Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 109))

Abstract

The fibric acid derivatives, or fibrates, have, until recently, been the most widely used lipid-lowering drugs in clinical practice. In the UK, for the year ending June 1990, the fibrates available at that time (bezafibrate, gemfibrozil and clofibrate) constituted 62% of all prescribed items for hyperlipidaemia. In the same period, bezafibrate was the most widely prescribed lipid-lowering drug (O’Brien 1991). In the US, from 1984–1987, gemfibrozil held first place in the ranking of lipid-lowering drugs in terms of number of prescriptions written and was only overtaken in 1988, after the introduction of lovastatin (Wysowski et al. 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abshagen U, Bablok W, Koch K, Lang PD, Schmidt HAE, Senn M, Stork H (1979) Disposition pharmacokinetics of bezafibrate in man. Eur J Clin Pharmacol 16: 31–38

    Article  PubMed  CAS  Google Scholar 

  • Angelin B, Einarsson K, Leijd B (1984) Effect of ciprofibrate treatment on biliary lipids in patients with hyperlipoproteinaemia. Eur J Clin Invest 14: 73–78

    Article  PubMed  CAS  Google Scholar 

  • Austin MA, Krauss RM (1986) Genetic control of low density lipoprotein subclasses. Lancet 2: 592–595

    Article  PubMed  CAS  Google Scholar 

  • Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM (1988) Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 260: 1917–1921

    Article  PubMed  CAS  Google Scholar 

  • Austin MA, King MC, Vranizan KM, Krauss RM (1990) Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 82: 495–506

    Google Scholar 

  • Austin MA, Brunzell JD, Fitch WL, Krauss RM (1990) Inheritance of low density lipoprotein subclass pattern in familial combined hyperlipoproteinaemia. Arteriosclerosis 10: 520–530

    Article  PubMed  CAS  Google Scholar 

  • Balfour JA, McTavish D, Heel RC (1990) Fenofibrate. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in dyslipidaemia. Drugs 40: 260–290

    Google Scholar 

  • Berndt J, Gaumert R, Still J (1978) Mode of action of lipid lowering agents clofibrate and BM15075 on cholesterol biosynthesis in rat liver. Atherosclerosis 30: 147–152

    Article  PubMed  CAS  Google Scholar 

  • Blane GF (1987) Comparative toxicity and safety profile of fenofibrate and other fibric acid derivatives. Am J Med 83 Suppl 5B: 26–36

    Google Scholar 

  • Brodie RR, Chasseaud LF, Elsom FF, Franklin ER, Taylor T (1976) Antilipidemic drugs: the metabolic fate of the hypolipidemic agent isopropy-[4’-(pchlorobenzoyl)-2-phenoxy-2-methyl]-propionate (LE 178) in rats, dogs and man. Arzneimitteeforschung 26: 896–901

    CAS  Google Scholar 

  • Brown MS, Goldstein JL (1985) Drugs used in the treatment of hyperlipoproteinemia. In: Gilman AG, Goodman LS, Rall TW, Murad F (eds) The pharmacological basis of therapeutics. Macmillan, New York, pp 827–845

    Google Scholar 

  • Brown MS, Dana SE, Goldstein JL (1974) Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem 249: 789–796

    Google Scholar 

  • Canzler H, Bojanovski D (1980) Lowering effect of fenofibrate (procetofene) on lipoproteins in different types of hyperlipoproteinemias. Artery 8: 171–178

    PubMed  CAS  Google Scholar 

  • Castillo M, Burgos C, Rodriguez-Vico F, Zafra MF, Garcia-Peregrin E (1990) Effects of clofibrate on the main regulatory enzymes of cholesterogenesis. Life Sci 46 (6): 397–403

    Article  PubMed  CAS  Google Scholar 

  • Chan MK (1989) Gemfibrozil improves abnormalities of lipid metabolism in patients on continuous ambulatory peritoneal dialysis: the role of postheparin lipases in the metabolism of high-density lipoprotein subfractions. Metabolism 38: 939–945

    Article  PubMed  CAS  Google Scholar 

  • Chicaud P, Demange J, Drouin P, Debry G (1984) Long term (18 months) effects of fenofibrate in hypercholesterolaemic subjects. Action du fenofibrate chez des enfants hypercholesterolemiques: recul de 18 mois. Presse Med 13: 417–419

