Skip to main content

Advertisement

Log in

The insect caspases

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Developmental and tissue homeostasis is a delicate balance between cell proliferation and cell death. The activation of caspases, a conserved family of cysteine proteases, is a main event in the initiation and execution of programmed cell death. While caspases have been characterized from many organisms, comparatively little is known about insect caspases. In Drosophila melanogaster, seven caspases have been characterized; three initiators and four effectors. In mosquitoes, several putative caspases have been identified in the genomes of Aedes aegypti and Anopheles gambiae. A small number of caspases have been identified in the Lepidoptera, the flour beetle, Tribolium castaneum, and the pea aphid, Acyrthosiphon pisum. The availability of new insect genome sequences will provide a unique opportunity to examine the caspase family across an evolutionarily diverse phylum and will provide valuable insights into their function and regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776. doi:10.1038/35037710

    Article  PubMed  CAS  Google Scholar 

  2. Kaufmann SH, Hengartner MO (2001) Programmed cell death: alive and well in the new millennium. Trends Cell Biol 11(12):526–534. doi:10.1016/S0962-8924(01)02173-0

    Article  PubMed  CAS  Google Scholar 

  3. Raff M (1998) Cell suicide for beginners. Nature 396(6707):119–122. doi:10.1038/24055

    Article  PubMed  CAS  Google Scholar 

  4. Vaux DL, Strasser A (1996) The molecular biology of apoptosis. Proc Natl Acad Sci USA 93(6):2239–2244. doi:10.1073/pnas.93.6.2239

    Article  PubMed  CAS  Google Scholar 

  5. Benedict CA, Norris PS, Ware CF (2002) To kill or be killed: viral evasion of apoptosis. Nat Immunol 3(11):1013–1018. doi:10.1038/ni1102-1013

    Article  PubMed  CAS  Google Scholar 

  6. Teodoro JG, Branton PE (1997) Regulation of apoptosis by viral gene products. J Virol 71(3):1739–1746

    PubMed  CAS  Google Scholar 

  7. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424. doi:10.1146/annurev.biochem.68.1.383

    Article  PubMed  CAS  Google Scholar 

  8. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316. doi:10.1126/science.281.5381.1312

    Article  PubMed  CAS  Google Scholar 

  9. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    PubMed  CAS  Google Scholar 

  10. Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6(11):1028–1042. doi:10.1038/sj.cdd.4400598

    Article  PubMed  CAS  Google Scholar 

  11. Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384:201–232. doi:10.1042/BJ20041142

    Article  PubMed  CAS  Google Scholar 

  12. Ho PK, Hawkins CJ (2005) Mammalian initiator apoptotic caspases. FEBS J 272(21):5436–5453. doi:10.1111/j.1742-4658.2005.04966.x

    Article  PubMed  CAS  Google Scholar 

  13. Weber CH, Vincenz C (2001) The death domain superfamily: a tale of two interfaces? Trends Biochem Sci 26(8):475–481. doi:10.1016/S0968-0004(01)01905-3

    Article  PubMed  CAS  Google Scholar 

  14. Weber CH, Vincenz C (2001) A docking model of key components of the DISC complex: death domain superfamily interactions redefined. FEBS Lett 492(3):171–176. doi:10.1016/S0014-5793(01)02162-7

    Article  PubMed  CAS  Google Scholar 

  15. Boatright KM et al (2003) A unified model for apical caspase activation. Mol Cell 11(2):529–541. doi:10.1016/S1097-2765(03)00051-0

    Article  PubMed  CAS  Google Scholar 

  16. Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15(6):725–731. doi:10.1016/j.ceb.2003.10.009

    Article  PubMed  CAS  Google Scholar 

  17. Shi YG (2004) Caspase activation: revisiting the induced proximity model. Cell 117(7):855–858. doi:10.1016/j.cell.2004.06.007

    Article  PubMed  CAS  Google Scholar 

  18. Boatright KM, Salvesen GS (2003) Caspase activation. Biochem Soc Symp 70:233–242

    PubMed  CAS  Google Scholar 

  19. Enari M et al (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391(6662):43–50. doi:10.1038/34112

    Article  PubMed  CAS  Google Scholar 

  20. Fischer U, Janicke RU, Schulze-Osthoff K (2003) Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 10(1):76–100. doi:10.1038/sj.cdd.4401160

