Skip to main content
Log in

Apoptosis in Drosophila: which role for mitochondria?

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

It is now well established that the mitochondrion is a central regulator of mammalian cell apoptosis. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, mainly because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and cell death in Drosophila occurs at the mitochondrial level. Numerous proteins, including RHG proteins and proteins of the Bcl-2 family that are key regulators of Drosophila apoptosis, constitutively or transiently localize in mitochondria. These proteins participate in the cell death process at different levels such as degradation of Diap1, a Drosophila IAP, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. Here, we review these mitochondrial events that might have their counterpart in human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Connolly PF, Jager R, Fearnhead HO (2014) New roles for old enzymes: killer caspases as the engine of cell behavior changes. Front Physiol 5:149

    Article  PubMed Central  PubMed  Google Scholar 

  2. Cooper DM, Granville DJ, Lowenberger C (2009) The insect caspases. Apoptosis 14:247–256

    Article  CAS  PubMed  Google Scholar 

  3. Kumar S, Doumanis J (2000) The fly caspases. Cell Death Differ 7:1039–1044

    Article  CAS  PubMed  Google Scholar 

  4. Mignotte B, Colin J, Brun S, Guénal I (2005) Apoptosis: the fly point of view. In: Scovassi AI (ed) Apoptosis. Research Signpost, Kerala, pp 169–186

    Google Scholar 

  5. Wajant H (2002) The Fas signaling pathway: more than a paradigm. Science 296:1635–1636

    Article  CAS  PubMed  Google Scholar 

  6. Darding M, Meier P (2012) IAPs: guardians of RIPK1. Cell Death Differ 19:58–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Khosravi-Far R, Esposti MD (2004) Death receptor signals to mitochondria. Cancer Biol Ther 3:1051–1057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377

    Article  CAS  PubMed  Google Scholar 

  9. Cosentino K, Garcia-Saez AJ (2014) Mitochondrial alterations in apoptosis. Chem Phys Lipids 181:62–75

    Article  CAS  PubMed  Google Scholar 

  10. Varkey J, Chen P, Jemmerson R, Abrams JM (1999) Altered cytochrome c display precedes apoptotic cell death in Drosophila. J Cell Biol 144:701–710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Abdelwahid E, Yokokura T, Krieser RJ, Balasundaram S, Fowle WH, White K (2007) Mitochondrial disruption in Drosophila apoptosis. Dev Cell 12:793–806

    Article  CAS  PubMed  Google Scholar 

  12. Challa M, Malladi S, Pellock BJ, Dresnek D, Varadarajan S, Yin YW et al (2007) Drosophila Omi, a mitochondrial-localized IAP antagonist and proapoptotic serine protease. EMBO J 26:3144–3156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Dorstyn L, Read S, Cakouros D, Huh JR, Hay BA, Kumar S (2002) The role of cytochrome c in caspase activation in Drosophila melanogaster cells. J Cell Biol 156:1089–1098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kanuka H, Sawamoto K, Inohara N, Matsuno K, Okano H, Miura M (1999) Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/Ced-4-related caspase activator. Mol Cell 4:757–769

    Article  CAS  PubMed  Google Scholar 

  15. Zimmermann KC, Ricci JE, Droin NM, Green DR (2002) The role of ARK in stress-induced apoptosis in Drosophila cells. J Cell Biol 156:1077–1087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Rodriguez A, Oliver H, Zou H, Chen P, Wang X, Abrams JM (1999) Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nat Cell Biol 1:272–279

    Article  CAS  PubMed  Google Scholar 

  17. Zhou L, Song Z, Tittel J, Steller H (1999) HAC-1, a Drosophila homolog of Apaf-1 and Ced-4, functions in developmental and radiation-induced apoptosis. Mol Cell 4:745–755

    Article  CAS  PubMed  Google Scholar 

  18. D’Brot A, Chen P, Vaishnav M, Yuan S, Akey CW, Abrams JM (2013) Tango7 directs cellular remodeling by the Drosophila apoptosome. Genes Dev 27:1650–1655

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Yu X, Wang L, Acehan D, Wang X, Akey CW (2006) Three-dimensional structure of a double apoptosome formed by the Drosophila Apaf-1 related killer. J Mol Biol 355:577–589