    PubMed  CAS  Google Scholar 

  • Committee of Principal Investigators (1978) A cooperative trial in the primary prevention of ischaemic heart disease using clofibrate. Br Heart 10: 1069–1118

    Google Scholar 

  • Committee of Principal Investigators (1984) WHO cooperative trial on primary prevention of ischaemic heart disease with clofibrate to lower serum cholesterol. Lancet 2: 600–604

    Google Scholar 

  • Coronary Drug Project Research Group (1977) Gall bladder disease as a side effect of drugs influencing lipid metabolism. N Engl J Med 296: 1188–1190

    Google Scholar 

  • Cosentini R, Blasi F, Trinchera M, Sommariva D, Fasoli A (1989) Inhibition of cholesterol biosynthesis in freshly isolated blood mononuclear cells from normolipidemic subjects and hypercholesterolemic patients treated with bezafibrate. Atherosclerosis 79: 253–255

    Article  PubMed  CAS  Google Scholar 

  • Crouse JR, Parks JS, Schey HM, Kahl FR (1985) Studies of low density lipoprotein molecular weight in human beings with coronary artery disease. J Lipid Res 26: 566–574

    PubMed  CAS  Google Scholar 

  • Curtis LD, Dickson AC, Ling KLE, Betteridge J (1988) Combination treatment with cholestyramine and bezafibrate for heterozygous familial hypercholesterolaemia. Br Med J 297: 173–175

    Article  CAS  Google Scholar 

  • Dairou F, Regy C (1986) Ciprofibrate multicentric study in 6812 hyperlipidemic patients. (Abstract) In: Proceedings of the 9th International Symposium on Drugs Affecting Lipid Metabolism, p 62

    Google Scholar 

  • Davignon J, Gascon B, Brossard D, Quidoz S, Leboeuf N, Lelorier J (1982) The use of ciprofibrate in the treatment of familial hyperlipidemias. In: Noseda G, Fragiacomo C, Fumagalli R, Paoletti R (eds) Lipoproteins and coronary atherosclerosis. Elsevier, Amsterdam, pp 213–221

    Google Scholar 

  • Davison C, Benziger D, Fritz A, Edelson J (1975) Absorption and disposition of 2[4-(2,2-dichlorocyclopropyl)phenoxy]-2-methylpropanoic acid, WIN 35 833, in rats, monkeys, and men. Drug Metab Dispos 3: 520–524

    PubMed  CAS  Google Scholar 

  • Desager JP, Harvengt C (1978) Clinical pharmacokinetic study of procetofene, a new hypolipidemic drug, in volunteers. Int J Clin Pharmacol Biopharm 16: 570–574

    PubMed  CAS  Google Scholar 

  • East C, Bilheimer DW, Grundy SM (1988) Combination drug therapy for familial combined hyperlipidemia. Ann Intern Med 109: 25–32

    PubMed  CAS  Google Scholar 

  • Fears R (1983) Pharmacological control of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. In: Sabine JR (ed) 3-Hydroxy-3-methylglutaryl coenzyme A reductase. CRC, Boca Raton

    Google Scholar 

  • Fisher WR (1983) Heterogeneity of plasma low density lipoproteins. Manifestations of the physiologic phenomenon in man, Metabolism 32: 283–291

    Article  PubMed  CAS  Google Scholar 

  • Forland SC, Feng Y, Cutler RE (1990) Apparent reduced absorption of gemfibrozil when given with colestipol. J Clin Pharmacol 30: 29–32

    PubMed  CAS  Google Scholar 

  • Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalmi P, Helo P, Huttunen JK, Kaitaniemi P, Koskinen P, Manninen V, Maenpaa H, Malkonen M, Manttari M, Norola S, Pasternack A, Pikkarainen J, Romo M, Sjoblom T, Nikkila EA (1987) Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. N Engl J Med 317: 1237–1245

    Article  PubMed  CAS  Google Scholar 

  • Fruchart JC, Davignon J, Bard JM, Grothe AM, Richard A, Fievet C (1987) Effect of fenofibrate treatment on type III hyperlipoproteinemia. Am J Med 83 Suppl 5B: 71–74