    Article  PubMed  CAS  Google Scholar 

  21. Cerretti DP et al (1992) Molecular cloning of the interleukin-1 beta converting enzyme. Science 256(5053):97–100. doi:10.1126/science.1373520

    Article  PubMed  CAS  Google Scholar 

  22. Thornberry NA et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356(6372):768–774. doi:10.1038/356768a0

    Article  PubMed  CAS  Google Scholar 

  23. Lamkanfi M et al (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9(4):358–361. doi:10.1038/sj.cdd.4400989

    Article  PubMed  CAS  Google Scholar 

  24. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312. doi:10.1126/science.281.5381.1309

    Article  PubMed  CAS  Google Scholar 

  25. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519. doi:10.1038/74994

    Article  PubMed  CAS  Google Scholar 

  26. Deveraux QL, Reed TC (1999) IAP family proteins—suppressors of apoptosis. Genes Dev 13(3):239–252. doi:10.1101/gad.13.3.239

    Article  PubMed  CAS  Google Scholar 

  27. Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3(6):401–410. doi:10.1038/nrm830

    Article  PubMed  CAS  Google Scholar 

  28. Uren AG, Coulson EJ, Vaux DL (1998) Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends Biochem Sci 23(5):159–162. doi:10.1016/S0968-0004(98)01198-0

    Article  PubMed  CAS  Google Scholar 

  29. Vernooy SY et al (2000) Cell death regulation in Drosophila: conservation of mechanism and unique insights. J Cell Biol 150(2):F69–F75. doi:10.1083/jcb.150.2.F69

    Article  PubMed  CAS  Google Scholar 

  30. Goyal L et al (2000) Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 19(4):589–597. doi:10.1093/emboj/19.4.589

    Article  PubMed  CAS  Google Scholar 

  31. Wang SL et al (1999) The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98(4):453–463. doi:10.1016/S0092-8674(00)81974-1

    Article  PubMed  CAS  Google Scholar 

  32. Hay BA, Gao M (2006) Caspase-dependent cell death in Drosophila. Annu Rev Cell Dev Biol 22:623–650. doi:10.1146/annurev.cellbio.21.012804.093845

    Article  PubMed  CAS  Google Scholar 

  33. Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ 14(1):32–43. doi:10.1038/sj.cdd.4402060

    Article  PubMed  CAS  Google Scholar 

  34. Hay BA, Wassarman DA, Rubin GM (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83(7):1253–1262. doi:10.1016/0092-8674(95)90150-7

    Article  PubMed  CAS  Google Scholar 

  35. Chai JJ et al (2003) Molecular mechanism of Reaper-Grim-Hid-mediated suppression of DIAP1-dependent Dronc ubiquitination. Nat Struct Biol 10(11):892–898. doi:10.1038/nsb989

    Article  PubMed  CAS  Google Scholar 

  36. Holley CL et al (2002) Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition. Nat Cell Biol 4(6):439–444. doi:10.1038/ncb798

    Article  PubMed  CAS  Google Scholar 

  37. Meier P et al (2000) The Drosophila caspase DRONC is regulated by DIAP1. EMBO J 19(4):598–611. doi:10.1093/emboj/19.4.598

    Article  PubMed  CAS  Google Scholar 

  38. Muro I, Means JC, Clem RJ (2005) Cleavage of the apoptosis inhibitor DIAP1 by the apical caspase DRONC in both normal and apoptotic Drosophila cells. J Biol Chem 280(19):18683–18688. doi:10.1074/jbc.M501206200

    Article  PubMed  CAS  Google Scholar 

  39. Ryoo HD et al (2002) Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nat Cell Biol 4(6):432–438. doi:10.1038/ncb795

    Article  PubMed  CAS  Google Scholar 

  40. Wu JW et al (2001) Structural analysis of a functional DIAP1 fragment bound to grim and hid peptides. Mol Cell 8(1):95–104. doi:10.1016/S1097-2765(01)00282-9

