Receptors for Targeting Gastrointestinal Tract Cancer

  • Tejal Pant
  • Nikita Aware
  • Padma V. Devarajan
  • Ratnesh JainEmail author
  • Prajakta DandekarEmail author
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 39)


Cancers of the gastrointestinal tract (GIT) are among the most prevalent and fatal cancers. Historically, surgical resection was the only effective treatment of operable GIT tumors. However, more than half of these patients present locally advanced, recurrent, or metastatic disease, necessitating development of alternate strategies for possible therapy. Cellular receptors are instrumental in controlling the basic traits of a cell. Binding of specific ligands to these receptors results in changes in gene expression and increase in cell metabolism, cell growth, or cell death. The therapeutic prospects of ligands for somatostatin receptors (SSTRs), c-Kit, and peroxisome proliferator-activated receptors (PPARs) along with receptor-mediated strategies have been discussed in this chapter. Ligands for these receptors include peptides, small molecules, and oligonucleotides that can be delivered using nanoparticulate delivery systems tailored for specific application. Some important drug candidates undergoing clinical trials have also been mentioned to convey the potential of these receptors as targets for GIT cancer therapy.


Gastrointestinal tract Cancer Receptor Somatostatin c-Kit PPAR 



Chronic myeloid leukemia


C-X-C motif chemokine


DNA-binding domain


vitamin D3 receptor-interacting protein


Epidermal growth factor receptor


Gastroenteropancreatic neuroendocrine tumors


Gastrointestinal stromal tumors


Gastrointestinal tract


Ligand-binding domain


Mitogen-activated protein kinase


Mammalian target of rapamycin


Nuclear receptor corepressor


Nuclear factor kappa light chain




Platelet-derived growth factor receptor


PPARγ coactivator-1


Phosphatidylinositol 3,4,5 triphosphate




Peroxisome proliferator-activated receptors


Peptide receptor imaging


Peptide receptor radionuclide therapy


Phosphotyrosine phosphatases


Pertussis toxin


Quantum dots


Receptor tyrosine kinase


Retinoid X receptor


Stem cell factor


Src family of tyrosine kinases


Src homology 2


Small heterodimer partner


Somatotropin release-inhibiting factor




Somatostatin receptors


Toll-like receptors


Transmembrane domains


Thyroid hormone receptor-associated protein




The food and drug administration


Vascular endothelial growth factor


Vascular endothelial growth factor receptor


  1. 1.
    WHO (2014) World cancer report.Google Scholar
  2. 2.
    Dallas NA, Fan F, Gray MJ, Van Buren G, Lim SJ, Xia L, et al. Functional significance of vascular endothelial growth factor receptors on gastrointestinal cancer cells. Cancer Metastasis Rev. 2007;26(3–4):433.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Atmaca A, Werner D, Pauligk C, Steinmetz K, Wirtz R, Altmannsberger H-M, et al. The prognostic impact of epidermal growth factor receptor in patients with metastatic gastric cancer. BMC Cancer. 2012;12(1):524.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ogura M, Takeuchi H, Kawakubo H, Nishi T, Fukuda K, Nakamura R, et al. Clinical significance of CXCL-8/CXCR-2 network in esophageal squamous cell carcinoma. Surgery. 2013;154(3):512–20.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Itatani Y, Kawada K, Inamoto S, Yamamoto T, Ogawa R, Taketo M, et al. The role of chemokines in promoting colorectal cancer invasion/metastasis. Int J Mol Sci. 2016;17(5):643.PubMedCentralCrossRefGoogle Scholar
  6. 6.
    Basith S, Manavalan B, Yoo TH, Kim SG, Choi S. Roles of toll-like receptors in cancer: a double-edged sword for defense and offense. Arch Pharm Res. 2012;35(8):1297–316.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science. 1973;179(4068):77–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Pradayrol L, Chayvialle J, Carlquist M, Mutt V. Isolation of a porcine intestinal peptide with C-terminal somatostatin. Biochem Biophys Res Commun. 1978;85(2):701–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Patel Y, Greenwood M, Kent G, Panetta R, Srikant C. Multiple gene transcripts of the somatostatin receptor SSTR2: tissue-selective distribution and cAMP regulation. Biochem Biophys Res Commun. 