    Google Scholar 

  • Gavish D, Oschry Y, Fainaru M, Eisenberg S (1986) Change in very low-, low-, and high-density lipoproteins during lipid lowering (bezafibrate) therapy: studies in type IIA and type IIb hyperlipoproteinaemia. Eur J Clin Invest 16: 61–68

    Article  PubMed  CAS  Google Scholar 

  • Gaw A, Shepherd J (1990) Combination drug therapy for hyperlipidaemia. J Drug Dev 3 Suppl 1: 227–231

    Google Scholar 

  • Glueck CJ, Speirs J, Tracy T (1990) Safety and Efficacy of combined gemfibrozillovastatin therapy for primary dyslipoproteinemias. J Lab Clin Med 115: 603–609

    PubMed  CAS  Google Scholar 

  • Gofman JW, Lindgren FT, Elliott HM, Mantz W, Hewitt J, Strisower B, Herring B (1950) The role of lipids and lipoproteins in atherosclerosis. Science 111: 166–171

    Article  PubMed  CAS  Google Scholar 

  • Goodman DS, Noble RP, Dell RB (1973) The effects of colestipol resin and of colestipol plus clofibrate on the turnover of plasma cholesterol in man. J Clin Invest 52: 2646–2655

    Article  PubMed  CAS  Google Scholar 

  • Griffin BA, Caslake MJ, Gaw A, Yip B, Packard CJ, Shepherd J (1992) Effects of cholestyramine and acipimox on subfractions of plasma low density lipoprotein. Studies in normolipidaemic and hypercholesterolaemic subjects. Eur J Clin Invest 22: 383–390

    Google Scholar 

  • Grundy SM, Ahrens EH, Salen G (1972) Mechanisms of action of clofibrate on cholesterol metabolism in patients with hyperlipidemia. J Lipid Res 13: 531–551

    PubMed  CAS  Google Scholar 

  • Gugler R, Hartlapp J (1978) Clofibrate kinetics after single and mulitiple doses. Clin Pharmacol Ther 24: 432–438

    PubMed  CAS  Google Scholar 

  • Hammond MG, Mengel MC, Warmke GL, Fisher WR (1977) Macromolecular dispersion of human plasma low density lipoprotein in hypertriglyceridemia. Metabolism 26: 231–242

    Article  Google Scholar 

  • Harvengt C, Heller F, Desager JP (1980) Hypolipidemic and hypouricemic action of fenofibrate in various types of hyperlipoproteinemias. Artery 7: 73–82

    PubMed  CAS  Google Scholar 

  • Homberg JC, Abuaf N, Helmy-Khalil S, Biour M, Poupon R, Islam S, Darnis F, Levy VG, Opolon P, Beaugrand M, Toulet J, Danan G, Benhamou JP (1985) Drug-induced hepatitis associated with anticytoplasmic organelle autoantibodies. Hepatology 5: 722–727

    Article  PubMed  CAS  Google Scholar 

  • Houlston R, Quiney J, Watts GF, Lewis B (1988) Gemfibrozil in the treatment of resistant familial hypercholesterolaemia and type III hyperlipoproteinaemia. J R Soc Med 81: 274–276

    PubMed  CAS  Google Scholar 

  • Illingworth DR (1991) Fibric acid derivatives. In: Rifkind BM (ed) Drug treatment of hyperlipidemia. Dekker, New York

    Google Scholar 

  • Illingworth DR, O’Malley JP (1990) The hypolipidemic effects of lovastatin and clofibrate alone and in combination in patients with type III hyperlipidemia. Metabolism 39: 403–409

    Article  PubMed  CAS  Google Scholar 

  • Illingworth DR, Olsen GD, Cook SF, Sexton GJ, Wendel HA, Connor WE (1982) Ciprofibrate in the therapy of type II hypercholesterolaemia. A double blind trial. Atherosclerosis 44: 211–221

    Google Scholar 

  • Janus ED, Grant S, Lintott CJ, Wardell R (1985) Apolipoprotein E phenotypes in hyperlipidaemic patients and their implications for treatment. Atherosclerosis 57: 249–266

    CAS  Google Scholar 

  • Kleinman Y, Eisenberg S, Oschry Y, Gavish D, Stein O, Stein Y (1985) Defective metabolism of hypertriglyceridemic low density lipoprotein in cultured human skin fibroblasts. Normalization with bezafibrate therapy. J Clin Invest 75: 1796–1803

