Aedes, Anopheles, and Culex Mosquitoes (Diptera: Culicidae). J Med Entomol 53(2):304–314

    Article  CAS  PubMed  Google Scholar 

  • Quinn LM, Dorstyn L, Mills K, Colussi PA, Chen P, Coombe M, Abrams J, Kumar S, Richardson H (2000) An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J Biol Chem 275(51):40416–40424

    Article  CAS  PubMed  Google Scholar 

  • Quinn L, Coombe M, Mills K, Daish T, Colussi P, Kumar S, Richardson H (2003) Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J 22(14):3568–3579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro PS, Kuranaga E, Tenev T, Leulier F, Miura M, Meier P (2007) DIAP2 functions as a mechanism-based regulator of drICE that contributes to the caspase activity threshold in living cells. J Cell Biol 179(7):1467–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez A, Oliver H, Zou H, Chen P, Wang X, Abrams JM (1999) Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nat Cell Biol 1(5):272–279

    Article  CAS  PubMed  Google Scholar 

  • Saraste A, Pulkki K (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45(3):528–537

    Article  CAS  PubMed  Google Scholar 

  • Sehnal F, Svacha P, Zrzavy JAN (1996) Evolution of Insect Metamorphosis. In: Gilbert LI, Tata JR, Atkinson BG (eds) Metamorphosis Postembryonic reprograming of gene expression in amphibian and insect cells. Academic Press, San Diego, pp 3–58

    Google Scholar 

  • Seol DW, Billiar TR (1999) A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. J Biol Chem 274(4):2072–2076

    Article  CAS  PubMed  Google Scholar 

  • Shapiro PJ, Hsu HH, Jung H, Robbins ES, Ryoo HD (2008) Regulation of the Drosophila apoptosome through feedback inhibition. Nat Cell Biol 10(12):1440–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y (2002) A conserved tetrapeptide motif: potentiating apoptosis through IAP-binding. Cell Death Differ 9(2):93–95

    Article  CAS  PubMed  Google Scholar 

  • Shlevkov E, Morata G (2012) A dp53/JNK-dependant feedback amplification loop is essential for the apoptotic response to stress in Drosophila. Cell Death Differ 19(3):451–460

    Article  CAS  PubMed  Google Scholar 

  • Shu B, Zhang J, Sethuraman V, Cui G, Yi X, Zhong G (2017) Transcriptome analysis of Spodoptera frugiperda Sf9 cells reveals putative apoptosis-related genes and a preliminary apoptosis mechanism induced by azadirachtin. Sci Rep 7(1):13231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silke J, Vaux DL (2001) Two kinds of BIR-containing protein - inhibitors of apoptosis, or required for mitosis. J Cell Sci 114(Pt 10):1821–1827

    CAS  PubMed  Google Scholar 

  • Simonet P, Gaget K, Balmand S, Ribeiro Lopes M, Parisot N, Buhler K, Duport G, Vulsteke V, Febvay G, Heddi A, Charles H, Callaerts P, Calevro F (2018) Bacteriocyte cell death in the pea aphid/Buchnera symbiotic system. Proc Natl Acad Sci USA

    Google Scholar 

  • Song Z, McCall K, Steller H (1997) DCP-1, a Drosophila cell death protease essential for development. Science 275(5299):536–540

    Article  CAS  PubMed  Google Scholar 

  • Stork NE (2018) How many species of insects and other terrestrial arthropods are there on earth? Annu Rev Entomol 63:31–45

    Article  CAS  PubMed  Google Scholar 

  • Stoven S, Silverman N, Junell A, Hedengren-Olcott M, Erturk D, Engstrom Y, Maniatis T, Hultmark D (2003) Caspase-mediated processing of the Drosophila NF-kappaB factor Relish. Proc Natl Acad Sci U S A 100(10):5991–5996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suganuma I, Ushiyama T, Yamada H, Iwamoto A, Kobayashi M, Ikeda M (2011) Cloning and characterization of a dronc homologue in the silkworm, Bombyx mori. Insect Biochem Mol Biol 41(11):909–921

    Article  CAS  PubMed  Google Scholar 

  • Tagu D, Calevro F, Colella S, Gabaldón T, Sugio A (2016) Functional and evolutionary genomics in aphids. In: Vilcinskas A (ed) Biology and ecology of aphids CRC Press, Taylor & Francis Group, pp 52–88

    Google Scholar 

  • Tambunan J, Kan Chang P, Li H, Natori M (1998) Molecular cloning of a cDNA encoding a silkworm protein that contains the conserved BH regions of Bcl-2 family proteins. Gene 212(2):287–293

    Article  CAS  PubMed  Google Scholar 

  • Tenev T, Zachariou A, Wilson R, Ditzel M, Meier P (2005) IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. Nat Cell Biol 7(1):70–77

    Article  CAS  PubMed  Google Scholar 

  • The International Aphid Genomics Consortium (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8(2):e1000313

    Article  PubMed Central  CAS  Google Scholar 

  • Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov PV (2011) Metacaspases. Cell Death Differ 18(8):1279–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uren AG, Coulson EJ, Vaux DL (1998) Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends Biochem Sci 23(5):159–162

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan D, Ryoo HD (2015) Regulation of cell ceath by IAPs and their antagonists. Curr Top Dev Biol 114:185–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhagen AM, Vaux DL (2002) Cell death regulation by the mammalian IAP antagonist Diablo/Smac. Apoptosis 7(2):163–166

    Article  CAS  PubMed  Google Scholar 

  • Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, Day CL, Tikoo A, Burke R, Wrobel C, Moritz RL, Simpson RJ, Vaux DL (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277(1):445–454

    Article  CAS  PubMed  Google Scholar 

  • Vigneron A, Masson F, Vallier A, Balmand S, Rey M, Vincent-Monégat C, Aksoy E, Aubailly-Giraud E, Zaidman-Rémy A, Heddi A (2014) Insects recycle endosymbionts when the benefit is over. Curr Biol 24(19):2267–2273

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Clem RJ (2011) The role of IAP antagonist proteins in the core apoptosis pathway of the mosquito disease vector Aedes aegypti. Apoptosis 16(3):235–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XR, Wang C, Wang XW, Qian LX, Chi Y, Liu SS, Liu YQ, Wang XW (2018) The functions of caspase in whitefly Bemisia tabaci apoptosis in response to ultraviolet irradiation. Insect Mol Biol 27(6):739–751

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse RM, Kriventseva EV, Meister S, Xi Z, Alvarez KS, Bartholomay LC, Barillas-Mury C, Bian G, Blandin S, Christensen BM, Dong Y, Jiang H, Kanost MR, Koutsos AC, Levashina EA, Li J, Ligoxygakis P, Maccallum RM, Mayhew GF, Mendes A, Michel K, Osta MA, Paskewitz S, Shin SW, Vlachou D, Wang L, Wei W, Zheng L, Zou Z, Severson DW, Raikhel AS, Kafatos FC, Dimopoulos G, Zdobnov EM, Christophides GK (2007) Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 316(5832):1738–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H (1994) Genetic control of programmed cell death in Drosophila. Science 264(5159):677–683

    Article  CAS  PubMed  Google Scholar 

  • Wing JP, Zhou L, Schwartz LM, Nambu JR (1998) Distinct cell killing properties of the Drosophila reaper, head involution defective, and grim genes. Cell Death Differ 5(11):930–939

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Li Y, Arcaro M, Lackey M, Bergmann A (2005) The CARD-carrying caspase Dronc is essential for most, but not all, developmental cell death in Drosophila. Development 132(9):2125–2134

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Wang Y, Willecke R, Chen Z, Ding T, Bergmann A (2006) The effector caspases drICE and dcp-1 have partially overlapping functions in the apoptotic pathway in Drosophila. Cell Death Differ 13(10):1697–1706

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Woodfield SE, Lee TV, Fan Y, Antonio C, Bergmann A (2009) Genetic control of programmed cell death (apoptosis) in Drosophila. Fly (Austin) 3(1):78–90

    Article  CAS  Google Scholar 

  • Yang D, Chai L, Wang J, Zhao X (2008) Molecular cloning and characterization of Hearm caspase-1 from Helicoverpa armigera. Mol Biol Rep 35(3):405–412

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zhou K, Liu H, Wu A, Mei L, Liu Q (2016) SfDredd, a novel initiator caspase possessing activity on effector caspase substrates in Spodoptera frugiperda. PLoS ONE 11(3):e0151016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yi HS, Pan CX, Pan C, Song J, Hu YF, Wang L, Pan MH, Lu C (2014) BmICE-2 is a novel pro-apoptotic caspase involved in apoptosis in the silkworm, Bombyx mori. Biochem Biophys Res Commun 445(1):100–106

    Article  CAS  PubMed  Google Scholar 

  • Yoo SJ, Huh JR, Muro I, Yu H, Wang L, Wang SL, Feldman RM, Clem RJ, Muller HA, Hay BA (2002) Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4(6):416–424

    Article  CAS  PubMed  Google Scholar 

  • Yu SY, Yoo SJ, Yang L, Zapata C, Srinivasan A, Hay BA, Baker NE (2002) A pathway of signals regulating effector and initiator caspases in the developing Drosophila eye. Development 129(13):3269–3278

    CAS  PubMed  Google Scholar 

  • Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75(4):641–652

    Article  CAS  PubMed  Google Scholar 

  • Zachariou A, Tenev T, Goyal L, Agapite J, Steller H, Meier P (2003) IAP-antagonists exhibit non-redundant modes of action through differential DIAP1 binding. EMBO J 22(24):6642–6652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Huang Q, Ke N, Matsuyama S, Hammock B, Godzik A, Reed JC (2000) Drosophila pro-apoptotic Bcl-2/Bax homologue reveals evolutionary conservation of cell death mechanisms. J Biol Chem 275(35):27303–27306

    CAS  PubMed  Google Scholar 

  • Zhang JY, Pan MH, Sun ZY, Huang SJ, Yu ZS, Liu D, Zhao DH, Lu C (2010) The genomic underpinnings of apoptosis in the silkworm, Bombyx mori. BMC Genom 11:611

    Article  CAS  Google Scholar 

  • Zhou L, Jiang G, Chan G, Santos CP, Severson DW, Xiao L (2005) Michelob_x is the missing inhibitor of apoptosis protein antagonist in mosquito genomes. EMBO Rep 6(8):769–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mélanie Ribeiro Lopes or Federica Calevro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribeiro Lopes, M., Parisot, N., Callaerts, P., Calevro, F. (2019). Genetic Diversity of the Apoptotic Pathway in Insects. In: Pontarotti, P. (eds) Evolution, Origin of Life, Concepts and Methods. Springer, Cham. https://doi.org/10.1007/978-3-030-30363-1_13

Download citation

Publish with us

Policies and ethics