1993;192(1):288–94.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Reubi J-C. Somatostatin receptors in the gastrointestinal tract in health and disease. Yale J Biol Med. 1992;65(5):493.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Shulkes A. 9 Somatostatin: physiology and clinical applications. Baillieres Clin Endocrinol Metab. 1994;8(1):215–36.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Liapakis G, Fitzpatrick D, Hoeger C, Rivier J, Vandlen R, Reisine T. Identification of ligand binding determinants in the somatostatin receptor subtypes 1 and 2. J Biol Chem. 1996;271(34):20331–9.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    NEHRUNG RB, MEYERHOF W, RICHTER D. Aspartic acid residue 124 in the third transmembrane domain of the somatostatin receptor subtype 3 is essential for somatostatin-14 binding. DNA Cell Biol. 1995;14(11):939–44.CrossRefGoogle Scholar
  14. 14.
    Greenwood MT, Hukovic N, Kumar U, Panetta R, Hjorth SA, Srikant CB, et al. Ligand binding pocket of the human somatostatin receptor 5: mutational analysis of the extracellular domains. Mol Pharmacol. 1997;52(5):807–14.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Bass RT, Buckwalter BL, Patel BP, Pausch MH, Price LA, Strnad J, et al. Identification and characterization of novel somatostatin antagonists. Mol Pharmacol. 1996;50(4):709–15.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Duluc C, Moatassim-Billah S, Chalabi-Dchar M, Perraud A, Samain R, Breibach F, et al. Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance. EMBO Mol Med. 2015;7(6):735–53. Scholar
  17. 17.
    Florio T, Yao H, Carey KD, Dillon TJ, Stork PJ. Somatostatin activation of mitogen-activated protein kinase via somatostatin receptor 1 (SSTR1). Mol Endocrinol. 1999;13(1):24–37.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Pagès P, Benali N, Saint-Laurent N, Estève J-P, Schally AV, Tkaczuk J, et al. sst2 somatostatin receptor mediates cell cycle arrest and induction of p27 (Kip1). Evidence for the role of SHP-1. J Biol Chem. 1999;274(21):15186–93.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Theodoropoulou M, Zhang J, Laupheimer S, Paez-Pereda M, Erneux C, Florio T, et al. Octreotide, a somatostatin analogue, mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1 expression. Cancer Res. 2006;66(3):1576–82.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Hukovic N, Rocheville M, Kumar U, Sasi R, Khare S, Patel YC. Agonist-dependent up-regulation of human somatostatin receptor type 1 requires molecular signals in the cytoplasmic C-tail. J Biol Chem. 1999;274(35):24550–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Alderton F, Humphrey PP, Sellers LA. High-intensity p38 kinase activity is critical for p21 cip1 induction and the antiproliferative function of Gi protein-coupled receptors. Mol Pharmacol. 2001;59(5):1119–28.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Tulipano G, Stumm R, Pfeiffer M, Kreienkamp H-J, Höllt V, Schulz S. Differential β-arrestin trafficking and endosomal sorting of somatostatin receptor subtypes. J Biol Chem. 2004;279(20):21374–82.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Smalley K, Koenig J, Feniuk W, Humphrey P. Ligand internalization and recycling by human recombinant somatostatin type 4 (h sst4) receptors expressed in CHO-K1 cells. Br J Pharmacol. 2001;132(5):1102–10.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bethge N, Diel F, Rösick M, Holz J. Somatostatin half-life: a case report in one healthy volunteer and a three month follow-up. Horm Metab Res. 1981;13(12):709–10.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Gazal S, Gelerman G, Ziv O, Karpov O, Litman P, Bracha M, et al. Human somatostatin receptor specificity of backbone-cyclic analogues containing novel sulfur building units. J Med Chem. 2002;45(8):1665–71.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Rohrer SP, Schaeffer JM. Identification and characterization of subtype selective somatostatin receptor agonists. J Physiol Paris. 2000;94(3–4):211–5.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Hirschmann R, Nicolaou K, Pietranico S, Salvino J, Leahy EM, Sprengeler PA, et al. Nonpeptidal peptidomimetics with beta-D-glucose scaffolding. A partial somatostatin agonist bearing a close structural relationship to a potent, selective substance P antagonist. J Am Chem Soc. 1992;114(23):9217–8.CrossRefGoogle Scholar
  28. 28.
    Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C. Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov. 2003;2(12):999.PubMedCrossRefGoogle Scholar
  29. 29.
    Hocart SJ, Jain R, Murphy WA, Taylor JE, Coy DH. Highly potent cyclic disulfide antagonists of somatostatin. J Med Chem. 1999;42(11):1863–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Reubi JC, Schaer J-C, Wenger S, Hoeger C, Erchegyi J, Waser B, et al. SST3-selective potent peptidic somatostatin receptor antagonists. Proc Natl Acad Sci. 2000;97(25):13973–8.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hoyer D, Dixon K, Gentsch C, Vassout A, Enz A, Jaton A, et al. NVP-SRA880, a somatostatin sst1 receptor antagonist promotes social interactions, reduces aggressive behaviour and stimulates learning. Pharmacologist. 2002;44(2 Suppl 1):A254.Google Scholar
  32. 32.
    Poitout L, Roubert P, Contour-Galcéra M-O, Moinet C, Lannoy J, Pommier J, et al. Identification of potent non-peptide somatostatin antagonists with sst3 selectivity. J Med Chem. 2001;44(18):2990–3000.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Ginj M, Zhang H, Waser B, Cescato R, Wild D, Wang X, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci. 2006;103(44):16436–41.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Stefan Schulz CB, Castano Justo, Culler M, Epelbaum J, Hofland L, Hoyer D, Reubi J-C, Schmid H, Schonbrunn A, Feniuk W, Harmar A, Humphrey PPA, Meyerhof W, O’Carroll A-M, Patel YC, Reisine T, Schindler M, Taylor JE, Vezzani A, Hills R (2018) Somatostatin receptors [cited 2018]. Available from:
  35. 35.
    Herrera-Martínez AD, Gahete MD, Pedraza-Arevalo S, Sánchez-Sánchez R, Ortega-Salas R, Serrano-Blanch R, et al. Clinical and functional implication of the components of somatostatin system in gastroenteropancreatic neuroendocrine tumors. Endocrine. 2018;59(2):426–37.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Janson EMT, Ahlström H, Andersson T, Öberg KE. Octreotide and interferon alfa: a new combination for the treatment of malignant carcinoid tumours. Eur J Cancer. 1992;28(10):1647–50.CrossRefGoogle Scholar
  37. 37.
    Pavel ME, Hainsworth JD, Baudin E, Peeters M, Hörsch D, Winkler RE, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011;378(9808):2005–12.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Krenning E, Kwekkeboom DJ, Bakker W, Breeman W, Kooij P, Oei H, et al. Somatostatin receptor scintigraphy with [111 In-DTPA-D-Phe 1]-and [123 I-Tyr 3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20(8):716–31.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Nicolas GP, Mansi R, McDougall L, Kaufmann J, Bouterfa H, Wild D, et al. Biodistribution, pharmacokinetics, and dosimetry of 177Lu-, 90Y-, and 111In-labeled somatostatin receptor antagonist OPS201 in comparison to the agonist 177Lu-DOTATATE: the mass effect. J Nucl Med. 2017;58(9):1435–41.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Nicolas GP, Schreiter N, Kaul F, Uiters J, Bouterfa H, Kaufmann J, et al. Comparison of 68Ga-OPS202 (68Ga-NODAGA-JR11) and 68Ga-DOTATOC (68Ga-Edotreotide) PET/CT in patients with gastroenteropancreatic neuroendocrine tumors: evaluation of sensitivity in a prospective phase II imaging study. J Nucl Med. 2017;59(6):915–21.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Sreenivasan VK, Kim EJ, Goodchild AK, Connor M, Zvyagin AV. Targeting somatostatin receptors using in situ-bioconjugated fluorescent nanoparticles. Nanomedicine. 2012;7(10):1551–60.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Killingsworth MC, Lai K, Wu X, Yong JL, Lee CS. Quantum dot immunocytochemical localization of somatostatin in somatostatinoma by widefield epifluorescence, super-resolution light, and immunoelectron microscopy. J Histochem Cytochem. 2012;60(11):832–43.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Surujpaul PP, Gutierrez-Wing C, Ocampo-García B, Ramirez FM, de Murphy CA, Pedraza-Lopez M, et al. Gold nanoparticles conjugated to [Tyr3] octreotide peptide. Biophys Chem. 2008;138(3):83–90.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Dubey N, Varshney R, Shukla J, Ganeshpurkar A, Hazari PP, Bandopadhaya GP, et al. Synthesis and evaluation of biodegradable PCL/PEG nanoparticles for neuroendocrine tumor targeted delivery of somatostatin analog. Drug Deliv. 2012;19(3):132–42.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Abdellatif AA, El Rasoul SA, Osman S. Gold nanoparticles decorated with octreotide for somatostatin receptors targeting. J Pharm Sci Res. 2015;7(1):14.Google Scholar
  47. 47.
    López-Tobar E, Hernández B, Gómez J, Chenal A, Garcia-Ramos JV, Ghomi M, et al. Anchoring sites of fibrillogenic peptide hormone somatostatin-14 on plasmonic nanoparticles. J Phys Chem C. 2015;119(15):8273–9.CrossRefGoogle Scholar
  48. 48.
    Besmer P, Murphy JE, George PC, Qiu F, Bergold PJ, Lederman L, et al. A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature. 1986;320(6061):415.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Yarden Y, Kuang W-J, Yang-Feng T, Coussens L, Munemitsu S, Dull T, et al. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. 1987;6(11):3341–51.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Tabone S, Théou N, Wozniak A, Saffroy R, Deville L, Julié C, et al. KIT overexpression and amplification in gastrointestinal stromal tumors (GISTs). Biochim Biophys Acta Mol Bas Dis. 2005;1741(1–2):165–72.CrossRefGoogle Scholar
  51. 51.
    Zsebo KM, Williams DA, Geissler EN, Broudy VC, Martin FH, Atkins HL, et al. Stem cell factor is encoded at the SI locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell. 1990;63(1):213–24.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Zhang Z, Zhang R, Joachimiak A, Schlessinger J, Kong X-P. Crystal structure of human stem cell factor: implication for stem cell factor receptor dimerization and activation. Proc Natl Acad Sci. 2000;97(14):7732–7.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Yuzawa S, Opatowsky Y, Zhang Z, Mandiyan V, Lax I, Schlessinger J. Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell. 2007;130(2):323–34.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Zhu W-M, Dong W-F, Minden M. Alternate splicing creates two forms of the human kit protein. Leuk Lymphoma. 1994;12(5–6):441–7.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Mol CD, Lim KB, Sridhar V, Zou H, Chien EY, Sang B-C, et al. Structure of a c-kit product complex reveals the basis for kinase transactivation. J Biol Chem. 2003;278(34):31461–4.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML, Scheibe DN, et al. Structural basis for the autoinhibition and STI-571 inhibition of c-kit tyrosine kinase. J Biol Chem. 2004;279(30):31655–63.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Klippel A, Escobedo JA, Hirano M, Williams LT. The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol Cell Biol. 1994;14(4):2675–85.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91(2):231–41.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lennartsson J, Blume-Jensen P, Hermanson M, Pontén E, Carlberg M, RoÈnnstrand L. Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction. Oncogene. 1999;18(40):5546.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Shivakrupa R, Linnekin D. Lyn contributes to regulation of multiple Kit-dependent signaling pathways in murine bone marrow mast cells. Cell Signal. 2005;17(1):103–9.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Sherry M, LINNEKIN D. Lyn is activated during late G1 of stem-cell-factor-induced cell cycle progression in haemopoietic cells. Biochem J. 1999;342(1):163–70.CrossRefGoogle Scholar
  62. 62.
    Simon C, Dondi E, Chaix A, de Sepulveda P, Kubiseski TJ, Varin-Blank N, et al. Lnk adaptor protein down-regulates specific Kit-induced signaling pathways in primary mast cells. Blood. 2008;112(10):4039–47.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    AOCS (2018) Lipid library [cited 2018]. Available from:
  64. 64.
    Trieselmann N, Soboloff J, Berger S. Mast cells stimulated by membrane-bound, but not soluble, steel factor are dependent on phospholipase C activation. Cell Mol Life Sci. 2003;60(4):759–66.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Koike T, Hirai K, Morita Y, Nozawa Y. Stem cell factor-induced signal transduction in rat mast cells. Activation of phospholipase D but not phosphoinositide-specific phospholipase C in c-kit receptor stimulation. J Immunol. 1993;151(1):359–66.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Liu H, Chen X, Focia PJ, He X. Structural basis for stem cell factor–KIT signaling and activation of class III receptor tyrosine kinases. EMBO J. 2007;26(3):891–901.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    PHARMACOLOGY Gt. Type III RTKs: PDGFR, CSFR, Kit, FLT3 receptor family: KIT proto-oncogene receptor tyrosine kinase [cited 2018]. Available from:
  68. 68.
    Rankin S, Reszka AP, Huppert J, Zloh M, Parkinson GN, Todd AK, et al. Putative DNA quadruplex formation within the human c-kit oncogene. J Am Chem Soc. 2005;127(30):10584–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gunaratnam M, Swank S, Haider SM, Galesa K, Reszka AP, Beltran M, et al. Targeting human gastrointestinal stromal tumor cells with a quadruplex-binding small molecule. J Med Chem. 2009;52(12):3774–83.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    McLuckie KI, Waller ZA, Sanders DA, Alves D, Rodriguez R, Dash J, et al. G-quadruplex-binding benzo [a] phenoxazines down-regulate c-KIT expression in human gastric carcinoma cells. J Am Chem Soc. 2011;133(8):2658–63.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bejugam M, Gunaratnam M, Müller S, Sanders DA, Sewitz S, Fletcher JA, et al. Targeting the c-Kit promoter G-quadruplexes with 6-substituted indenoisoquinolines. ACS Med Chem Lett. 2010;1(7):306–10.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wang X, Zhou C-X, Yan J-W, Hou J-Q, Chen S-B, Ou T-M, et al. Synthesis and evaluation of quinazolone derivatives as a new class of c-KIT G-quadruplex binding ligands. ACS Med Chem Lett. 2013;4(10):909–14.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kimura S, Egashira K, Nakano K, Iwata E, Miyagawa M, Tsujimoto H, et al. Local delivery of imatinib mesylate (STI571)-incorporated nanoparticle ex vivo suppresses vein graft neointima formation. Circulation. 2008;118(14 suppl 1):S65–70.PubMedCrossRefGoogle Scholar
  74. 74.
    Marslin G, Revina AM, Khandelwal VKM, Balakumar K, Prakash J, Franklin G, et al. Delivery as nanoparticles reduces imatinib mesylate-induced cardiotoxicity and improves anticancer activity. Int J Nanomedicine. 2015;10:3163.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Fan Y, Du W, He B, Fu F, Yuan L, Wu H, et al. The reduction of tumor interstitial fluid pressure by liposomal imatinib and its effect on combination therapy with liposomal doxorubicin. Biomaterials. 2013;34(9):2277–88.PubMedCrossRefGoogle Scholar
  76. 76.
    Saber MM, Bahrainian S, Dinarvand R, Atyabi F. Targeted drug delivery of Sunitinib Malate to tumor blood vessels by cRGD-chitosan-gold nanoparticles. Int J Pharm. 2017;517(1–2):269–78.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Kim WK, Park M, Kim Y-K, You KT, Yang H-K, Lee JM, et al. MicroRNA-494 downregulates KIT and inhibits gastrointestinal stromal tumor cell proliferation. Clin Cancer Res. 2011;17:7584.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Durso M, Gaglione M, Piras L, Mercurio ME, Terreri S, Olivieri M, et al. Chemical modifications in the seed region of miRNAs 221/222 increase the silencing performances in gastrointestinal stromal tumor cells. Eur J Med Chem. 2016;111:15–25.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Tu L, Wang M, Zhao W-Y, Zhang Z-Z, Tang D-F, Zhang Y-Q, et al. miRNA-218-loaded carboxymethyl chitosan-Tocopherol nanoparticle to suppress the proliferation of gastrointestinal stromal tumor growth. Mater Sci Eng C. 2017;72:177–84.CrossRefGoogle Scholar
  80. 80.
    Moreno M, Lombardi A, Silvestri E, Senese R, Cioffi F, Goglia F, et al. PPARs: nuclear receptors controlled by, and controlling, nutrient handling through nuclear and cytosolic signaling. PPAR Res. 2010;2010:1.CrossRefGoogle Scholar
  81. 81.
    Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011;2(4):236.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs: from orphan receptors to drug discovery. J Med Chem. 2000;43(4):527–50.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Luisi BF, Xu W, Otwinowski Z, Freedman L, Yamamoto K, Sigler P. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature. 1991;352(6335):497.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Schwabe JW, Chapman L, Finch JT, Rhodes D. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. Cell. 1993;75(3):567–78.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988;240(4854):889–95.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Tsai M-J, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem. 1994;63(1):451–86.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Allan GF, Leng X, Tsai S, Weigel N, Edwards D, Tsai M-J, et al. Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J Biol Chem. 1992;267(27):19513–20.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res. 1996;37(5):907–25.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Wright MB, Bortolini M, Tadayyon M, Bopst M. Minireview: challenges and opportunities in development of PPAR agonists. Mol Endocrinol. 2014;28(11):1756–68.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Gaw A, Packard C, Shepherd J. Fibrates. In: Principles and treatment of lipoprotein disorders. Berlin, Heidelberg: Springer; 1994. p. 325–48.CrossRefGoogle Scholar
  91. 91.
    Hawke RL, Chapman JM, Winegar DA, Salisbury JA, Welch RM, Brown A, et al. Potent hypocholesterolemic activity of novel ureido phenoxyisobutyrates correlates with their intrinsic fibrate potency and not with their ACAT inhibitory activity. J Lipid Res. 1997;38(6):1189–203.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Brown PJ, Hurley KP, Stuart LW, Willson TM. Generation of secondary alkyl amines on solid support by borane reduction: application to the parallel synthesis of PPAR ligands. Synthesis. 1997;1997(07):778–82.CrossRefGoogle Scholar
  93. 93.
    Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J Biol Chem. 1995;270(22):12953–6.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Hulin B, McCarthy PA, Gibbs EM. The glitazone family of antidiabetic agents. Curr Pharm Des. 1996;2(1):85–102.Google Scholar
  95. 95.
    Wang W, Wang R, Zhang Z, Li D, Yu Y. Enhanced PPAR-γ expression may correlate with the development of Barrett’s esophagus and esophageal adenocarcinoma. Oncol Res Featur Preclin Clin Cancer Ther. 2011;19(3–4):141–7.Google Scholar
  96. 96.
    Sato H, Ishihara S, Kawashima K, Moriyama N, Suetsugu H, Kazumori H, et al. Expression of peroxisome proliferator-activated receptor (PPAR) γ in gastric cancer and inhibitory effects of PPARγ agonists. Br J Cancer. 2000;83(10):1394.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Dai Y, Wang W-H. Peroxisome proliferator-activated receptor γ and colorectal cancer. World J Gastrointest Oncol. 2010;2(3):159.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ban JO, Kwak DH, Oh JH, Park E-J, Cho M-C, Song HS, et al. Suppression of NF-κB and GSK-3β is involved in colon cancer cell growth inhibition by the PPAR agonist troglitazone. Chem Biol Interact. 2010;188(1):75–85.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Tsukahara T, Hanazawa S, Kobayashi T, Iwamoto Y, Murakami-Murofushi K. Cyclic phosphatidic acid decreases proliferation and survival of colon cancer cells by inhibiting peroxisome proliferator-activated receptor γ. Prostaglandins Other Lipid Mediat. 2010;93(3–4):126–33.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Röhrl C, Kaindl U, Koneczny I, Hudec X, Baron DM, König JS, et al. Peroxisome-proliferator-activated receptors γ and β/δ mediate vascular endothelial growth factor production in colorectal tumor cells. J Cancer Res Clin Oncol. 2011;137(1):29–39.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Wang D, Ning W, Xie D, Guo L, DuBois RN. Peroxisome proliferator-activated receptor δ confers resistance to peroxisome proliferator-activated receptor γ-induced apoptosis in colorectal cancer cells. Oncogene. 2012;31(8):1013.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Koga H, Selvendiran K, Sivakumar R, Yoshida T, Torimura T, Ueno T, et al. PPARγ potentiates anticancer effects of gemcitabine on human pancreatic cancer cells. Int J Oncol. 2012;40(3):679–85.PubMedPubMedCentralGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringInstitute of Chemical TechnologyMumbaiIndia
  2. 2.Department of Pharmaceutical Sciences & TechnologyInstitute of Chemical TechnologyMumbaiIndia
  3. 3.Department of Pharmaceutical SciencesInsitute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence, Government of MaharashtraMumbaiIndia

Personalised recommendations