    Article  CAS  PubMed  Google Scholar 

  20. Yuan S, Yu X, Topf M, Dorstyn L, Kumar S, Ludtke SJ et al (2011) Structure of the Drosophila apoptosome at 6.9 a resolution. Structure 19:128–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Dorstyn L, Kumar S (2006) A cytochrome c-free fly apoptosome. Cell Death Differ 13:1049–1051

    Article  CAS  PubMed  Google Scholar 

  22. Dorstyn L, Mills K, Lazebnik Y, Kumar S (2004) The two cytochrome c species, DC3 and DC4, are not required for caspase activation and apoptosis in Drosophila cells. J Cell Biol 167:405–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kiessling S, Green DR (2006) Cell survival and proliferation in Drosophila S2 cells following apoptotic stress in the absence of the APAF-1 homolog, ARK, or downstream caspases. Apoptosis 11:497–507

    Article  CAS  PubMed  Google Scholar 

  24. Arama E, Agapite J, Steller H (2003) Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell 4:687–697

    Article  CAS  PubMed  Google Scholar 

  25. Arama E, Bader M, Srivastava M, Bergmann A, Steller H (2006) The two Drosophila cytochrome C proteins can function in both respiration and caspase activation. EMBO J 25:232–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Huh JR, Vernooy SY, Yu H, Yan N, Shi Y, Guo M et al (2004) Multiple apoptotic caspase cascades are required in nonapoptotic roles for Drosophila spermatid individualization. PLoS Biol 2:E15

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Feinstein-Rotkopf Y, Arama E (2009) Can’t live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 14:980–995

    Article  PubMed  Google Scholar 

  28. Mendes CS, Arama E, Brown S, Scherr H, Srivastava M, Bergmann A et al (2006) Cytochrome c-d regulates developmental apoptosis in the Drosophila retina. EMBO Rep 7:933–939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Igaki T, Suzuki Y, Tokushige N, Aonuma H, Takahashi R, Miura M (2007) Evolution of mitochondrial cell death pathway: proapoptotic role of HtrA2/Omi in Drosophila. Biochem Biophys Res Commun 356:993–997

    Article  CAS  PubMed  Google Scholar 

  30. Khan FS, Fujioka M, Datta P, Fernandes-Alnemri T, Jaynes JB, Alnemri ES (2008) The interaction of DIAP1 with dOmi/HtrA2 regulates cell death in Drosophila. Cell Death Differ 15:1073–1083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Yacobi-Sharon K, Namdar Y, Arama E (2013) Alternative germ cell death pathway in Drosophila involves HtrA2/Omi, lysosomes, and a caspase-9 counterpart. Dev Cell 25:29–42

    Article  CAS  PubMed  Google Scholar 

  32. Tain LS, Chowdhury RB, Tao RN, Plun-Favreau H, Moisoi N, Martins LM et al (2009) Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin. Cell Death Differ 16:1118–1125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Goyal L, McCall K, Agapite J, Hartwieg E, Steller H (2000) Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 19:589–597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Leulier F, Ribeiro PS, Palmer E, Tenev T, Takahashi K, Robertson D et al (2006) Systematic in vivo RNAi analysis of putative components of the Drosophila cell death machinery. Cell Death Differ 13:1663–1674

    Article  CAS  PubMed  Google Scholar 

  35. Lisi S, Mazzon I, White K (2000) Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154:669–678

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Wang ZH, Ding MX, Chew-Cheng SB, Yun JP, Chew EC (1999) Bcl-2 and Bax proteins are nuclear matrix associated proteins. Anticancer Res 19:5445–5449

    CAS  PubMed  Google Scholar 

  37. Yin VP, Thummel CS (2004) A balance between the diap1 death inhibitor and reaper and hid death inducers controls steroid-triggered cell death in Drosophila. Proc Natl Acad Sci USA 101:8022–8027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Yan N, Wu JW, Chai J, Li W, Shi Y (2004) Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by Reaper, Hid and Grim. Nat Struct Mol Biol 11:420–428