    Google Scholar 

  • Klosiewicz-Latoszek L, Nowicka G, Szostak WB, Naruszewicz M (1987) Influence of bezafibrate and colestipol on LDL-cholesterol, LDL-apolipoprotein B and HDL-cholesterol in hyperlipoproteinaemia. Atherosclerosis 63: 203–209

    Google Scholar 

  • Krauss RM (1987) Physical heterogeneity of apolipoprotein B-containing lipoproteins. In: Lippel K (ed) Proceedings of the workshop on lipoprotein heterogeneity. Government Printing Office Washington, pp 15–21 (NIH publication no 87–2646 )

    Google Scholar 

  • Krauss RM, Burke DJ (1982) Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res 23: 97–104

    PubMed  CAS  Google Scholar 

  • Langer T, Levy RI (1968) Acute muscular syndrome associated with administration of clofibrate. N Engl J Med 279: 856–858

    Article  PubMed  CAS  Google Scholar 

  • Leaf DA, Connor WE, Illingworth DR, Bacon SP, Sexton G (1989) The hypolipidemic effects of gemfibrozil in type V hyperlipidemia. A double blind crossover study. JAMA 262: 3154–3160

    Google Scholar 

  • Lehtonen A, Viikari J (1981) Effect of procetofen on serum total cholesterol, triglyceride, and high density lipoprotein-cholesterol concentrations in hyperlipoproteinemia. Int J Clin Pharmacol Ther Toxicol 19: 534–538

    Google Scholar 

  • Levy RI, Fredrickson DS, Shulman R, Bilheimer DW, Breslow JL, Stone NJ, Lux SE, Sloan HR, Krauss RM, Herbert PN (1972) Dietary and drug treatment of primary hyperlipoproteinemia. Ann Intern Med 77: 267–294

    CAS  Google Scholar 

  • Lussier-Cacan S, Bard JM, Boulet L, Nestruck AC, Grothe AM, Fruchart JC, Davignon J (1989) Lipoprotein composition changes induced by fenofibrate in dysbetalipoproteinemia type III. Atherosclerosis 78: 167–182

    Article  PubMed  CAS  Google Scholar 

  • Malmendier CL, Delcroix C (1985) Effects of fenofibrate on high and low density lipoprotein metabolism in heterozygous familial hypercholesterolemia. Atherosclerosis 55: 161–169

    Article  PubMed  CAS  Google Scholar 

  • Manninen V, Elo O, Frick MH, Haapa K, Heinonen OP, Heinsalmi P, Helo P, Huttunen JK, Kaitaniemi P, Koskinen P, Maenpaa H, Malkonen M, Manttari M, Norola S, Pasternack A, Pikkarainen J, Romo M, Sjoblom T, Nikkila EA (1988) Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA 260: 641–651

    CAS  Google Scholar 

  • Manttari M, Koskinen P, Manninen V, Huttunen JK, Frick MH, Nikkila EA (1990) Effect of gemfibrozil on the concentration and composition of serum lipoproteins. Atherosclerosis 81: 11–17

    Article  PubMed  CAS  Google Scholar 

  • Maxwell RE, Nawrocki JW, Uhlendorf PD (1983) Some comparative effects of gemfibrozil, clofibrate, bezafibrate, cholestyramine and compactin on sterol metabolism in rats. Atherosclersis 48: 195–203

    Article  CAS  Google Scholar 

  • McNamara DJ, Davidson NO, Fernandez S (1980) In vitro cholesterol synthesis in freshly isolated mononuclear cells of human blood: effect of in vivo administration of clofibrate and/or cholestyramine. J Lipid Res 21: 65–71

    PubMed  CAS  Google Scholar 

  • Mitropoulos KA, Venkatesan S (1985) Membrane mediated control of reductase activity. In: Preiss B (ed) Regulation of HMG-CoA reductase. Academic, Orlando, pp 1–48

    Google Scholar 

  • Monk JP, Todd PA (1987) Bezafibrate. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in hyperlipidaemia. Drugs 33: 539–576