    Article  PubMed  CAS  Google Scholar 

  41. Yoo SJ et al (2002) Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4(6):416–424. doi:10.1038/ncb793

    Article  PubMed  CAS  Google Scholar 

  42. Chen P et al (1998) Dredd, a novel effector of the apoptosis activators reaper, grim, and hid in Drosophila. Dev Biol 201(2):202–216. doi:10.1006/dbio.1998.9000

    Article  PubMed  CAS  Google Scholar 

  43. Hu S, Yang X (2000) dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD. J Biol Chem 275(40):30761–30764. doi:10.1074/jbc.C000341200

    Article  PubMed  CAS  Google Scholar 

  44. Hultmark D (2003) Drosophila immunity: paths and patterns. Curr Opin Immunol 15(1):12–19. doi:10.1016/S0952-7915(02)00005-5

    Article  PubMed  CAS  Google Scholar 

  45. Leulier F et al (2000) The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep 1(4):353–358. doi:10.1093/embo-reports/kvd073

    Article  PubMed  CAS  Google Scholar 

  46. Leulier F et al (2006) Systematic in vivo RNAi analysis of putative components of the Drosophila cell death machinery. Cell Death Differ 13(10):1663–1674. doi:10.1038/sj.cdd.4401868

    Article  PubMed  CAS  Google Scholar 

  47. Cooper DM et al (2007) Characterization of Aedes Dredd: a novel initiator caspase from the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 37(6):559–569. doi:10.1016/j.ibmb.2007.03.005

    Article  PubMed  CAS  Google Scholar 

  48. Huh JR et al (2004) Multiple apoptotic caspase cascades are required in nonapoptotic roles for Drosophila spermatid individualization. PLoS Biol 2(1):E15. doi:10.1371/journal.pbio.0020015

    Article  PubMed  CAS  Google Scholar 

  49. Dorstyn L et al (1999) DRONC, an ecdysone-inducible Drosophila caspase. Proc Natl Acad Sci USA 96(8):4307–4312. doi:10.1073/pnas.96.8.4307

    Article  PubMed  CAS  Google Scholar 

  50. Dorstyn L et al (2002) The role of cytochrome c in caspase activation in Drosophila melanogaster cells. J Cell Biol 156(6):1089–1098. doi:10.1083/jcb.200111107

    Article  PubMed  CAS  Google Scholar 

  51. Quinn LM et al (2000) An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J Biol Chem 275(51):40416–40424. doi:10.1074/jbc.M002935200

    Article  PubMed  CAS  Google Scholar 

  52. Hawkins CJ et al (2000) The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J Biol Chem 275(35):27084–27093

    PubMed  CAS  Google Scholar 

  53. Chew SK et al (2004) The apical caspase dronc governs programmed and unprogrammed cell death in Drosophila. Dev Cell 7(6):897–907. doi:10.1016/j.devcel.2004.09.016

    Article  PubMed  CAS  Google Scholar 

  54. Daish TJ, Mills K, Kumar S (2004) Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis. Dev Cell 7(6):909–915. doi:10.1016/j.devcel.2004.09.018

    Article  PubMed  CAS  Google Scholar 

  55. Kondo S et al (2006) DRONC coordinates cell death and compensatory proliferation. Mol Cell Biol 26(19):7258–7268. doi:10.1128/MCB.00183-06

    Article  PubMed  CAS  Google Scholar 

  56. Waldhuber M, Emoto K, Petritsch C (2005) The Drosophila caspase DRONC is required for metamorphosis and cell death in response to irradiation and developmental signals. Mech Dev 122(7–8):914–927. doi:10.1016/j.mod.2005.04.003

    Article  PubMed  CAS  Google Scholar 

  57. Xu D et al (2005) The CARD-carrying caspase Dronc is essential for most, but not all, developmental cell death in Drosophila. Development 132(9):2125–2134. doi:10.1242/dev.01790

    Article  PubMed  CAS  Google Scholar 

  58. Igaki T et al (2002) Down-regulation of DIAP1 triggers a novel Drosophila cell death pathway mediated by Dark and DRONC. J Biol Chem 277(26):23103–23106. doi:10.1074/jbc.C200222200

    Article  PubMed  CAS  Google Scholar 

  59. Muro I, Hay BA, Clem RJ (2002) The Drosophila DIAP1 protein is required to prevent accumulation of a continuously generated, processed form of the apical caspase DRONC. J Biol Chem 277(51):49644–49650. doi:10.1074/jbc.M203464200

    Article  PubMed  CAS  Google Scholar 

  60. Rodriguez A et al (2002) Unrestrained caspase-dependent cell death caused by loss of Diap1 function requires the Drosophila Apaf-1 homolog, dark. EMBO J 21(9):2189–2197. doi:10.1093/emboj/21.9.2189

    Article  PubMed  CAS  Google Scholar 

  61. Yoo SJ et al (2002) Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4(6):416–424. doi:10.1038/ncb793

    Article  PubMed  CAS  Google Scholar 

  62. Cakouros D, Daish TJ, Kumar S (2004) Ecdysone receptor directly binds the promoter of the Drosophila caspase dronc, regulating its expression in specific tissues. J Cell Biol 165(5):631–640. doi:10.1083/jcb.200311057

    Article  PubMed  CAS  Google Scholar 

  63. Daish TJ, Cakouros D, Kumar S (2003) Distinct promoter regions regulate spatial and temporal expression of the Drosophila caspase dronc. Cell Death Differ 10(12):1348–1356. doi:10.1038/sj.cdd.4401312

    Article  PubMed  CAS  Google Scholar 

  64. Kumar S, Cakouros D (2004) Transcriptional control of the core cell-death machinery. Trends Biochem Sci 29(4):193–199. doi:10.1016/j.tibs.2004.02.001

    Article  PubMed  CAS  Google Scholar 

  65. Lee CY et al (2003) Genome-wide analyses of steroid- and radiation-triggered programmed cell death in Drosophila. Curr Biol 13(4):350–357. doi:10.1016/S0960-9822(03)00085-X

    Article  PubMed  CAS  Google Scholar 

  66. Lee CY, Cooksey BA, Baehrecke EH (2002) Steroid regulation of midgut cell death during Drosophila development. Dev Biol 250(1):101–111. doi:10.1006/dbio.2002.0784

    Article  PubMed  CAS  Google Scholar 

  67. Yin VP, Thummel CS (2005) Mechanisms of steroid-triggered programmed cell death in Drosophila. Semin Cell Dev Biol 16(2):237–243. doi:10.1016/j.semcdb.2004.12.007

    Article  PubMed  CAS  Google Scholar 

  68. Geisbrecht ER, Montell DJ (2004) A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration. Cell 118(1):111–125. doi:10.1016/j.cell.2004.06.020

    Article  PubMed  CAS  Google Scholar 

  69. Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the JNK and the wingless signaling pathways. Dev Cell 7(4):491–501. doi:10.1016/j.devcel.2004.08.019

    Article  PubMed  CAS  Google Scholar 

  70. Cooper DM et al (2007) Aedes Dronc: a novel ecdysone-inducible caspase in the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 16(5):563–572

    PubMed  CAS  Google Scholar 

  71. Adrain C, Martin SJ (2001) Search for Drosophila caspases bears fruit: STRICA enters the fray. Cell Death Differ 8(4):319–323. doi:10.1038/sj.cdd.4400869

    Article  PubMed  CAS  Google Scholar 

  72. Doumanis J et al (2001) STRICA, a novel Drosophila melanogaster caspase with an unusual serine/threonine-rich prodomain, interacts with DIAP1 and DIAP2. Cell Death Differ 8(4):387–394. doi:10.1038/sj.cdd.4400864

    Article  PubMed  CAS  Google Scholar 

  73. Baum JS et al (2007) The Drosophila caspases Strica and Dronc function redundantly in programmed cell death during oogenesis. Cell Death Differ 14(8):1508–1517. doi:10.1038/sj.cdd.4402155

    Article  PubMed  CAS  Google Scholar 

  74. Fraser AG, Evan GI (1997) Identification of a Drosophila melanogaster ICE/CED3-related protease, drICE. EMBO J 16(10):2805–2813. doi:10.1093/emboj/16.10.2805

    Article  PubMed  CAS  Google Scholar 

  75. Fraser AG, McCarthy NJ, Evan GI (1997) DrlCE is an essential caspase required for apoptotic activity in Drosophila cells. EMBO J 16(20):6192–6199. doi:10.1093/emboj/16.20.6192

    Article  PubMed  CAS  Google Scholar 

  76. Kilpatrick ZE, Cakouros D, Kumar S (2005) Ecdysone-mediated up-regulation of the effector caspase DRICE is required for hormone-dependent apoptosis in Drosophila cells. J Biol Chem 280(12):11981–11986. doi:10.1074/jbc.M413971200

    Article  PubMed  CAS  Google Scholar 

  77. Muro I et al (2006) The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process. Development 133(17):3305–3315. doi:10.1242/dev.02495

    Article  PubMed  CAS  Google Scholar 

  78. Muro I, Monser K, Clem RJ (2004) Mechanism of Dronc activation in Drosophila cells. J Cell Sci 117(Pt 21):5035–5041. doi:10.1242/jcs.01376

    Article  PubMed  CAS  Google Scholar 

  79. Xu D et al (2006) The effector caspases drICE and dcp-1 have partially overlapping functions in the apoptotic pathway in Drosophila. Cell Death Differ 13(10):1697–1706. doi:10.1038/sj.cdd.4401920

    Article  PubMed  CAS  Google Scholar 

  80. Song Z, McCall K, Steller H (1997) DCP-1, a Drosophila cell death protease essential for development. Science 275(5299):536–540. doi:10.1126/science.275.5299.536

    Article  PubMed  CAS  Google Scholar 

  81. Laundrie B et al (2003) Germline cell death is inhibited by P-element insertions disrupting the dcp-1/pita nested gene pair in Drosophila. Genetics 165(4):1881–1888

    PubMed  CAS  Google Scholar 

  82. Hou YC et al (2008) Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis. J Cell Biol 182(6):1127–1139. doi:10.1083/jcb.200712091

    Article  PubMed  CAS  Google Scholar 

  83. Dorstyn L et al (1999) DECAY, a novel Drosophila caspase related to mammalian caspase-3 and caspase-7. J Biol Chem 274(43):30778–30783. doi:10.1074/jbc.274.43.30778

    Article  PubMed  CAS  Google Scholar 

  84. Harvey NL et al (2001) Characterization of the Drosophila caspase, DAMM. J Biol Chem 276(27):25342–25350. doi:10.1074/jbc.M009444200

    Article  PubMed  CAS  Google Scholar 

  85. Ahmad M et al (1997) Spodoptera frugiperda caspase-1, a novel insect death protease that cleaves the nuclear immunophilin FKBP46, is the target of the baculovirus antiapoptotic protein p35. J Biol Chem 272(3):1421–1424. doi:10.1074/jbc.272.3.1421

    Article  PubMed  CAS  Google Scholar 

  86. Zoog SJ et al (2002) Baculovirus apoptotic suppressor P49 is a substrate inhibitor of initiator caspases resistant to P35 in vivo. EMBO J 21(19):5130–5140. doi:10.1038/sj.emboj.7594736

    Article  PubMed  CAS  Google Scholar 

  87. Tseng YK, Wu MS, Hou RF (2008) Induction of apoptosis in SF21 cell line by conditioned medium of the entomopathogenic fungus, Nomuraea rileyi, through Sf-caspase-1 signaling pathway. Arch Insect Biochem Physiol 68(4):206–214. doi:10.1002/arch.20242

    Article  PubMed  CAS  Google Scholar 

  88. Liu Q, Qi Y, Chejanovsky N (2005) Spodoptera littoralis caspase-1, a Lepidopteran effector caspase inducible by apoptotic signaling. Apoptosis 10(4):787–795. doi:10.1007/s10495-005-0365-x

    Article  PubMed  CAS  Google Scholar 

  89. Manji GA, Friesen PD (2001) Apoptosis in motion. An apical, P35-insensitive caspase mediates programmed cell death in insect cells. J Biol Chem 276(20):16704–16710. doi:10.1074/jbc.M010179200