    Article  CAS  PubMed  Google Scholar 

  39. Zachariou A, Tenev T, Goyal L, Agapite J, Steller H, Meier P (2003) IAP-antagonists exhibit non-redundant modes of action through differential DIAP1 binding. EMBO J 22:6642–6652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Chai J, Yan N, Huh JR, Wu JW, Li W, Hay BA et al (2003) Molecular mechanism of Reaper-Grim-Hid-mediated suppression of DIAP1-dependent Dronc ubiquitination. Nat Struct Biol 10:892–898

    Article  CAS  PubMed  Google Scholar 

  41. Meier P, Silke J, Leevers SJ, Evan GI (2000) The Drosophila caspase DRONC is regulated by DIAP1. EMBO J 19:598–611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Muro I, Hay BA, Clem RJ (2002) The Drosophila DIAP1 protein is required to prevent accumulation of a continuously generated, processed form of the apical caspase DRONC. J Biol Chem 277:49644–49650

    Article  CAS  PubMed  Google Scholar 

  43. Shapiro PJ, Hsu HH, Jung H, Robbins ES, Ryoo HD (2008) Regulation of the Drosophila apoptosome through feedback inhibition. Nat Cell Biol 10:1440–1446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Orme M, Meier P (2009) Inhibitor of apoptosis proteins in Drosophila: gatekeepers of death. Apoptosis 14:950–960

    Article  PubMed  Google Scholar 

  45. Vucic D, Kaiser WJ, Miller LK (1998) Inhibitor of apoptosis proteins physically interact with and block apoptosis induced by Drosophila proteins HID and GRIM. Mol Cell Biol 18:3300–3309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Vucic D, Seshagiri S, Miller LK (1997) Characterization of reaper- and FADD-induced apoptosis in a lepidopteran cell line. Mol Cell Biol 17:667–676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Wing JP, Zhou L, Schwartz LM, Nambu JR (1998) Distinct cell killing properties of the Drosophila reaper, head involution defective, and grim genes. Cell Death Differ 5:930–939

    Article  CAS  PubMed  Google Scholar 

  48. Wing JP, Schwartz LM, Nambu JR (2001) The RHG motifs of Drosophila reaper and Grim are important for their distinct cell death-inducing abilities. Mech Dev 102:193–203

    Article  CAS  PubMed  Google Scholar 

  49. Haining WN, Carboy-Newcomb C, Wei CL, Steller H (1999) The proapoptotic function of Drosophila Hid is conserved in mammalian cells. Proc Natl Acad Sci USA 96:4936–4941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. McCarthy JV, Dixit VM (1998) Apoptosis induced by Drosophila reaper and grim in a human system. Attenuation by inhibitor of apoptosis proteins (cIAPs). J Biol Chem 273:24009–24015

    Article  CAS  PubMed  Google Scholar 

  51. Christich A, Kauppila S, Chen P, Sogame N, Ho SI, Abrams JM (2002) The damage-responsive Drosophila gene sickle encodes a novel IAP binding protein similar to but distinct from reaper, grim and hid. Curr Biol 12:137–140

    Article  CAS  PubMed  Google Scholar 

  52. Srinivasula SM, Datta P, Kobayashi M, Wu JW, Fujioka M, Hegde R et al (2002) sickle, a novel Drosophila death gene in the reaper/hid/grim region, encodes an IAP-inhibitory protein. Curr Biol 12:125–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Tenev T, Zachariou A, Wilson R, Paul A, Meier P (2002) Jafrac2 is an IAP antagonist that promotes cell death by liberating Dronc from DIAP1. EMBO J 21:5118–5129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Vucic D, Kaiser WJ, Harvey AJ, Miller LK (1997) Inhibition of reaper-induced apoptosis by interaction with inhibitor of apoptosis proteins (IAPs). Proc Natl Acad Sci USA 94:10183–10188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Wu JW, Cocina AE, Chai J, Hay BA, Shi Y (2001) Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides. Mol Cell 8:95–104

    Article  CAS  PubMed  Google Scholar 

  56. Kurada P, White K (1998) Ras promotes cell survival in Drosophila by downregulating hid. Cell 95:319–329

    Article  CAS  PubMed  Google Scholar 

  57. Kang J, Yeom E, Lim J, Choi KW (2014) Bar represses dPax2 and decapentaplegic to regulate cell fate and morphogenetic cell death in Drosophila eye. PLoS ONE 9:e88171

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Nordstrom W, Chen P, Steller H, Abrams JM (1996) Activation of the reaper gene during ectopic cell killing in Drosophila. Dev Biol 180:213–226

    Article  CAS  PubMed  Google Scholar 

  59. Robinow S, Draizen TA, Truman JW (1997) Genes that induce apoptosis: transcriptional regulation in identified doomed neurons of the Drosophila CNS. Dev Biol 190:206–213

    Article  CAS  PubMed  Google Scholar 

  60. Jiang CG, Baerhecke EH, Thummel CS (1997) Steroid regulated programmed cell deatn during Drosophila metamorphosis. Development 124:4673–4683

    CAS  PubMed  Google Scholar 

  61. Link N, Kurtz P, O’Neal M, Garcia-Hughes G, Abrams JM (2013) A p53 enhancer region regulates target genes through chromatin conformations in cis and in trans. Genes Dev 27:2433–2438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Lohmann I (2003) Dissecting the regulation of the Drosophila cell death activator reaper. Gene Expr Patterns 3:159–163

    Article  CAS  PubMed  Google Scholar 

  63. Tan Y, Yamada-Mabuchi M, Arya R, St Pierre S, Tang W, Tosa M et al (2011) Coordinated expression of cell death genes regulates neuroblast apoptosis. Development 138:2197–2206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM (2000) Drosophila p53 binds a damage response element at the reaper locus. Cell 101:103–113

    Article  CAS  PubMed  Google Scholar 

  65. Chen P, Ho SI, Shi Z, Abrams JM (2004) Bifunctional killing activity encoded by conserved reaper proteins. Cell Death Differ 11:704–713

    Article  CAS  PubMed  Google Scholar 

  66. Chen P, Lee P, Otto L, Abrams J (1996) Apoptotic activity of REAPER is distinct from signaling by the tumor necrosis factor receptor 1 death domain. J Biol Chem 271:25735–25737

    Article  CAS  PubMed  Google Scholar 

  67. Claveria C, Albar JP, Serrano A, Buesa JM, Barbero JL, Martinez AC et al (1998) Drosophila grim induces apoptosis in mammalian cells. EMBO J 17:7199–7208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Claveria C, Caminero E, Martinez AC, Campuzano S, Torres M (2002) GH3, a novel proapoptotic domain in Drosophila Grim, promotes a mitochondrial death pathway. EMBO J 21:3327–3336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Claveria C, Martinez AC, Torres M (2004) A Bax/Bak-independent mitochondrial death pathway triggered by Drosophila Grim GH3 domain in mammalian cells. J Biol Chem 279:1368–1375

    Article  CAS  PubMed  Google Scholar 

  70. Tait SW, Werner AB, de Vries E, Borst J (2004) Mechanism of action of Drosophila reaper in mammalian cells: reaper globally inhibits protein synthesis and induces apoptosis independent of mitochondrial permeability. Cell Death Differ 11:800–811

    Article  CAS  PubMed  Google Scholar 

  71. Thress K, Evans EK, Kornbluth S (1999) Reaper-induced dissociation of a Scythe-sequestered cytochrome c-releasing activity. EMBO J 18:5486–5493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Olson MR, Holley CL, Gan EC, Colon-Ramos DA, Kaplan B, Kornbluth S (2003) A GH3-like domain in reaper is required for mitochondrial localization and induction of IAP degradation. J Biol Chem 278:44758–44768

    Article  CAS  PubMed  Google Scholar 

  73. Zhou L (2005) The ‘unique key’ feature of the Iap-binding motifs in RHG proteins. Cell Death Differ 12:1148–1151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Freel CD, Richardson DA, Thomenius MJ, Gan EC, Horn SR, Olson MR et al (2008) Mitochondrial localization of Reaper to promote inhibitors of apoptosis protein degradation conferred by GH3 domain-lipid interactions. J Biol Chem 283:367–379

    Article  CAS  PubMed  Google Scholar 

  75. Sandu C, Ryoo HD, Steller H (2010) Drosophila IAP antagonists form multimeric complexes to promote cell death. J Cell Biol 190:1039–1052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Thomenius M, Freel CD, Horn S, Krieser R, Abdelwahid E, Cannon R et al (2011) Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death. Cell Death Differ 18:1640–1650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Morishita J, Kang MJ, Fidelin K, Ryoo HD (2013) CDK7 regulates the mitochondrial localization of a tail-anchored proapoptotic protein, Hid. Cell reports 5:1481–1488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Evans EK, Kuwana T, Strum SL, Smith JJ, Newmeyer DD, Kornbluth S (1997) Reaper-induced apoptosis in a vertebrate system. EMBO J 16:7372–7381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Goyal G, Fell B, Sarin A, Youle RJ, Sriram V (2007) Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster. Dev Cell 12:807–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Thress K, Henzel W, Shillinglaw W, Kornbluth S (1998) Scythe: a novel reaper-binding apoptotic regulator. EMBO J 17:6135–6143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Brun S, Rincheval V, Gaumer S, Mignotte B, Guenal I (2002) reaper and bax initiate two different apoptotic pathways affecting mitochondria and antagonized by bcl-2 in Drosophila. Oncogene 21:6458–6470

    Article  CAS  PubMed  Google Scholar 

  82. Aouacheria A, Combet C, Tompa P, Hardwick JM (2015) Redefining the BH3 Death Domain as a 'Short Linear Motif'. Trends Biochem Sci 40:736–748

    Article  CAS  PubMed  Google Scholar 

  83. Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Brachmann CB, Jassim OW, Wachsmuth BD, Cagan RL (2000) The Drosophila bcl-2 family member dBorg-1 functions in the apoptotic response to UV-irradiation. Curr Biol 10:547–550

    Article  CAS  PubMed  Google Scholar 

  85. Colussi PA, Quinn LM, Huang DC, Coombe M, Read SH, Richardson H et al (2000) Debcl, a proapoptotic Bcl-2 homologue, is a component of the Drosophila melanogaster cell death machinery. J Cell Biol 148:703–714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Igaki T, Kanuka H, Inohara N, Sawamoto K, Nunez G, Okano H et al (2000) Drob-1, a Drosophila member of the bcl-2/CED-9 family that promotes cell death. Proc Natl Acad Sci USA 97:662–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Quinn L, Coombe KM, Tasman D, Colussi P, Kumar S, Richardson H (2003) Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J 22:3568–3579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Zhang H, Huang Q, Ke N, Matsuyama S, Hammock B, Godzik A et al (2000) Drosophila pro-apoptotic Bcl-2/Bax homologue reveals evolutionary conservation of cell death mechanisms. J Biol Chem 275:27303–27306

    CAS  PubMed  Google Scholar 

  89. Doumanis J, Dorstyn L, Kumar S (2007) Molecular determinants of the subcellular localization of the Drosophila Bcl-2 homologues DEBCL and BUFFY. Cell Death Differ 14:907–915

    CAS  PubMed  Google Scholar 

  90. Igaki T, Miura M (2004) Role of Bcl-2 family members in invertebrates. Biochim Biophys Acta 1644:73–81

    Article  CAS  PubMed  Google Scholar 

  91. Ly LL, Suyari O, Yoshioka Y, Tue NT, Yoshida H, Yamaguchi M (2013) dNF-YB plays dual roles in cell death and cell differentiation during Drosophila eye development. Gene 520:106–118

    Article  CAS  PubMed  Google Scholar 

  92. Colin J, Garibal J, Clavier A, Rincheval-Arnold A, Gaumer S, Mignotte B et al (2014) The drosophila Bcl-2 family protein Debcl is targeted to the proteasome by the beta-TrCP homologue slimb. Apoptosis 19:1444–1456

    Article  CAS  PubMed  Google Scholar 

  93. Clavier A, Baillet A, Rincheval-Arnold A, Coleno-Costes A, Lasbleiz C, Mignotte B et al (2014) The pro-apoptotic activity of Drosophila Rbf1 involves dE2F2-dependent downregulation of diap1 and buffy mRNA. Cell Death Dis 5:e1405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Clavier A, Ruby V, Rincheval-Arnold A, Mignotte B, Guenal I (2015) The Drosophila retinoblastoma protein, Rbf1, induces a debcl and drp1-dependent mitochondrial apoptosis. J Cell Sci 128:3239–3249

    Article  PubMed  Google Scholar 

  95. Colin J, Garibal J, Clavier A, Szuplewski S, Risler Y, Milet C et al (2015) Screening of suppressors of bax-induced cell death identifies glycerophosphate oxidase-1 as a mediator of debcl-induced apoptosis in Drosophila. Genes Cancer 6:241–253

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Park J, Kim Y, Choi S, Koh H, Lee SH, Kim JM et al (2010) Drosophila Porin/VDAC affects mitochondrial morphology. PLoS One 5:e13151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Kanda H, Igaki T, Okano H, Miura M (2011) Conserved metabolic energy production pathways govern Eiger/TNF-induced nonapoptotic cell death. Proc Natl Acad Sci USA 108:18977–18982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Grusche FA, Degoutin JL, Richardson HE, Harvey KF (2011) The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev Biol 350:255–266

    Article  CAS  PubMed  Google Scholar 

  99. Copeland JM, Bosdet I, Freeman JD, Guo M, Gorski SM, Hay BA (2007) Echinus, required for interommatidial cell sorting and cell death in the Drosophila pupal retina, encodes a protein with homology to ubiquitin-specific proteases. BMC Dev Biol 7:82

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Senoo-Matsuda N, Igaki T, Miura M (2005) Bax-like protein Drob-1 protects neurons from expanded polyglutamine-induced toxicity in Drosophila. EMBO J 24:2700–2713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Cheng WC, Berman SB, Ivanovska I, Jonas EA, Lee SJ, Chen Y et al (2006) Mitochondrial factors with dual roles in death and survival. Oncogene 25:4697–4705

    Article  CAS  PubMed  Google Scholar 

  102. Sevrioukov EA, Burr J, Huang EW, Assi HH, Monserrate JP, Purves DC et al (2007) Drosophila Bcl-2 proteins participate in stress-induced apoptosis, but are not required for normal development. Genesis 45:184–193

    Article  CAS  PubMed  Google Scholar 

  103. Tanner EA, Blute TA, Brachmann CB, McCall K (2011) Bcl-2 proteins and autophagy regulate mitochondrial dynamics during programmed cell death in the Drosophila ovary. Development 138:327–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Tanner EA, McCall K (2011) Mitochondrial regulation of cell death in the Drosophila ovary. Autophagy 7:793–794

    Article  PubMed Central  PubMed  Google Scholar 

  105. Wu JN, Nguyen N, Aghazarian M, Tan Y, Sevrioukov EA, Mabuchi M et al (2010) Grim promotes programmed cell death of Drosophila microchaete glial cells. Mech Dev 127:407–417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Galindo KA, Lu WJ, Park JH, Abrams JM (2009) The Bax/Bak ortholog in Drosophila, Debcl, exerts limited control over programmed cell death. Development 136:275–283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Hou YC, Chittaranjan S, Barbosa SG, McCall K, Gorski SM (2008) Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis. J Cell Biol 182:1127–1139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Monserrate JP, Chen MY, Brachmann CB (2012) Drosophila larvae lacking the bcl-2 gene, buffy, are sensitive to nutrient stress, maintain increased basal target of rapamycin (Tor) signaling and exhibit characteristics of altered basal energy metabolism. BMC Biol 10:63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Tsubouchi A, Tsuyama T, Fujioka M, Kohda H, Okamoto-Furuta K, Aigaki T et al (2009) Mitochondrial protein Preli-like is required for development of dendritic arbors and prevents their regression in the Drosophila sensory nervous system. Development 136:3757–3766

    Article  CAS  PubMed  Google Scholar 

  110. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F et al (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    Article  CAS  PubMed  Google Scholar 

  111. Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001–5011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T et al (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14:193–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K et al (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11:958–966

    Article  CAS  PubMed  Google Scholar 

  114. Wakabayashi J, Zhang Z, Wakabayashi N, Tamura Y, Fukaya M, Kensler TW et al (2009) The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol 186:805–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Jahani-Asl A, Cheung EC, Neuspiel M, MacLaurin JG, Fortin A, Park DS et al (2007) Mitofusin 2 protects cerebellar granule neurons against injury-induced cell death. J Biol Chem 282:23788–23798

    Article  CAS  PubMed  Google Scholar 

  116. Sugioka R, Shimizu S, Tsujimoto Y (2004) Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem 279:52726–52734

    Article  CAS  PubMed  Google Scholar 

  117. Rolland SG, Conradt B (2010) New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics. Curr Opin Cell Biol 22:852–858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Autret A, Martin SJ (2009) Emerging role for members of the Bcl-2 family in mitochondrial morphogenesis. Mol Cell 36:355–363

    Article  CAS  PubMed  Google Scholar 

  119. Park J, Lee SB, Lee S, Kim Y, Song S, Kim S et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441:1157–1161

    Article  CAS  PubMed  Google Scholar 

  120. Igaki T (2009) Correcting developmental errors by apoptosis: lessons from Drosophila JNK signaling. Apoptosis 14:1021–1028

    Article  PubMed  Google Scholar 

  121. Morey M, Corominas M, Serras F (2003) DIAP1 suppresses ROS-induced apoptosis caused by impairment of the selD/sps1 homolog in Drosophila. J Cell Sci 116:4597–4604

    Article  CAS  PubMed  Google Scholar 

  122. Mollereau B, Ma D (2014) The p53 control of apoptosis and proliferation: lessons from Drosophila. Apoptosis 19:1421–1429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Gowda PS, Zhou F, Chadwell LV, McEwen DG (2012) p53 binding prevents phosphatase-mediated inactivation of diphosphorylated c-Jun N-terminal kinase. J Biol Chem 287:17554–17567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Qi Y, Liu H, Daniels MP, Zhang G, Xu H (2015) Loss of Drosophila i-AAA protease, dYME1L, causes abnormal mitochondria and apoptotic degeneration. Cell Death Differ. doi:10.1038/cdd.2015.94

    Google Scholar 

  125. Joza N, Galindo K, Pospisilik JA, Benit P, Rangachari M, Kanitz EE et al (2008) The molecular archaeology of a mitochondrial death effector: AIF in Drosophila. Cell Death Differ 15:1009–1018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Yi CH, Sogah DK, Boyce M, Degterev A, Christofferson DE, Yuan J (2007) A genome-wide RNAi screen reveals multiple regulators of caspase activation. J Cell Biol 179:619–626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Lin R, Angelin A, Da Settimo F, Martini C, Taliani S, Zhu S et al (2014) Genetic analysis of dTSPO, an outer mitochondrial membrane protein, reveals its functions in apoptosis, longevity, and Ab42-induced neurodegeneration. Aging Cell 13:507–518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Estaquier J, Vallette F, Vayssiere JL, Mignotte B (2012) The mitochondrial pathways of apoptosis. Adv Exp Med Biol 942:157–183

    Article  CAS  PubMed  Google Scholar 

  129. Abdelwahid E, Rolland S, Teng X, Conradt B, Hardwick JM, White K (2011) Mitochondrial involvement in cell death of non-mammalian eukaryotes. Biochim Biophys Acta 1813:597–607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Bueler H (2010) Mitochondrial dynamics, cell death and the pathogenesis of Parkinson’s disease. Apoptosis 15:1336–1353

    Article  PubMed  CAS  Google Scholar 

  131. Guo M (2012) Drosophila as a model to study mitochondrial dysfunction in Parkinson’s disease. Cold Spring Harb Perspect Med 2   131. Aouacheria A, Combet C, Tompa P, Hardwick JM. (2015) Redefining the BH3 Death Domain as a 'Short Linear Motif'. Trends Biochem Sci 40:736-748.

Download references

Acknowledgments

We are grateful to Tommaso Villa for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Guénal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clavier, A., Rincheval-Arnold, A., Colin, J. et al. Apoptosis in Drosophila: which role for mitochondria?. Apoptosis 21, 239–251 (2016). https://doi.org/10.1007/s10495-015-1209-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1209-y

Keywords

Navigation