    Google Scholar 

  • Musliner TA, Krauss RM (1988) Lipoprotein subspecies and risk of coronary disease. Clin Chem 34 (8B): B78 — B83

    PubMed  CAS  Google Scholar 

  • Needham L, Finnegan I, Housley MD (1985) Adenylate cyclase and a fatty acid spin probe detect changes in plasma membrane lipid phase separations induced by dietary manipulation of the cholesterol: phospholipid ratio. FEBS Lett 183: 81–86

    Article  PubMed  CAS  Google Scholar 

  • Nestel PJ, Hunt D, Wahlqvist ML (1980) Clofibrate raises plasma apoprotein A-I and HDL-cholesterol concentrations. Atherosclerosis 37: 625–629

    Article  PubMed  CAS  Google Scholar 

  • Newton RS, Krause BR (1986) Mechanisms of action of gemfibrozil: comparison of studies in the rat to clinical efficacy. In: Fears R, Levy RI, Shepherd J, Packard CJ, Miller NE (eds) Pharmacological control of hyperlipidaemia. Prous, Barcelona, pp 171–186

    Google Scholar 

  • O’Brien RI (1991) Cholesterol and coronary heart disease: consensus or controversy? Office of Health Economics, London (Studies of Current Health Problems No 98 )

    Google Scholar 

  • Okerholm RA, Keeley FJ, Peterson FE, Glazko AJ (1976) The metabolism of gemfibrozil. Proc R Soc Med 69: 11–14

    PubMed  CAS  Google Scholar 

  • Olsson AG, Oro L (1982) Dose—response study of the effect of ciprofibrate on serum lipoprotein concentrations in hyperlipoproteinaemia. Atherosclerosis 42: 229–243

    Article  PubMed  CAS  Google Scholar 

  • Olsson AG, Lang PD, Vollmar J (1985) Effect of bezafibrate during 4.5 years of treatment of hyperlipoproteinaemia. Atherosclerosis 55: 195–203

    Article  PubMed  CAS  Google Scholar 

  • Packard CJ, Clegg RJ, Dominiczak MH, Lorimer AR, Shepherd J (1986) Effects of bezafibrate on apolipoprotein B metabolism in type III hyperlipoproteinemic subjects. J Lipid Res 27: 930–938

    PubMed  CAS  Google Scholar 

  • Palmer RH (1987) Effects of fibric acid derivatives on biliary lipid composition. Am J Med 83 Suppl 5B: 37–43

    Google Scholar 

  • Pierce LR, Wysowski DK, Gross TP (1990) Myopathy and rhabdomyolysis associated with lovastatin—gemfibrozil combination therapy. JAMA 264: 71–75

    CAS  Google Scholar 

  • Rabkin SW, Hayden M, Frohlich J (1988) Comparison of gemfibrozil and clofibrate on serum lipids in familial combined hyperlipidemia. A randomized placebo-controlled, double-blind, crossover clinical trial. Atherosclerosis 73: 233–240

    Google Scholar 

  • Rouffy J, Chanu B, Bakir F, Djian F, Goy-Loeper J (1985) Comparative evaluation of the effects of cipofibrate and fenofibrate on lipids, lipoproteins and apoproteins A and B. Atherosclerosis 54: 273–281

    Article  PubMed  CAS  Google Scholar 

  • Saku K, Gartside PS, Hynd BA (1985) Mechanism of gemfibrozil action on lipoprotein metabolism. J Clin Invest 75: 1702–1712

    Article  PubMed  CAS  Google Scholar 

  • Schifferdecker E, Rosak C, Schoffling K (1984) Long term treatment with the lipid lowering agent ciprofibrate. Inn Med 11: 107–112

    Google Scholar 

  • Schneider A, Stange EF, Ditschuneit HH, Ditschuneit H (1985) Fenofibrate treatment inhibits HMG CoA reductase activity in mononuclear cells from hyperlipoproteinemic patients. Atherosclerosis 56: 257–262

    Article  PubMed  CAS  Google Scholar 

  • Shen MS, Krauss RM, Lindgren FT, Forte TM (1981) Heterogeneity of serum low density lipoproteins in normal human subjects. J Lipid Res 22: 236–244