    Article  PubMed  CAS  Google Scholar 

  90. Yang D et al (2008) Molecular cloning and characterization of Hearm caspase-1 from Helicoverpa armigera. Mol Biol Rep 35(3):405–412. doi:10.1007/s11033-007-9100-8

    Article  PubMed  CAS  Google Scholar 

  91. Stoven S et al (2003) Caspase-mediated processing of the Drosophila NF-kappaB factor Relish. Proc Natl Acad Sci USA 100(10):5991–5996. doi:10.1073/pnas.1035902100

    Article  PubMed  CAS  Google Scholar 

  92. Zhou R et al (2005) The role of ubiquitination in Drosophila innate immunity. J Biol Chem 280(40):34048–34055. doi:10.1074/jbc.M506655200

    Article  PubMed  CAS  Google Scholar 

  93. Kumar S, Doumanis J (2000) The fly caspases. Cell Death Differ 7(11):1039–1044. doi:10.1038/sj.cdd.4400756

    Article  PubMed  CAS  Google Scholar 

  94. Yu XC et al (2006) Three-dimensional structure of a double apoptosome formed by the Drosophila Apaf-1 related killer. J Mol Biol 355(3):577–589. doi:10.1016/j.jmb.2005.10.040

    Article  PubMed  CAS  Google Scholar 

  95. Yan N et al (2004) Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by reaper, hid and grim. Nat Struct Mol Biol 11(5):420–428. doi:10.1038/nsmb764

    Article  PubMed  CAS  Google Scholar 

  96. Huh JR, Guo M, Hay BA (2004) Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr Biol 14(14):1262–1266. doi:10.1016/j.cub.2004.06.015

    Article  PubMed  CAS  Google Scholar 

  97. Perez-Garijo A, Martin FA, Morata G (2004) Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131(22):5591–5598. doi:10.1242/dev.01432

    Article  PubMed  CAS  Google Scholar 

  98. Cooper DM, Chamberlain CM, Lowenberger C (2008) Aedes FADD: a novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol. doi:10.1016/j.ibmb.2008.09.011

  99. Bryant B et al (2008) Annotation and expression profiling of apoptosis-related genes in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 38(3):331–345

    PubMed  CAS  Google Scholar 

  100. Wu Y et al (2006) Mechanisms of midgut remodeling: juvenile hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action. Mech Dev 123(7):530–547. doi:10.1016/j.mod.2006.05.005

    Article  PubMed  CAS  Google Scholar 

  101. Hurd H, Grant KM, Arambage SC (2006) Apoptosis-like death as a feature of malaria infection in mosquitoes. Parasitology 132:S33–S47. doi:10.1017/S0031182006000849

    Article  PubMed  CAS  Google Scholar 

  102. Vaidyanathan R, Scott TW (2006) Apoptosis in mosquito midgut epithelia associated with West Nile virus infection. Apoptosis 11(9):1643–1651. doi:10.1007/s10495-006-8783-y

    Article  PubMed  CAS  Google Scholar 

  103. Zieler H, Dvorak JA (2000) Invasion in vitro of mosquito midgut cells by the malaria parasite proceeds by a conserved mechanism and results in death of the invaded midgut cells. Proc Natl Acad Sci USA 97(21):11516–11521. doi:10.1073/pnas.97.21.11516

    Article  PubMed  CAS  Google Scholar 

  104. Waterhouse RM et al (2007) Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 316(5832):1738–1743. doi:10.1126/science.1139862

    Article  PubMed  CAS  Google Scholar 

  105. Druilhe A et al (2001) Regulation of IL-1beta generation by Pseudo-ICE and ICEBERG, two dominant negative caspase recruitment domain proteins. Cell Death Differ 8(6):649–657. doi:10.1038/sj.cdd.4400881

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Jerry Ericsson for helpful comments on this manuscript. This work was funded in part by a MSFHR fellowship to DC and grants from NSERC, CIHR, the Canada Research Chair program, and a MSFHR scholar award to CL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn M. Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, D.M., Granville, D.J. & Lowenberger, C. The insect caspases. Apoptosis 14, 247–256 (2009). https://doi.org/10.1007/s10495-009-0322-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0322-1

Keywords

Navigation