    PubMed  CAS  Google Scholar 

  • Shepherd J, Packard CJ, Stewart JM, Atmeh RF, Clark RS, Boag DE, Carr K, Lorimer AR, Ballantyne D, Morgan HG, Lawrite TDV (1984) Apolipoprotein A and B (Sf 100–400) metabolism during bezafibrate therapy in hypertriglyceridemic subjects. J Clin Invest 74: 2164–2177

    Article  PubMed  CAS  Google Scholar 

  • Shepherd J, Caslake MJ, Lorimer AR, Valiance BD, Packard CJ (1985) Fenofibrate reduces low density lipoprotein catabolism in hypertriglyceridemic subjects. Arteriosclerosis 5: 162–165

    Article  PubMed  CAS  Google Scholar 

  • Shepherd J, Griffin B, Caslake M, Gaw A, Packard C (1991) The influence of fibrates on lipoprotein metabolism. Atheroscler Rev 22: 163–169

    CAS  Google Scholar 

  • Simpson HS, Williamson CM, Olivecrona T, Pringle S, Maclean J, Lorimer AR, Bonnefous F, Bogaievsky Y, Packard CJ, Shepherd J (1990) Postprandial lipemia, fenofibrate and coronary artery disease. Atherosclerosis 85: 193–202

    Article  PubMed  CAS  Google Scholar 

  • Stahlberg D, Reihner E, Ewerth S, Einarsson K, Angelin B (1991) Effects of bezafibrate on hepatic cholesterol metabolism. Eur J Clin Pharmacol 40 Suppl 1: S33 — S36

    Google Scholar 

  • Stange EF, Fruhholz M, Osenbrugge M, Reimann F, Ditschuneit H (1991) Bezafibrate fails to directly modulate HMG-CoA reductase or LDL catabolism in human mononuclear cells. Eur J Clin Pharmacol 40 Suppl 1: S37 — S40

    Google Scholar 

  • Steinmetz J, Morin C, Panek E, Siest G, Drouin P (1981) Biological variations in hyperlipidemic children and adolescents treated with fenofibrate. Clin Chim Acta 112: 43–53

    Article  PubMed  Google Scholar 

  • Stewart JM, Packard CJ, Lorimer AR, Boag DE, Shepherd J (1982) Effects of bezafibrate on receptor mediated and receptor independent low density catabolism in type II hyperlipoproteinemic subjects. Atherosclerosis 44: 355–364

    Article  PubMed  CAS  Google Scholar 

  • Thompson GR (1989) Drug treatment of hyperlipidaemia. In: A handbook of hyperlipidaemia. Current Science, London, pp 177–194

    Google Scholar 

  • Thorp JM (1963) An experimental approach to the problem of disordered lipid metabolism. J Atheroscler Res 3: 351–360

    Article  PubMed  CAS  Google Scholar 

  • Todd PA, Ward A (1988) Gemfibrozil. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in dyslipidaemia. Drugs 36: 314–339

    Google Scholar 

  • Vega GL, Grundy SM (1989) Comparison of lovastatin and gemfibrozil in nor-molipidemic patients with hypoalphalipoproteinemia. JAMA 262: 3148–3153

    CAS  Google Scholar 

  • Vessby B, Lithell H (1990) Interruption of long-term lipid-lowering treatment with bezafibrate in hypertriglyceridaemic patients. Atherosclerosis 82: 137–143

    Article  PubMed  CAS  Google Scholar 

  • Wheeler KAH, West RJ, Lloyd JK, Barley J (1985) Double blind trial of bezafibrate in familial hypercholesterolaemia. Arch Dis Child 60: 34–37

    Article  PubMed  CAS  Google Scholar 

  • Wysowski DK, Kennedy DL, Gross TP (1990) Prescribed use of cholesterol lowering drugs in the United States, 1978 through 1988. JAMA 263: 2185–2188

    Article  PubMed  CAS  Google Scholar 

  • Zilversmit DB (1979) Atherogenesis: a postprandial phenomenon. Circulation 60: 473–485

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaw, A., Packard, C.J., Shepherd, J. (1994). Fibrates. In: Schettler, G., Habenicht, A.J.R. (eds) Principles and Treatment of Lipoprotein Disorders. Handbook of Experimental Pharmacology, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78426-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78426-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78428-6

  • Online ISBN: 978-3-642-78426-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics