Skip to main content

Phytoanticipins: The Constitutive Defense Compounds as Potential Botanical Fungicides

  • Chapter
  • First Online:
Bioactive Molecules in Plant Defense

Abstract

Present control technologies of plant pathogenic fungi decouple the pathogen’s life cycle mainly in two points of ontogeny, either by destroying spores prevent the infection or inhibit the biotrophic thallus, thus anticipating the formation of new infective propagules. Although, nowadays, the only tool for credible control of cultivated plants is the use of synthetic chemicals, the calculability of yield sureness has been worldwide threatened by the emergence of acquired tolerance to this group of pesticides as well as anxious feelings for their undesirable side effects. This situation urges the development of efficient alternative control agents, as threatening the net return even 10% disease incidence can cause economic loss. One approach to discover newer antimicrobial compounds is to search for their presence in natural sources exploiting the defense strategies of plants against their pathogens. Contrary to phytoalexins that are synthesized de novo after the plant is exposed to microbial attack, i.e., being produced in response of elicitors or stressors, the phytoanticipins are not formed in the tissue or released from preexisting plant constituents. These substances are plant antibiotics presented in tissue prior to infection, serving as the basis of pest tolerance. Several thousands of such molecules of different structure have been identified; however, few of them met practical application. In this chapter, we focus on constitutive mechanisms that might be used for controlling phytopathogenic fungi with special regard to organic substances, which might serve either as botanical fungicides or as lead compounds for molecular design. Consequently, the introduction of alien phytoanticipins and precursors of phytoalexins into the proper host/parasite system can represent a prospective tool for disease management. We summarized the results and experiences of past three decades searching for candidates for biofungicides useful in pest management practices. The efficacy of over 100 plant species used as either spices or preparations in traditional medicine or culinary was demonstrated in vitro against 25 phytopathogenic fungi, and possible use of promising candidates was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdolahi A, Hassani A, Ghuosta Y, Bernousi I, Meshkatalsadat MH (2010) In vitro efficacy of four plant essential oils against Botrytis cinerea Pers.: Fr. and Mucor piriformis A. Fischer. J Essent Oil Bear Plants 13(1):97–107. https://doi.org/10.1080/0972060x.2010.10643796

    Article  CAS  Google Scholar 

  • Al Taweel AM (2007) Phytochemical and biological studies of some Clematis species growing in Saudi Arabia. PhD thesis, King Saud University, Riyadh, Saudi Arabia

    Google Scholar 

  • Ali HK, Jumaah AM, Hassian AS (2017) Studying efficiency inhibition of some medicinal plant extracts against some fungi. Int J Curr Microbiol Appl Sci 6(1):108–116. https://doi.org/10.20546/ijcmas.2017.601.014 ISSN: 2319-7706

    Article  Google Scholar 

  • Al-Sohaibani S, Murugan K, Lakshimi G, Anandraj K (2011) Xerophilic aflatoxigenic black tea fungi and their inhibition by Elettaria cardamomum and Syzygium aromaticum extracts. Saudi J Biol Sci 18(4):387–394. https://doi.org/10.1016/j.sjbs.2011.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Altuner EM, Ceter T, Işlek C (2010) Investigation of antifungal activity of Ononis spinosa L. ash used for the therapy of skin infections as folk remedies. Mikrobiyol Bult 44(4):633–639

    Google Scholar 

  • Alves MJ, Ferreira IC, Dias J, Teixeira V, Martins A, Pintado M (2013) A review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds. Curr Top Med Chem 13:2648–2659

    Article  CAS  PubMed  Google Scholar 

  • Al-Zubairi A, Al-Mamary M, Al-Ghasani T (2017) The antibacterial, antifungal, and antioxidant activities of essential oil from different aromatic plants. Glob Adv Res J Med Med Sci 6(9):224–233. ISSN: 2315-5159. https://www.researchgate.net/publication/321035050

  • Araujo C, Sousa MJ, Ferreira MF, Leao C (2003) Activity of essential oils from Mediterranean Lamiaceae species against food spoilage yeasts. J Food Prot 66(4):625–632. https://doi.org/10.4315/0362-028X-66.4.625

    Article  CAS  PubMed  Google Scholar 

  • Arora DS, Ohlan D (1997) In vitro studies on antifungal activity of tea (Camellia sinensis) and coffee (Coffea arabica) against wood-rotting fungi. J Basic Microbiol 37(3):159–165. https://doi.org/10.1002/jobm.3620370302

    Article  CAS  Google Scholar 

  • Arslan M, Dervis S (2010) Antifungal activity of essential oils against three vegetative-compatibility groups of Verticillium dahliae. World J Microbiol Biotechnol 26(10):1813–1821. https://doi.org/10.1007/s11274-010-0362-2

    Article  CAS  Google Scholar 

  • Arslan U, Ilhan K, Karabulut OA (2009) Antifungal activity of aqueous extracts of spices against bean rust (Uromyces appendiculatus). Allelopathy J 24(1):207–213

    Google Scholar 

  • Atmaca S, Simsek S, Denek YE (2017) Antifungal effect of some plant extracts against factors wheat root rot. AIP Conf Proc 1833: AR UNSP 020073. https://doi.org/10.1063/1.4981721

  • Atta-Ur-Rahman Choudhary MI, Farooq A, Ahmed A, Iqbal MZ, Demirci B, Demirci F, Baser KHC (2000) Antifungal activities and essential oil constituents of some spices from Pakistan. J Chem Soc Pak 22(1):60–65

    Google Scholar 

  • Avanço GB, Dias Ferreira F, Silva Bomfim N, de Souza Rodrigues dos Santos PA, Peralta RM, Brugnari T, Mallmann CA, de Abreu Filho AB, Graton Mikcha JM, Machinski M Jr. (2017) Curcuma longa L. essential oil composition, antioxidant effect, and effect on Fusarium verticillioides and fumonisin production. Food Control 73:806–813. https://doi.org/10.1016/j.foodcont.2016.09.032 ISSN 0956-7135

    Article  CAS  Google Scholar 

  • Babu GDK, Shanmugam V, Ravindranath SD, Joshi VP (2007) Comparison of chemical composition and antifungal activity of Curcuma longa L. leaf oils produced by different water distillation techniques. Flavour Fragr J 22(3):191–196. https://doi.org/10.1002/ffj.1780

    Article  CAS  Google Scholar 

  • Badawy MEI, Abdelgaleil SAM (2014) Composition and antimicrobial activity of essential oils isolated from Egyptian plants against plant pathogenic bacteria and fungi. Ind Crop Prod 52:776–782. https://doi.org/10.1016/j.indcrop.2013.12.003

    Article  CAS  Google Scholar 

  • Badiee P, Nasirzadeh A, Motaffaf M (2012) Comparison of Salvia officinalis L. essential oil and antifungal agents against Candida species. J Pharm Technol Drug Res 1. http://www.hoajonline.com/journals/jptdr/content/pdf/7.pdf

  • Baerlocher F, Oertli JJ (1978) Inhibitors of aquatic hyphomycetes in dead conifer needles. Mycologia 70(5):964–974

    Article  Google Scholar 

  • Bajer T, Silha D, Ventura K, Bajerova P (2017) Composition and antimicrobial activity of the essential oil, distilled aromatic water and herbal infusion from Epilobium parviflorum Schreb. Ind Crop Prod 100:95–105. https://doi.org/10.1016/j.indcrop.2017.02.016

    Article  CAS  Google Scholar 

  • Baka ZAM (2010) Antifungal activity of six Saudi medicinal plant extracts against five phytopathogenic fungi. Arch Phytopathol Plant Prot 43(8):736–743. https://doi.org/10.1080/03235400802144595

    Article  Google Scholar 

  • Balkan B, Balkan S, Aydogdu H, Guler N, Ersoy H, Askin B (2017) Evaluation of antioxidant activities and antifungal activity of different plants species against pink mold rot-causing Trichothecium roseum. Arab J Sci Eng 42(6):2279–2289. https://doi.org/10.1007/s13369-017-2484-4

    Article  CAS  Google Scholar 

  • Barla A, Topcu G, Oksuz S, Tumen G, Kingston DGI (2007) Identification of cytotoxic sesquiterpenes from Laurus nobilis L. Food Chem 104(4):1478–1484. https://doi.org/10.1016/j.foodchem.2007.02.019

    Article  CAS  Google Scholar 

  • Basilico MZ, Basilico JC (1999) Inhibitory effects of some spice essential oils on Aspergillus ochraceus NRRL 3174 growth and ochratoxin A production. Lett Appl Microbiol 29(4):238–241. https://doi.org/10.1046/j.1365-2672.1999.00621.x

    Article  CAS  PubMed  Google Scholar 

  • Bayar Y, Onaran A, Yilar M, Gul F (2018) Determination of the essential oil composition and the antifungal activities of bilberry (Vaccinium myrtillus L.) and bay laurel (Laurus nobilis L.). J Essent Oil Bear Plant 21(2):548–555

    Article  CAS  Google Scholar 

  • Begum J, Bhuiyan MNJ, Chowdhury JU, Hoque MN, Anwar MN (2013) Antimicrobial activity of essential oil from seeds of Carum carvi and its composition. Bangladesh J Microbiol 25(2):85–89. https://doi.org/10.3329/bjm.v25i2.4867

    Article  Google Scholar 

  • Bekhechi C, Bekkara FA, Casanova J, Tomi F (2011) Composition and antimicrobial activity of the essential oil of Achillea odorata L. subsp. pectinata (Lamk) var. microphylla (Willd.) Willk. from Northwestern Algeria. J Essent Oil Res 23(3):42–46. https://doi.org/10.1080/10412905.2011.9700456

    Article  CAS  Google Scholar 

  • Bibi S, Afzal M, Khan MB, Jan-e-Alam B, Imtiaz A, Khan R, Anum K (2016) Antifungal assay of ethanolic extract of Clematis graveolens (Lindl.) flowers against some fungi. Middle East J Sci Res 24(3):581–584. https://doi.org/10.5829/idosi.mejsr.2016.24.03.22961

  • Bigaton D, Bacchi LMA, Formagio ASN, Gavassoni WL, Zanella CD (2013) Evaluation of the fungicidal activity of extracts and essential oils on Asian soybean rust. Rev Cienc Agron 44(4):757–763. https://doi.org/10.1590/S1806-66902013000400012

    Article  Google Scholar 

  • bin Jantan I, Yassin MSM, Chin CB, Chen LL, Ng LS (2003) Antifungal activity of the essential oils of nine Zingiberaceae species. Pharmacol Biol 41(5):392–397. https://doi.org/10.1076/phbi.41.5.392.15941

    Article  CAS  Google Scholar 

  • Binns SE, Purgina B, Bergeron C, Smith ML, Ball L, Baum BR, Arnason JT (2000) Light-mediated antifungal activity of Echinacea extracts. Planta Med 66(3):241–244. https://doi.org/10.1055/s-2000-8573

    Article  CAS  PubMed  Google Scholar 

  • Bohinc T, Žnidarčič D, Trdan S (2015) Comparison of field efficacy of four natural fungicides and metiram against late blight (Phytophthora infestans [Mont.] de Bary) on tomato—short communication. Hort Sci (Prague) 42:215–218

    Article  CAS  Google Scholar 

  • Bouchra C, Achouri M, Idrissi Hassani LM, Hmamouchi M (2003) Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr. J Ethnopharmacol 89(1):165–169. https://doi.org/10.1016/S0378-8741(03)00275-7 ISSN 0378-8741

    Article  CAS  PubMed  Google Scholar 

  • Boudegga H, Boughalleb N, Barbouche N, Ben Hamouda MH, El Mahjoub M (2010) In vitro inhibitory actions of some essential oils on Ascosphaera apis, a fungus responsible for honey bee chalkbrood. J Apic Res 49(3):236–242. https://doi.org/10.3896/IBRA.1.49.3.02

    Article  CAS  Google Scholar 

  • Bouterfas K, Mehdadi Z, Aouad L, Elaoufi MM, Khaled MB, Latreche A, Benchiha W (2016) Does the sampling locality influence on the antifungal activity of the flavonoids of Marrubium vulgare against Aspergillus niger and Candida albicans? J Mycol Med 26(3):201–211. https://doi.org/10.1016/j.mycmed.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  • Bouzouita N, Kachouri F, Hamdi M, Chaabouni MM (2003) Antimicrobial activity of essential oils from Tunisian aromatic plants. Flavour Fragr J 18(5):380–383. https://doi.org/10.1002/ffj.1200

    Article  CAS  Google Scholar 

  • Bowers JH, Locke JC (2000) Effect of botanical extracts on the population density of Fusarium oxysporum in soil and control of Fusarium wilt in the greenhouse. Plant Dis 84:300–305

    Article  PubMed  Google Scholar 

  • Boyraz N, Ozcan M (2005) Antifungal effect of some spice hydrosols. Fitoterapia 76:661–665

    Article  PubMed  Google Scholar 

  • Burger Y, Jonas-Levi A, Gurski E, Horev C, Saar U, Cohen R (2010) Variation in antifungal activity in extracts from Momordica plants. Isr J Plant Sci 58(1):1–7. https://doi.org/10.1560/ijps.58.1.1

  • Cabral LD, Pinto VF, Patriarca A (2016) Control of infection of tomato fruits by Alternaria and mycotoxin production using plant extracts. Eur J Plant Pathol 145(2):363–373. https://doi.org/10.1007/s10658-015-0850-1

    Article  Google Scholar 

  • Cai L, Liu CS, Fu XW, Shen XJ, Yin TP, Yang YB, Ding ZT (2012) Two new glucosides from the pellicle of the walnut (Juglans regia). Nat Prod Bioprosp 2:150–153. https://doi.org/10.1007/s13659-012-0009-0

    Article  CAS  Google Scholar 

  • Camele I, De Feo V, Altieri L, Mancini E, De Martino L, Rana GL (2010) An attempt of postharvest orange fruit rot control using essential oils from Mediterranean plants. J Med Food 13(6):1515–1523. https://doi.org/10.1089/jmf.2009.0285

    Article  CAS  PubMed  Google Scholar 

  • Caputo L, Nazzaro F, Souza LF, Aliberti L, De Martino L, Fratianni F, Coppola R, De Feo V (2017) Laurus nobilis: composition of essential oil and its biological activities. Molecules 22:930. https://doi.org/10.3390/molecules22060930

    Article  PubMed Central  CAS  Google Scholar 

  • Cardoso NNR, Alviano CS, Blank AF, Arrigoni-Blank MD, Romanos MTV, Cunha MMI, da Silva AJR, Alviano DS (2017) Anti-cryptococcal activity of ethanol crude extract and hexane fraction from Ocimum basilicum var. Maria bonita: mechanisms of action and synergism with amphotericin B and Ocimum basilicum essential oil. Pharm Biol 55(1):1380–1388. https://doi.org/10.1080/13880209.2017.1302483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carere J, Colgrave ML, Stiller J, Liu CJ, Manners JM, Kazan K, Gardiner DM (2016) Enzyme-driven metabolomic screening: a proof-of-principle method for, discovery of plant defence compounds targeted by pathogens. New Phytol 212(3):770–779. https://doi.org/10.1111/nph.14067

    Article  CAS  PubMed  Google Scholar 

  • Castillo TA, Lemos RA, Pereira JRG, Alves JMA, Francisca M, Teixeira S (2018) Mycelial growth and antimicrobial activity of Pleurotus species (Agaricomycetes). Int J Med Mushrooms 20(2):191–200. https://doi.org/10.1615/IntJMedMushrooms.2018025477

    Article  PubMed  Google Scholar 

  • Cavaleiro C, Pinto E, Goncalves MJ, Salgueiro L (2006) Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains. J Appl Microbiol 100(6):1333–1338. https://doi.org/10.1111/j.1365-2672.2006.02862

  • Cespedesa CL, Avila JG, Garcıa AM (2006) Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Z Naturforsch 61:35–43

    Google Scholar 

  • Chantawannakul P, Puchanichanthranon T, Wongsiri S (2005) Inhibitory effects of some medicinal plant extracts on the growth of Ascosphaera apis. WOCMAP III: targeted screening of MAPs, economics and law. Acta Hortic 678:183–189. https://doi.org/10.17660/ActaHortic.2005.678.26

    Article  Google Scholar 

  • Chen Y, Zeng H, Tian J, Ban X, Ma B, Wang Y (2013) Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. J Med Microbiol 62(Pt 8):1175–1183. https://doi.org/10.1099/jmm.0.055467-0

    Article  PubMed  Google Scholar 

  • Cho JY, Choi GJ, Son SW, Jang KS, Lim HK, Lee SO, Sung ND, Cho KY, Kim JC (2007) Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi. Pest Manag Sci 63(9):935–940. https://doi.org/10.1002/ps.1420

    Article  CAS  PubMed  Google Scholar 

  • Chu KT, Xia L, Ng TB (2005) Pleurostrin, an antifungal peptide from the oyster mushroom. Peptides 26(11):2098–2103. https://doi.org/10.1016/j.peptides.2005.04.010

    Article  CAS  PubMed  Google Scholar 

  • Cioch M, Satora P, Skotniczny M, Semik-Szczurak D, Tarko T (2017) Characterisation of antimicrobial properties of extracts of selected medicinal plants. Pol J Microbiol 66(4):463–472

    Article  PubMed  Google Scholar 

  • Cobos R, Mateos RM, Álvarez-Pérez JM, Olego MA, Sevillano S, González-García S, Coque JJR (2015) Effectiveness of natural antifungal compounds in controlling infection by grapevine trunk disease pathogens through pruning wounds. Appl Environ Microbiol 81(18):6474–6483. https://doi.org/10.1128/AEM.01818-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantine GH (1966) Phytochemical investigation of Arctostaphylos columbiana Piper and Arctostaphylos patula Greene. PhD thesis, Oregon State University, Corvallis, Oregon

    Google Scholar 

  • Corato U, Maccioni O, Trupo M, Di Sanzo G (2010) Use of essential oil of Laurus nobilis obtained by means of a supercritical carbon dioxide technique against post harvest spoilage fungi. Crop Prot 29(2):142–147. https://doi.org/10.1016/j.cropro.2009.10.012 ISSN: 0261-2194

    Article  CAS  Google Scholar 

  • D’Auria FD, Tecca M, Strippoli V, Salvatore G, Battinelli L, Mazzanti G (2005) Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. Med Mycol 43(5):391–396. ISSN: 1369-3786

    Google Scholar 

  • da Silva Bomfim N, Nakassugi LP, Pinheiro Oliveira JF, Kohiyama CY, Galerani Mossini SA, Grespan R, Botião Nerilo S, Mallmann CA, Alves Abreu Filho B, Machinski M (2015) Antifungal activity and inhibition of fumonisin production by Rosmarinus officinalis L. essential oil in Fusarium verticillioides (Sacc.) Nirenberg. Food Chem 166:330–336. https://doi.org/10.1016/j.foodchem.2014.06.019 ISSN 0308-8146

    Article  CAS  PubMed  Google Scholar 

  • Dafarera DJ, Ziogas BN, Polissiou MG (2003) The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Prod 22:39–44

    Google Scholar 

  • Dagostin S, Scharer HJ, Pertot I, Tamm L (2011) Are there alternatives to copper for controlling grapevine downy mildew in organic viticulture? Crop Prot 30(7):776–788. https://doi.org/10.1016/j.cropro.2011.02.031

    Article  CAS  Google Scholar 

  • de Colmenares NG, Ramirez-Martinez JR, Aldana JO, Ramos-Nino ME, Clifford MN, Pekerar S, Mendez B (1998) Isolation, characterisation and determination of biological activity of coffee proanthocyanidins. J Sci Food Agric 77(3):368–372. https://doi.org/10.1002/(SICI)1097-0010(199807)77:3%3c368

    Article  Google Scholar 

  • De Martino L, De Feo V, Fratianni F, Nazzaro F (2009) Chemistry, antioxidant, antibacterial and antifungal activities of volatile oils and their components. Nat Prod Commun 4(12):1741–1750

    PubMed  Google Scholar 

  • Deepak SA, Oros G, Sathyanarayana SG, Shetty NP, Shetty HS, Sashikanth S (2005) Antisporulant activity of leaf extracts of Indian plants against Sclerospora graminicola causing downy mildew disease of pearl millet. Arch Phytopathol Plant Prot 38(1):31–39. https://doi.org/10.1080/03235400400007558

    Article  Google Scholar 

  • Deepak SA, Oros G, Sathyanarayana SG, Shekar Shetty H, Sashikanth S (2007) Antisporulant activity of watery extracts of plants against Sclerospora graminicola causing downy mildew disease of pearl millet. Am J Agric Biol Sci 2(1):36–42. https://doi.org/10.3844/ajabssp.2006.36.423

    Article  Google Scholar 

  • Dellamura AU, Edmar CE (2013) Antifungal activity of residual medium and biomass of Basidiomycetes species cultivated in coconut water against Candida albicans. Int J Biotechnol Res 1(2):20–23

    Google Scholar 

  • Dellavalle PD, Cabrera A, Alem D, Larrañaga P, Ferreira F, Dalla Ri M (2011) Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternaria spp. Chil J Agric Res 71(2):231–239

    Article  Google Scholar 

  • Devi AA, Ganjewala D (2009) Antimicrobial activity of Acorus calamus (L.) rhizome and leaf extract. Acta Biol Szeged 53(1):45–49

    Google Scholar 

  • Dhingra OD, Jham GN, Barcelos RC, Mendonca FA, Ghiviriga I (2007) Isolation and identification of the principal fungitoxic component of turmeric essential oil. J Essent Oil Res 19(4):387–391. https://doi.org/10.1080/10412905.2007.9699312

    Article  CAS  Google Scholar 

  • Digrak M, Iicim M, Alwa NH (1999) Antimicrobial activities of several parts of Pinus brutia, Juniperus oxycedrus, Abies cilicia, Cedrus libani and Pinus nigra. Phytother Res 13(7):584–587

    Article  CAS  PubMed  Google Scholar 

  • Dorman HDJ (1999) Phytochemistry and bioactive properties of plant volatile oils: antibacterial, antifungal and antioxidant activities. PhD thesis, University of Strathclyde, Glasgow, UK

    Google Scholar 

  • dos Santos ACA, Rossato M, Serafini LA, Bueno M, Crippa LB, Sartori VC, Dellacassa E, Moyna P (2010) Antifungal effect of Schinus molle L., Anacardiaceae, and Schinus terebinthifolius Raddi, Anacardiaceae, essential oils of Rio Grande do Sul. Braz J Pharmacog 20(2):154–159. https://doi.org/10.1590/S0102-695X2010000200003

    Article  Google Scholar 

  • Dulger B, Gonuz A, Gucin F (2004) Antimicrobial activity of the macrofungus Cantharellus cibarius. Pak J Biol Sci 7(9):1530–1534. https://doi.org/10.3923/pjbs.2004.1535.1539

    Article  Google Scholar 

  • Dulger G, Tutenocakli T, Dulger B (2015) Antimicrobial potential of the leaves of common mullein (Verbascum thapsus L., Scrophulariaceae) on microorganisms isolated from urinary tract infections. J Med Plant Stud 3(2):86–89

    Google Scholar 

  • Eberhardt TL, Young RA (1994) Conifer seed cone proanthocyanidin polymers—characterization by 13C NMR spectroscopy and determination of antifungal activities. J Agric Food Chem 42(8):1704–1708. https://doi.org/10.1021/jf00044a023

    Article  CAS  Google Scholar 

  • Ehssan HOM, Saadabi AM (2012) Screening of antimicrobial activity of wild mushrooms from Khartoum State of Sudan. Microbiol J 2:64–69. https://doi.org/10.3923/mj.2012.64.69

    Article  Google Scholar 

  • Elshafie HS, Sakr S, Mang SM, Belviso S, De Feo V, Camele I (2016) Antimicrobial activity and chemical composition of three essential oils extracted from Mediterranean aromatic plants. J Med Food 19(11):1096–1103. https://doi.org/10.1089/jmf.2016.0066

    Article  CAS  PubMed  Google Scholar 

  • Elsherbiny EA, Amin BH, Baka ZA (2010) Efficiency of pomegranate (Punica granatum L.) peels extract as a high potential natural tool towards Fusarium dry rot on potato tubers. Postharvest Biol Technol 111:256–263. https://doi.org/10.1016/j.postharvbio.2015.09.019

    Article  Google Scholar 

  • Endah Y (2005) Antifungal activity of plant extracts and oils against fungal pathogens of pepper (Piper nigrum L.), cinnamon (Cinnamomum zeylanicum Blume), and turmeric (Curcuma domestica Val.). Masters (research) thesis, James Cook University

    Google Scholar 

  • Endo K, Kanno E, Oshima Y (1990) Structures of antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, isolated from the rhizomes of Zingiber officinale. Phytochemistry 29(3):797–799. ISSN: 0031-9422

    Google Scholar 

  • Endo EH, Cortez DAG, Ueda-Nakamura T, Nakamura CV, Dias BP (2010) Potent antifungal activity of extracts and pure compound isolated from pomegranate peels and synergism with fluconazole against Candida albicans. Res Microbiol 161(7):534–540. https://doi.org/10.1016/j.resmic.2010.05.002

    Article  PubMed  Google Scholar 

  • Engelmeier D, Hadacek F, Hofer O, Lutz-Kutschera G, Nagl M, Wurz G, Greger H (2004) Antifungal 3-butylisocoumarins from asteraceae-anthemideae. J Nat Prod 67(1):19–25. https://doi.org/10.1021/np0301339

    Article  CAS  PubMed  Google Scholar 

  • Ertürk Ö (2010) Antibacterial and antifungal effects of alcoholic extracts of 41 medicinal plants growing in Turkey. Czech J Food Sci 28(1):53–60

    Article  Google Scholar 

  • Ewais E, Aly M, Ismail AM, Shakour HAE, Hassanin FM (2014) Antimicrobial activities of Solanum incanum, Elettaria cardamomum and Zingiber officinale, used traditionally to treat pathogenic microbes. Sci J Flowers Ornamental Plants 1:253–263

    Article  Google Scholar 

  • Farcasanu IC, Gruia MI, Paraschivescu C, Oprea E, Baciu I (2006) Ethanol extracts of Lonicera caerulea and Sambucus nigra berries exhibit antifungal properties upon heat-stressed Saccharomyces cerevisiae cells. Rev Chim 57(1):79–81

    CAS  Google Scholar 

  • Fawzi EM, Khalil AA, Afifi AF (2009) Antifungal effect of some plant extracts on Alternaria alternata and Fusarium oxysporum. Afr J Biotechnol 8(11):2590–2597

    Google Scholar 

  • Felsociova S, Kacaniova M, Horska E, Vukovic N, Hleba L, Petrova J, Rovna K, Stricik M, Hajduova Z (2015) Antifungal activity of essential oils against selected terverticillate penicillia. Ann Agric Environ Med 22(1):38–42. https://doi.org/10.5604/12321966.1141367

    Article  CAS  PubMed  Google Scholar 

  • Fierascu RC, Georgiev MI, Fierascu I, Ungureanu C, Avramescu SM, Ortan A, Georgescu MI, Sutan AN, Zanfirescu A, Dinu-Pirvu CE, Velescu BS, Anuta V (2018) Mitodepressive, antioxidant, antifungal and anti-inflammatory effects of wild-growing Romanian native Arctium lappa L. (Asteraceae) and Veronica persica Poiret (Plantaginaceae). Food Chem Toxicol 111:44–52. https://doi.org/10.1016/j.fct.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  • Fiori ACG, Schwan-Estrada KRF, Stangarlin JR, Vida JB, Scapim CA, Cruz MES, Pascholati SF (2000) Antifungal activity of leaf extracts and essential oils of some medicinal plants against Didymella bryoniae. J Phytopathol 148(7–8):483–487. https://doi.org/10.1046/j.1439-0434.2000.00524.x

    Article  CAS  Google Scholar 

  • Fonseca MCM, Paula TJ, Goncalves MG, Lehner MS, Soares BA, Marques AE (2015a) Antifungal activity of plant extracts on common bean pathogens. Acta Hortic 1098:159–164

    Article  Google Scholar 

  • Fonseca AOS, Pereira DIB, Jacob RG, Maia FS, Oliveira DH, Maroneze BP, Valente JSS, Osorio LG, Botton SA, Meireles MCA (2015b) In vitro susceptibility of Brazilian Pythium insidiosum isolates to essential oils of some Lamiaceae family species. Mycopathologia 179(3–4):253–258. https://doi.org/10.1007/s11046-014-9841-6

    Article  CAS  PubMed  Google Scholar 

  • Gabaston J, Richard T, Biais B, Waffo-Teguo P, Pedrot E, Jourdes M, Corio-Costet MF, Mérillon JM (2017) Stilbenes from common spruce (Picea abies) bark as natural antifungal agent against downy mildew (Plasmopara viticola). Ind Crop Prod 103:267–273. https://doi.org/10.1016/j.indcrop.2017.04.009

    Article  CAS  Google Scholar 

  • Garcia T, Veloso J, Diaz J (2018) Properties of vanillyl nonanoate for protection of pepper plants against Phytophthora capsici and Botrytis cinerea. Eur J Plant Pathol 150(4):1091–1101. https://doi.org/10.1007/s10658-017-1352-0

    Article  CAS  Google Scholar 

  • Ghosh M (2006) Antifungal properties of haem peroxidase from Acorus calamus. Ann Bot 98(6):1145–1153. https://doi.org/10.1093/aob/mcl205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giamperi L, Fraternale D, Ricci D (2002) The in vitro action of essential oils on different organisms. J Essent Oil Res 14(4):312–318. https://doi.org/10.1080/10412905.2002.9699865

    Article  CAS  Google Scholar 

  • Girardot M, Guerineau A, Boudesocque L, Costa D, Bazinet L, Enguehard-Gueiffier C, Imbert C (2014) Promising results of cranberry in the prevention of oral Candida biofilms. Pathog Dis 70(3):432–439. https://doi.org/10.1111/2049-632X.12168

    Article  CAS  PubMed  Google Scholar 

  • Glamoclija JM, Sokovic MD, Vukojevic JB, Milenkovic IM, Dejan D, Brkic DD, VanGriensven LJLD (2005) Antifungal activity of essential oil Hyssopus officinalis L. against mycopathogen Mycogone perniciosa (Mang). Proc Nat Sci Matica Srpska Novi Sad 109:123–128

    Article  CAS  Google Scholar 

  • Glazer I, Masaphy S, Marciano P, Bar-Ilan I, Holland D, Kerem Z, Amir R (2012) Partial identification of antifungal compounds from Punica granatum peel extracts. J Agric Food Chem 60(19):4841–4848. https://doi.org/10.1021/jf300330y

    Article  CAS  PubMed  Google Scholar 

  • Glisic SB, Milosevic SZ, Dimitrijevic SI, Orlovic AM, Skala DU (2007) Antimicrobial activity of the essential oil and different fractions of Juniperus communis L. and a comparison with some commercial antibiotics. J Serb Chem Soc 72(4):311–320

    Article  CAS  Google Scholar 

  • Godeanu-Matei MI, Livadariu O, Popa G (2016) Antifungal activity of Lentinula edodes extracts against Phytophthora infestans phytopathogenic fungi. Ann Ser Biol Sci Acad Rom Sci 5(1):86–95. Online Edition ISSN 2285-4177

    Google Scholar 

  • Golah HAM, Khalel AS, Khaled JMA (2013) Evaluation of efficiency of some medicinal plant extracts on dermatophytes isolated in Saudi Arabia. J Pure Appl Microbiol 7(3):2167–2171

    Google Scholar 

  • Gundidza M, Gweru N, Magwa ML, Mmbengwa V, Samie A (2009) The chemical composition and biological activities of essential oil from the fresh leaves of Schinus terebinthifolius from Zimbabwe. Afr J Biotechnol 8(24):7164–7169

    CAS  Google Scholar 

  • Gupta M, Sharma A, Bhadauria AR (2017) Phytotoxicity of Momordica charantia extracts against Alternaria alternata. J Pharm Sci Res 9(1):28–34

    CAS  Google Scholar 

  • Hammer KA, Carson CF, Riley T (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol. https://doi.org/10.1046/j.1365-2672.1999.00780.x

    Article  CAS  PubMed  Google Scholar 

  • Hayouni EA, Miled K, Boubaker S, Bellasfar Z, Abedrabba M, Iwaski H, Oku H, Matsui T, Limam F, Hamdi M (2011) Hydroalcoholic extract based-ointment from Punica granatum L. peels with enhanced in vivo healing potential on dermal wounds. Phytomedicine 18(11):976–984. https://doi.org/10.1016/j.phymed.2011.02.011

    Article  CAS  PubMed  Google Scholar 

  • Hearst R, Nelson D, Mccollum G, Millar C, Maeda Y, Goldsmith C, Rooney P, Loughrey A, Rao JE, Moore J (2009) An examination of antibacterial and antifungal properties of constituents of Shiitake (Lentinula edodes) and Oyster (Pleurotus ostreatus) mushrooms. Complement Ther Clin Pract 15:5–7. https://doi.org/10.1016/j.ctcp.2008.10.002

    Article  PubMed  Google Scholar 

  • Hedenstrom EM, Edfeldt AF, Edman M, Jonsson BG (2016) Resveratrol, piceatannol, and isorhapontigenin from Norway spruce (Picea abies) debarking wastewater as inhibitors on the growth of nine species of wood-decaying fungi. Wood Sci Technol 50(3):617–629. https://doi.org/10.1007/s00226-016-0814-4

    Article  CAS  Google Scholar 

  • Hemamalini V, Rajarajan S, Duraiselvi B, Anandhalakshmi J (2015) Evaluaton of antifungal properties of Acorus calamus (L.). Int J Curr Res 7(1):11825–11828

    Google Scholar 

  • Hirasawa M, Takada K (2004) Multiple effects of green tea catechins on the antifungal activity of antimycotics against Candida albicans. J Antimicrob Chemother 53:225–229

    Article  CAS  PubMed  Google Scholar 

  • Hofling JF, Anibal PC, Obando-Pereda GA, Peixoto IAT, Furletti VF, Foglio MA, Goncalves RB (2010) Antimicrobial potential of some plant extracts against Candida species. Braz J Biol 70(4):1065–1068. https://doi.org/10.1590/S1519-69842010000500022

    Article  CAS  PubMed  Google Scholar 

  • Hong EJ, Na KJ, Choi IG, Choi KC, Jeung EB (2004) Antibacterial and antifungal effects of essential oils from coniferous trees. Biol Pharm Bull 27:863–866

    Article  CAS  PubMed  Google Scholar 

  • Houicher A, Hechachna H, Teldji H, Ozogul F (2016) In vitro study of the antifungal activity of essential oils obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis. Recent Pat Food Nutr Agric 8(2):99–106. https://doi.org/10.2174/2212798408666160927124014

    Article  CAS  PubMed  Google Scholar 

  • Houksey D, Sharma P, Pawar RS (2010) Biological activities and chemical constituents of Illicium verum hook fruits (Chinese star anise). Pelagia Res Libr 1(3):1–10. ISSN: 0976-8688

    Google Scholar 

  • Hoyos JMA, Alves E, Rozwalka LC, de Souza EA, Zeviani WM (2012) Antifungal activity and ultrastructural alterations in Pseudocercospora griseola treated with essential oils. Cienc Agrotecnol 36(3):270–284. https://doi.org/10.1590/S1413-70542012000300002

    Article  CAS  Google Scholar 

  • Huang Y, Jianglin Z, Zhou L, Jihua W, Gong Y, Chen X, Guo Z, Wang Q, Jiang W (2010) Antifungal activity of the essential oil of Illicium verum fruit and its main component trans-anethole. Molecules 15:7558–7569. https://doi.org/10.3390/molecules15117558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussein KA, Joo JH (2017) Chemical composition of neem and lavender essential oils and their antifungal activity against pathogenic fungi causing ginseng root rot. Afr J Biotechnol 16(52):2349–2354. https://doi.org/10.5897/AJB2017.16209

    Article  Google Scholar 

  • Ika KS, Diah R, Ari Y (2018) Antifungal activity of extract and fraction of Auricularia auricular on Candida albicans, Microsporum gypseum, and Aspergillus flavus. Asian J Pharm Clin Res 11:141. https://doi.org/10.22159/ajpcr.2018.v11s1.26591

    Article  CAS  Google Scholar 

  • Ikeura H, Fumiyuki Kobayashi F (2015) Antimicrobial and antifungal activity of volatile extracts of 10 herb species against Glomerella cingulata. J Agric Sci 7(9):77–84. https://doi.org/10.5539/jas.v7n9p77

    Article  Google Scholar 

  • Itako AT, Schwan-Estrada KRF, Tolentino JB, Stangarlin JR, Cruz MED (2008) Antifungal activity and protection of tomato plants by extracts of medicinal plants. Trop Plant Pathol 33(3):241–244. https://doi.org/10.1590/S1982-56762008000300011

    Article  Google Scholar 

  • Iwalokun BA, Usen UA, Otunba AA, Olukoya DK (20007) Comparative phytochemical evaluation, antimicrobial and antioxidant properties of Pleurotus ostreatus. Afr J Biotechnol 6(15):1732–1739

    Article  CAS  Google Scholar 

  • Iyer M, Kumar GA, Vishakante G, Shridhar A (2017) Antifungal response of oral-associated candidal reference strains (American Type Culture Collection) by supercritical fluid extract of nutmeg seeds for geriatric denture wearers: an in vitro screening study. J Indian Prosthodont Soc 17(3):267–272. https://doi.org/10.4103/jips.jips_10_17

    Article  PubMed  PubMed Central  Google Scholar 

  • Jagessar RC, Mohameda A, Gomes G (2008) An evaluation of the antibacterial and antifungal activity of leaf extracts of Momordica charantia against Candida albicans, Staphylococcus aureus and Escherichia coli. Nat Sci 6(1). ISSN: 1545-0740

    Google Scholar 

  • Johann S, Silva DL, Martins CVB, Zani CL, Pizzolatti MG, Resende MA (2008) Inhibitory effect of extracts from Brazilian medicinal plants on the adhesion of Candida albicans to buccal epithelial cells. World J Microbiol Biotechnol 24(11):2459–2464. https://doi.org/10.1007/s11274-008-9768-5

    Article  Google Scholar 

  • Johann S, Cisalpino PS, Watanabe GA, Cota BB, de Siqueira EP, Pizzolatti MG, Zani CL, de Resende MA (2010) Antifungal activity of extracts of some plants used in Brazilian traditional medicine against the pathogenic fungus Paracoccidioides brasiliensis. Pharm Biol 48(4):388–396. https://doi.org/10.3109/13880200903150385

    Article  CAS  PubMed  Google Scholar 

  • Johnny L, Yusuf UK, Nulit R (2011) Antifungal activity of selected plant leaves crude extracts against a pepper anthracnose fungus, Colletotrichum capsici (Sydow) butler and bisby (Ascomycota: Phyllachorales). Afr J Biotechnol 10(20):4157–4165. https://doi.org/10.5897/AJB10.2085

    Article  Google Scholar 

  • Joseph B, Muzafar A, Vinod K (2008) Bioefficacy of plant extracts to control Fusarium solani f. sp. melongenae incitant of brinjal wilt. Glob J Biotechnol Biochem 3(2):56–59

    Google Scholar 

  • Kapoor JPS, Singh B, Singh G, Isidorov V, Szczepaniak L (2008) Chemistry, antifungal and antioxidant activities of cardamom (Amomum subulatum) essential oil and oleoresins. Int J Essent Oil Ther 2:29–40. https://www.researchgate.net/publication/233685960

  • Karimi K, Arzanlou M, Pertot I (2016) Antifungal activity of the dill (Anethum graveolens L.) seed essential oil against strawberry anthracnose under in vitro and in vivo conditions. Arch Phytopathol Plant Prot 49:554–566. https://doi.org/10.1080/03235408.2016.1243999

    Article  CAS  Google Scholar 

  • Kasiri K, Heidari-Soureshjani S (2018) Effects and mechanisms of medicinal plants on diaper dermatitis: a systematic review. World Fam Med 16(2):336–340. https://doi.org/10.5742/MEWFM.2018.93281

    Article  Google Scholar 

  • Khan, Diwan M, Bernaitis L, Shobha KL, Ashok M, Shenoy P (2013) Antifungal activity of Taxus baccata, Phyllanthus debilis, Plectranthus amboinicus against Candida species of clinical origin. Int J Biol Pharm Res 4(5):386–389. ISSN 0976-3651

    Google Scholar 

  • Khan BM, Bakht J, Khan W (2017) Rhizome extracts of Acorus odoratus: antifungal, anti-yeast, anti-oxidant and HPLC quantification. Bangladesh J Pharmacol 12(1):44–50. https://doi.org/10.3329/bjp.v12i1.29227

    Article  Google Scholar 

  • Kharchoufi S, Parafati L, Licciardello F, Muratore G, Hamdi M, Cirvilleri G, Restuccia C (2018) Edible coatings incorporating pomegranate peel extract and biocontrol yeast to reduce Penicillium digitatum postharvest decay of oranges. Food Microbiol 74:107–112. https://doi.org/10.1016/j.fm.2018.03.011

    Article  CAS  PubMed  Google Scholar 

  • Khaskheli MI, Sun JL, He SP, Pan ZE, Jia YH, Zhu HQ, Khaskheli AJ, Du XM (2016) Chinese medicinal plants: an alternative approach for management of Verticillium wilt of cotton. Phytopathol Mediterr 55(3):323–336. https://doi.org/10.14601/Phytopathol_Mediterr-17782ta

    Article  Google Scholar 

  • Kloucek P, Smid J, Frankova A, Kokoska L, Valterova I, Pavela R (2012) Fast screening method for assessment of antimicrobial activity of essential oils in vapor phase. Food Res Int 47(2):161–165. https://doi.org/10.1016/j.foodres.2011.04.044

    Article  CAS  Google Scholar 

  • Kochthressia KP, Britto SJ, Jaseentha MO, Raphael R (2012) In vitro antimicrobial evaluation of Kaempferia galanga L. rhizome extract. Am J Biotechnol Mol Sci 2(1):1–5. https://doi.org/10.5251/ajbms.2012.2.1.1.5

    Article  Google Scholar 

  • Kosalec I, Pepeljnjak S, Kustrak D (2005) Antifungal activity of fluid extract and essential oil from anise fruits (Pimpinella anisum L., Apiaceae). Acta Pharm 55(4):377–385. ISSN: 1330-0075

    Google Scholar 

  • Kovatcheva N, Zheljazkov VD, Astatkie T (2011) Productivity, oil content, composition, and bioactivity of oil-bearing rose accessions. Hort Sci 46(5):710–714

    Article  Google Scholar 

  • Kozlowski G, Métraux JP (1999) Antifungal properties of Norway spruce (Picea abies (L.) Karst.) seedling homogenizates. Acta Soc Bot Pol 68(3):191–195

    Article  Google Scholar 

  • Krauze-Baranowskaa M, Wiwa M (2003) Antifungal activity of biflavones from Taxus baccata and Ginkgo biloba. Z Naturforsch 58:65–69

    Article  CAS  Google Scholar 

  • Krishnamurthy YL, Shashikala J, Naik BS (2008) Antifungal potential of some natural products against Aspergillus flavus in soybean seeds during storage. J Stored Prod Res 44(4):305–309. https://doi.org/10.1016/j.jspr.2008.03.001

    Article  CAS  Google Scholar 

  • Kumar V, Yadav U (2014) Screening of antifungal activity of Pleurotus ostreatus and Agaricus bisporus. J Biol Life Sci 2(3):918–923. ISSN (online): 2320-4257

    Google Scholar 

  • Kumar NS, Hewavitharanage P, Adikaram NKB (1995) Attack on tea by Xyleborus fornicatus—inhibition of the symbiote, Monacrosporium ambrosium, by caffeine. Phytochemistry 40(4):1113–1116. https://doi.org/10.1016/0031-9422(95)00396-O

    Article  CAS  Google Scholar 

  • Kumar P, Bhatt RP, Sati OP, Dhatwalia VK, Singh L (2010) In-vitro antifungal activity of different fraction of Juniperus communis leaves and bark against Aspergillus niger and Aflatoxigenic Aspergillus flavus. Int J Pharm Bio Sci 1(1):1–7

    Google Scholar 

  • Kumar KN, Venkataramana M, Allen JA, Chandranayaka S, Murali HS, Batra HV (2016) Role of Curcuma longa L. essential oil in controlling the growth and zearalenone production of Fusarium graminearum. Food Sci Technol 69:522–528. https://doi.org/10.1016/j.lwt.2016.02.005 ISSN 0023-6438

    Article  CAS  Google Scholar 

  • Kusumoto N, Zhao T, Swedjemark G, Ashitani T, Takahashi K, Borg-Karlson AK (2014) Antifungal properties of terpenoids in Picea abies against Heterobasidion parviporum. Forest Pathol 44(5):353–361. https://doi.org/10.1111/efp.12106

    Article  Google Scholar 

  • Kwon Y, Kim HS, Kim HW, Woon LD, Choi YH (2017) Antifungal activities of β-thujaplicin originated in Chamaecyparis obtusa. J Appl Biol Chem 60(3):265–269

    Article  Google Scholar 

  • Lam SK, Ng TB (2001) Isolation of a small chitinase-like antifungal protein from Panax notoginseng (sanchi ginseng) roots. Int J Biochem Cell Biol 33(3):287–292. https://doi.org/10.1016/S1357-2725(01)00002-4

    Article  CAS  PubMed  Google Scholar 

  • Lee SO, Choi GJ, Jang KS, Lim HK, Cho KY, Kim JC (2007a) Antifungal activity of five plant essential oils as fumigant against postharvest and soilborne plant pathogenic fungi. Plant Pathol J 23(2):97–102. https://doi.org/10.5423/PPJ.2007.23.2.097

    Article  CAS  Google Scholar 

  • Lee SH, Chang KS, Su MS, Huang YS, Jang HD (2007b) Effects of some Chinese medicinal plant extracts on five different fungi. Food Control 18(12):1547–1554. https://doi.org/10.1016/j.foodcont.2006.12.005

    Article  Google Scholar 

  • Lelono RAA, Tachibana S, Itoh K (2018) Isolation of antifungal compounds from Gardenia jasminoides. Pak J Biol Sci 12(13):949–956. ISSN: 2333-9721

    Google Scholar 

  • Lewi PJ (1976) Spectral mapping, a technique for classifying biological activity profiles of chemical compounds. Arzneim Forsch 26(7):1295–1300

    CAS  Google Scholar 

  • Li DH, Wang ZG, Zhang YH (2011) Antifungal activity of extracts by supercritical carbon dioxide extraction from roots of Echinacea angustifolia and analysis of their constituents using gas chromatography-mass spectrometry (GC-MS). J Med Plant Res 5(23):5605–5610

    CAS  Google Scholar 

  • Linde GA, Gazim ZC, Cardoso BK, Jorge LF, Tešević V, Glamoćlija J, Soković M, Colauto NB (2016) Antifungal and antibacterial activities of Petroselinum crispum essential oil. Genet Mol Res 15(3). https://doi.org/10.4238/gmr.15038538

  • Lis-Balchin M, Deans SG, Eaglesham E, Stermitz FR, Tawara JN, Boeckl M, Pomeroy M (1998) Relationship between bioactivity and chemical composition of commercial essential oils. Flavour Fragr J 13:98–104

    Article  CAS  Google Scholar 

  • Liu FF, Zhang AH, Lei FJ, Zhang J, Xu YH, Yin MJ, Zhang LX (2017) Inhibitory effects of Panax ginseng stem and leaf ginsenosides against Fusarium solani. Allelopathy J 40(2):163–171. https://doi.org/10.26651/2017-40-1-1075

    Article  Google Scholar 

  • Lopes-Lutz D, Alviano DS, Alviano CS, Kolodziejczyk PP (2008) Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 69(8):1732–1738. https://doi.org/10.1016/j.phytochem.2008.02.014

    Article  CAS  PubMed  Google Scholar 

  • Lopez AG, Theumer AG, Zygadlo JA, Rubinstein HR (2004) Aromatic plants essential oils activity on Fusarium verticillioides Fumonisin B1 production in corn grain. Mycopathologia 158(3):343–349. https://doi.org/10.1007/s11046-005-3969-3

    Article  CAS  PubMed  Google Scholar 

  • Lopez V, Akerreta S, Casanova E, Garcia-Mina JM, Cavero RY, Calvo MI (2007) In vitro antioxidant and anti-rhizopus activities of Lamiaceae herbal extracts. Plant Foods Hum Nutr 62(4):151–155. https://doi.org/10.1007/s11130-007-0056-6

    Article  PubMed  Google Scholar 

  • Lopez-Reyes JG, Spadaro D, Prelle A, Garibaldi A, Gullino ML (2013) Efficacy of plant essential oils on postharvest control of rots caused by fungi on different stone fruits in vivo. J Food Prot 76(4):631–639. https://doi.org/10.4315/0362-028X.JFP-12-342

    Article  PubMed  Google Scholar 

  • Lovecka P, Lipov J, Thumova K, Macurkova A (2017) Characterization of biologically active substances from Calendula officinalis. Curr Pharm Biotechnol 18(14):1167–1174. https://doi.org/10.2174/1389201019666180226151910

    Article  CAS  PubMed  Google Scholar 

  • Magyar D, Oros G (2012) Application of the principal component analysis to disclose factors influencing on the composition of fungal consortia deteriorating remained fruit stalks on sour cherry trees. In: Sanguansat P (ed) Principal component analysis—multidisciplinary applications. InTech, Rijeka, Croatia, pp 89–110. ISBN 979-953-307-457-2. https://doi.org/10.5772/38835

    Google Scholar 

  • Maji AK, Banerji (2015) Chelidonium majus L. (Greater celandine)—a review on its phytochemical and therapeutic perspectives. Int J Herb Med 3(1):10–27

    Article  Google Scholar 

  • Maji MD, Chattopadhyay S, Kumar P, Saratchandra B (2005) In vitro screening of some plant extracts against fungal pathogens of mulberry (Morus spp.). Arch Phytopathol Plant Prot 38(3):157–164. ISSN 2078-466X

    Article  Google Scholar 

  • Massiha A, Zolfaghar MP (2015) Comparison of antifungal activity of extracts of 10 plant species and griseofulvin against human pathogenic dermatophytes. Zahedan J Res Med Sci 17(10):e2096. https://doi.org/10.17795/zjrms-2096

    Article  CAS  Google Scholar 

  • Matos OC, Santos M, Ramos P, Barreiro MG (2011) Aromatic plants and their bioactive products to control postharvest ‘Rocha’ pear diseases. Acta Hortic 925:335–340

    Article  Google Scholar 

  • Matsubara Y, Yamashita Y, Liu J (2015) Antifungal and antioxidative ability in Lamiaceae herbs. Acta Hortic 1105:109–113. https://doi.org/10.17660/ActaHortic2015.1105.16

    Article  Google Scholar 

  • Matthews PD, Haas GJ (1993) Antimicrobial activity of some edible plants—lotus (Nelumbo nucifera), coffee, and others. J Food Prot 56(1):66–68. https://doi.org/10.4315/0362-028X-56.1.6

    Article  PubMed  Google Scholar 

  • Mazim M, Khan TA, Mohammad F (2011) Role of secondary metabolites in defense mechanisms of plants. Biol Med 3(2):232–249

    Google Scholar 

  • Meepagala KM, Sturtz G, Wedge DE (2002) Antifungal constituents of the essential oil fraction of Artemisia dracunculus L. var. dracunculus. J Agric Food Chem 50(24):6989–6992. https://doi.org/10.1021/jf020466w

    Article  CAS  PubMed  Google Scholar 

  • Mehrabian S, Majd A, Majd I (2000) Antimicrobial effects of three plants (Rubia tinctorum, Carthamus tinctorius and Juglans regia) on some airborne microorganisms. Aerobiologia 16(3–4):455–458. https://doi.org/10.1023/A:1026571914665

    Article  Google Scholar 

  • Mehrparvar M, Mohammadi Goltapeh E, Safaie N, Ashkani S, Montazeri HR (2016) Antifungal activity of essential oils against mycelial growth of Lecanicillium fungicola var. fungicola and Agaricus bisporus. Ind Crop Prod 84:391–398. https://doi.org/10.1016/j.indcrop.2016.02.012

    Article  CAS  Google Scholar 

  • Mejd S, Noumi E, Dahmeni A, Flamini G, Aouni M, Madiha A, Al-sieni (2015) Chemical composition and antimicrobial activities of Elettaria cardamomum L. (Manton) essential oil: a high activity against a wide range of food borne and medically important bacteria and fungi. J Chem Biol Phys Sci 6(1):248–259

    Google Scholar 

  • Meng F, Zuo G, Hao X, Wang G, Xiao H, Zhang J, Xu G (2009) Antifungal activity of the benzo[c]phenanthridine alkaloids from Chelidonium majus Linn against resistant clinical yeast isolates. J Ethnopharm 25(3):494–496. https://doi.org/10.1016/j.jep.2009.07.029

    Article  CAS  Google Scholar 

  • Merali S, Binns S, Paulin-Levasseur M, Ficker C, Smith M, Baum B, Brovelli E, Arnason JT (2003) Antifungal and anti-inflammatory activity of the genus Echinacea. Pharm Biol 41(6):412–420. https://doi.org/10.1076/phbi.41.6.412.17828

    Article  CAS  Google Scholar 

  • Mileva M, Krumova E, Miteva-Staleva J, Kostadinova N, Dobreva A, Galabov AS (2014) Chemical compounds, in vitro antioxidant and antifungal activities of some plant essential oils belonging to rosaceae family. C R Acad Bulg Sci 67(10):1363–1368

    CAS  Google Scholar 

  • Millot M, Girardot M, Dutreix L, Mambu L, Imber C (2017) Antifungal and anti-biofilm activities of acetone lichen extracts against Candida albicans. Molecules 22(4):651. https://doi.org/10.3390/molecules22040651

    Article  PubMed Central  CAS  Google Scholar 

  • Milovanović I, Stajic M, Ćilerdžić J, Stanojković T, Knežević A, Vukojević J (2014) Antioxidant, antifungal and anticancer activities of Se-enriched Pleurotus spp. mycelium extracts. Arch Biol Sci 66(4):1379–1388. https://doi.org/10.2298/ABS1404379M

    Article  Google Scholar 

  • Minova S, Seðíçna R, Voitkâne S, Metla Z, Daugavietis M, Jankevica L (2015) Impact of pine (Pinus sylvestris L.) and spruce (Picea abies (L.) Karst.) bark extracts on important strawberry pathogens. Proc Latv Acad Sci Sect B 69(1/2):62–67. https://doi.org/10.1515/prolas-2015-0008

    Article  CAS  Google Scholar 

  • Mir-Rashed N, Cruz I, Jessulat M, Dumontier M, Chesnais C, Ng J, Amiguet VT, Golshani A, Arnason JT, Smith ML (2010) Disruption of fungal cell wall by antifungal Echinacea extracts. Med Mycol 48(7):949–958. https://doi.org/10.3109/13693781003767584

    Article  PubMed  Google Scholar 

  • Mizhir AH, Hussein HH, Maih RK, Jounis AH, Hassoun BA (2016) Evaluation of antifungal activity of hot water extract on Elettaria cardamomum and Cinnamomum sp. against some opportunism fungi. Al-Kufa Univ J Biol 8:328–333. ISSN: 2073-8854

    Google Scholar 

  • Mullerriebau F, Berger B, Yegen O (1995) Chemical-composition and fungitoxic properties to phytopathogenic fungi of essential oils of selected aromatic plants growing wild in Turkey. J Agric Food Chem 43(8):2262–2266

    Article  Google Scholar 

  • Mungkornasawakul P, Supyen D, Jatisatienr C, Jatisatienr A (2002) Inhibitory effect of Acorus calamus L. extract on some plant pathogenic molds. Acta Hortic 576:341–345. https://doi.org/10.17660/ActaHortic.2002.576.51

    Article  CAS  Google Scholar 

  • Nabigol A, Farzaneh M (2010) In vitro antifungal activity of some plant essential oils on postharvest pathogens of strawberry fruit. Acta Hortic 858:305–310

    Article  Google Scholar 

  • Nagy G, Hochbaum T, Sárosi S, Ladányi M (2014) In vitro and in planta activity of some essential oils against Venturia inaequalis (Cooke) G. Winter. Not Bot Horti Agrobot Cluj Napoca 42(1):109–114

    CAS  Google Scholar 

  • Namdar P, Jelamvazir, Desai S, Patel D, Meshram D (2014) Phytochemical screening and in vitro antifungal activity of Camellia sinensis. Int J Pharm Pharm Sci 6(5):148–150

    Google Scholar 

  • Ng TB, Wang HX (2001) Panaxagin, a new protein from Chinese ginseng possesses anti-fungal, anti-viral, translation-inhibiting and ribonuclease activities. Life Sci 68(7):739–749. https://doi.org/10.1016/S0024-3205(00)00970-X

    Article  CAS  PubMed  Google Scholar 

  • Nicosia MGL, Pangallo S, Raphael G, Romeo FV, Strano MC, Rapisarda P, Droby S, Schena L (2016) Control of postharvest fungal rots on citrus fruit and sweet cherries using a pomegranate peel extract. Postharvest Biol Technol 114:54–61. https://doi.org/10.1016/j.postharvbio.2015.11.012

    Article  CAS  Google Scholar 

  • Niknejad F, Mohammadi M, Khomeiri M, Hadi Razavi S, Aalami M (2015) Antifungal and antioxidant effects of hops (Humulus lupulus L.) flower extracts. Adv Environ Biol 8:395–401

    Google Scholar 

  • Nionelli L, Pontonio E, Gobbetti M, Rizzello CG (2018) Use of hop extract as antifungal ingredient for bread making and selection of autochthonous resistant starters for sourdough fermentation. Int J Food Microbiol 266:173–182. https://doi.org/10.1016/j.ijfoodmicro.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  • Nofouzi K (2015) Study on the antioxidant activity and in vitro antifungal activity of Verbascum speciosum methanolic extract. J Mycol Res 2(2):97–103

    Google Scholar 

  • Ojala T, Remes S, Haansuu P, Vuorela H, Hiltunen R, Haahtela K, Vuorela P (2000) Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J Ethnopharmacol 73:299–305

    Article  CAS  PubMed  Google Scholar 

  • Okubo S, Toda M, Hara Y, Shimamura T (1991) Antifungal and fungicidal activities of tea extract and catechin against Trichophyton. Jpn J Bacteriol 46:509–514

    Article  CAS  Google Scholar 

  • Oros G (2010) Differential responses of Plasmopara halstedii developmental forms to various steroid alkaloids. Int J Life Sci 4:1–15. https://doi.org/10.3126/ijls.v4i0.2791

    Article  Google Scholar 

  • Oros G, Naár Z (2018) Role of intrageneric competition in the performance of trichoderma based biofungicides. SciFed J Mycol 1(1):1–16. https://www.scifedpublishers.com/open-access/role-of-intrageneric-competition-in-the-performance-of-trichoderma-based-biofungicides.pdf

  • Oros G, Ujváry I (1999) Botanical fungicides: natural and semi-synthetic ceveratrum alkaloids. Pest Sci 55:253–264. https://doi.org/10.1002/(SICI)1096-9063(199903)55:3<253::AID-PS926>3.0.CO;2-6

    Article  CAS  Google Scholar 

  • Oros G, Vajna L, Balázs K, Fekete Z, Naár Z, Eszéki E (2010) Anthracnose and possibilities of the control with special regard to resident Glomerella population in sour cherry plantations of East Hungary. Agric Res 39:12–17. ISSN 1587-1282

    Google Scholar 

  • Osorio E, Flores M, Hernandez D, Ventura J, Rodriguez R, Aguilar CN (2010) Biological efficiency of polyphenolic extracts from pecan nuts shell (Carya Illinoensis), pomegranate husk (Punica granatum) and creosote bush leaves (Larrea tridentata Cov.) against plant pathogenic fungi. Ind Crops Prod 31(1):153–157. https://doi.org/10.1016/j.indcrop.2009.09.017

    Article  Google Scholar 

  • Owaid N, Al-Saeedi SSS, Al-Assaffii IAA (2017) Antifungal activity of cultivated oyster mushrooms on various agro-wastes. Sum Phytopathol 43(1):9–13

    Article  Google Scholar 

  • Ozcakmak S, Dervisoglu M, Yilmaz A (2012) Antifungal activity of lemon balm and sage essential oils on the growth of ochratoxigenic Penicillium verrucosum. Afr J Microbiol Res 6(12):3079–3084. https://doi.org/10.5897/AJMR12.569

    Article  CAS  Google Scholar 

  • Pan JL, Yang Y, Zhang R, Yao HW, Ge KK, Zhang MY, Ma L (2017) Enrichment of chelidonine from Chelidonium majus L. using macroporous resin and its antifungal activity. J Chromatogr B 1070:7–14. https://doi.org/10.1016/j.jchromb.2017.10.029

    Article  CAS  Google Scholar 

  • Pane C, Fratianni F, Parisi M, Nazzaro F, Zaccardelli M (2016) Control of Alternaria post-harvest infections on cherry tomato fruits by wild pepper phenolic-rich extracts. Crop Prot 84:81–87. https://doi.org/10.1016/j.cropro.2016.02.015

    Article  CAS  Google Scholar 

  • Parvu M, Vlase L, Fodorpataki L, Parvu O, Roscacasian O, Bartha C, Barbu-Tudoran L, Parvu AE (2013) Chemical composition of celandine (Chelidonium majus L.) extract and its effects on Botrytis tulipae (Lib.) Lind fungus and the tulip. Not Bot Horti Agrobot Cluj Napoca 41(2):414–426

    Google Scholar 

  • Pârvu M, Parvu AE, Constantin C, Barbu-Tudoran L, Mircea T (2008) Antifungal activities of Chelidonium majus extract on Botrytis cinerea in vitro and ultrastructural changes in its conidia. J Phytopathol 156:550–552. https://doi.org/10.1111/j.1439-0434.2008.01410.x

    Article  Google Scholar 

  • Pazmiño-Miranda P, Velástegui-Espín GP, Curay S, Yánez-Yánez W, Vásquez C (2017) Effect of hydro-ethanolic extracts of cinnamon (Cinnamomum zeylanicum Blume) and common horsetail (Equisetum arvense L.) on incidence and severity of Botrytis cinerea on strawberry. J Selva Andina Biosph Bolivia 5(1):29–38

    Google Scholar 

  • Pedras MSC, Sorensen JL (1998) Phytoalexin accumulation and antifungal compounds from the crucifer wasabi. Phytochemistry 49(7):1959–1965. https://doi.org/10.1016/s0031-9422(98)00424-5

    Article  CAS  Google Scholar 

  • Pedras MSC, Yaya EE (2015) Plant chemical defenses: are all constitutive antimicrobial metabolites phytoanticipins? Nat Prod Commun 10(1):209–218

    Article  Google Scholar 

  • Phongpaichit S, Pujenjob N, Rukachaisirikul V, Ongsakul M (2005) Antimicrobial activities of the crude methanol extract of Acorus calamus Linn. Songklanakarin J Sci Technol 27:517–523

    Google Scholar 

  • Piasecka A, Jedrzejczak-Rey N, Bednarck P (2015) Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytol 206(1):948–964

    Article  PubMed  Google Scholar 

  • Pinheiro LS, Filho AAO, Guerra FQS, Menezes FP, Santos SG, Sousa JP, Dantas TB, Lima EO (2017) Antifungal activity of the essential oil isolated from Laurus nobilis L. against Cryptococcus neoformans strains. J Appl Pharm Sci 7(5):115–118

    Google Scholar 

  • Pinto PM, Pajares J, Díez J (20076) In vitro effects of four ectomycorrhizal fungi, Boletus edulis, Rhizopogon roseolus, Laccaria laccata and Lactarius deliciosus on Fusarium damping off in Pinus nigra seedlings. J New Forest 32:323–334. https://doi.org/10.1007/s11056-006-9006-7

    Article  Google Scholar 

  • Potocnik I, Vukojevic J, Stajic M, Tanovic B, Rekanovic E (2010) Sensitivity of Mycogone perniciosa, pathogen of culinary-medicinal button mushroom Agaricus bisporus (J. Lge) Imbach (Agaricomycetideae), to selected fungicides and essential oils. Int J Med Mushrooms 12(1):91–98. https://doi.org/10.1615/intjmedmushr.v12.i1.90

    Article  CAS  Google Scholar 

  • Prasad L, Rana V, Raina A (2016) Antifungal activity of essential oils obtained from roots and rhizomes of Kaempferia galanga Linn., Alpinia galanga (Linn.) and Alpinia calcarata Roscoe. against Rhizoctonia solani. Ind Phytopathol 69(4s):499–500

    Google Scholar 

  • Preeti B, Sudhir KJ (2014) Antimicrobial activity of plant extract against fungi associated with monument deterioration of Gwalior Fort in India. Eur Acad Res 2(5):6199–6210

    Google Scholar 

  • Rakatama AS, Pramono A, Yulianti R (2018) The antifungal inhibitory concentration effectiveness test from ethanol seed Arabica coffee (Coffea arabica) extract against the growth of Candida albicans patient isolate with in vitro method. J Phys Conf Ser 970:012023. https://doi.org/10.1088/1742-6596/970/1/012023

    Article  CAS  Google Scholar 

  • Ratha Bai V, Kanimozhi D (2012) Evaluation of antimicrobial activity of Coriandrum sativum. Int J Sci Res Rev 1(3):1–10

    Google Scholar 

  • Rautio M, Sipponen A, Lohi J, Lounatmaa K, Koukila-Kahkola P, Laitinen K (2012) In vitro fungistatic effects of natural coniferous resin from Norway spruce (Picea abies). Eur J Clin Microbiol Infect Dis 31(8):1783–1789. https://doi.org/10.1007/s10096-011-1502-9

    Article  CAS  PubMed  Google Scholar 

  • Rizvi SH, Jaiswal V, Mukerji D, Mathur SN (1980) Antifungal properties of 1,3,7-trimethylxanthine, isolated from Coffea arabica. Naturwissenschaften 67(9):459–460. https://doi.org/10.1007/bf00405645

    Article  CAS  PubMed  Google Scholar 

  • Rizwana H, Alwhibi MS, Soliman D (2016) Antimicrobial activity and chemical composition of flowers of Matricaria aurea a native herb of Saudi Arabia. Int J Pharmacol 12(6):576–586. https://doi.org/10.3923/ijp.2016.576.586

    Article  CAS  Google Scholar 

  • Roco Gauch LM, Soares Pedroso S, Esteves RA, Gomes FS, Cajuiero Gurgel E, Arruda AC, Marques de Silva SH (2014) Antifungal activity of Rosmarinus officinalis Linn. Essential oil against Candida albicans, Candida dubliniensis, Candida parapsilosis and Candida krusei. Rev Pan-Amaz Saude 5(1):61–66 https://doi.org/10.5123/s2176-62232014000100007

    Article  Google Scholar 

  • Rodrigez OEA (2017) Determination of the antifungal capacity of total extracts of Sinapis alba L by the method of plates and wells. Asian J Sci Technol 8(12):7197–7200. https://www.researchgate.net/publication/323029767

  • Rongai D, Pulcini P, Pesce B, Milano F (2017) Antifungal activity of pomegranate peel extract against fusarium wilt of tomato. Eur J Plant Pathol 147(1):229–238. https://doi.org/10.1007/s10658-016-0994-7

    Article  CAS  Google Scholar 

  • Sagar A, Sharma L, Srivastava B (2011) Study on antifungal activity of Acorus calamus L. and Allium sativum L. against some pathogenic fungi. J Pure Appl Microbiol 5(2):917–923

    Google Scholar 

  • Saglam C, Ozcan MM, Boyraz N (2009) Fungal inhibition by some spice essential oils. J Essent Oil Bear Plant 12(6):742–750. https://doi.org/10.1080/0972060X.2009.10643783

    Article  CAS  Google Scholar 

  • Saha D, Dasgupta S, Saha A (2005) Antifungal activity of some plant extracts against fungal pathogens of tea (Camellia sinensis.). Pharm Biol 43(1):87–91. https://doi.org/10.1080/13880200590903426

    Article  Google Scholar 

  • Salem MZM, Elansary HO, Elkelish AA, Zeidler A, Ali HM, El-Hefny M, Yessoufou K (2016) In vitro bioactivity and antimicrobial activity of Picea abies and Larix decidua wood and bark extracts. BioResources 11(4):9421–9437. https://doi.org/10.15376/biores.11.4.9421-9437

    Article  CAS  Google Scholar 

  • Sales M, Costa HB, Fernandes PMB, Ventura JA, Meira D (2015) Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. Asian Pac J Trop Biomed 6(1):26–31. https://doi.org/10.1016/j.apjtb.2015.09.026

    Article  Google Scholar 

  • Santamarina MP, Rosello J, Gimenez S, Blazquez MA (2016) Commercial Laurus nobilis L. and Syzygium aromaticum L. Men. & Perry essential oils against post-harvest phytopathogenic fungi on rice. LWT-Food Sci Technol 65:325–332. https://doi.org/10.1016/j.lwt.2015.08.040

    Article  CAS  Google Scholar 

  • Santos HM, Campos VAC, Alves DS, Cavalheiro AJ, Souza LP, Botelho DMS, Chalfoun SM, Oliveira DF (2014) Antifungal activity of flavonoids from Heteropterys byrsonimifolia and a commercial source against Aspergillus ochraceus: in silico interactions of these compounds with a protein kinase. Crop Prot 62:107–114. https://doi.org/10.1016/j.cropro.2014.04.012

    Article  CAS  Google Scholar 

  • Sarac Z, Matejic JS, Stojanovic-Radic Z, Veselinovic JB, Dzamic AM, Bojovic S, Marin PD (2014) Biological activity of Pinus nigra terpenes—evaluation of FtsZ inhibition by selected compounds as contribution to their antimicrobial activity. Comput Biol Med 54:72–78

    Article  CAS  PubMed  Google Scholar 

  • Sasidhran I, Menon AN (2010) Comparative chemical composition and antimicrobial activity of berry and leaf essential oils of Piper nigrum L. Int J Biol Med Res 4:215–218

    Google Scholar 

  • Schmourlo G, Mendonca-Filho RR, Alviano CS, Costa SS (2005) Screening of antifungal agents using ethanol precipitation and bioautography of medicinal and food plants. J Ethnopharmacol 96(3):563–568. https://doi.org/10.1016/j.pep.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  • Schnee S, Queiroz EF, Voinesco F, Marcourt L, Dubuis PH, Wolfender JL, Gindro K (2013) Vitis vinifera canes, a new source of antifungal compounds against Plasmopara viticola, Erysiphe necator, and Botrytis cinerea. J Agric Food Chem 61(23):5459–5467. https://doi.org/10.1021/jf4010252

    Article  CAS  PubMed  Google Scholar 

  • Seidler-Łożykowska K, Kędzia B, Karpińska E, Bocianowski J (2013) Microbiological activity of caraway (Carum carvi L.) essential oil obtained from different origin. Acta Sci 35(4):495–500. https://doi.org/10.4025/actasciagron.v35i4.16900

  • Sen S, Yalcin M (2010) Activity of commercial still waters from volatile oils production against wood decay fungi. Maderas-Cienc Tecnol 12(2):127–133. https://doi.org/10.4067/SO718-221X2010000200007

    Article  Google Scholar 

  • Sesan TE, Enache E, Iacomi BM, Oprea M, Oancea F, Iacomi C (2017) In vitro antifungal activity of some plant extracts against Fusarium oxysporum in blackcurrant (Ribes nigrum L.). Acta Sci Pol Hortorum Cultus 16(6):167–176. https://doi.org/10.24326/asphc.2017.6.15

    Article  Google Scholar 

  • Sharma M, Sharma R (2013) Synergistic antifungal activity of Curcuma longa (turmeric) and Zingiber officinale (ginger) essential oils against dermatophyte infections. J Essent Oil Bear Plant 14(1):38–47. https://doi.org/10.1080/0972060X.2011.10643899

    Article  Google Scholar 

  • Shenvi S, Vinod HR, Kush A, Reddy GC (2011) A unique water soluble formulation of beta-asarone from sweet flag (Acorus calamus L.) and its in vitro activity against some fungal plant pathogens. J Med Plants Res 5(20):5132–5137

    Google Scholar 

  • Sherwood P, Bonello P (2013) Austrian pine phenolics are likely contributors to systemic induced resistance against Diplodia pinea. Tree Physiol 33(8):845–854. https://doi.org/10.1093/treephys/tpt063

    Article  CAS  PubMed  Google Scholar 

  • Shigeyuki M, Yuko S (1985) Antifungal activities of hop bitter resins and related compounds. Agric Biol Chem 49(2):399–403. https://doi.org/10.1080/00021369.1985.10866749

    Article  Google Scholar 

  • Shiva Rani SK, Saxena N, Udaysree (2013) Antimicrobial activity of black pepper (Piper nigrum L.). Glob J Pharm 7(1):87–90. https://doi.org/10.5829/idosi.gjp.2013.7.1.1104

  • Shreaz S, Wani W, Behbehani J, Raja V, Irshad MD, Karched M, Intzar A, Siddiqui WA, Lee TH (2016) Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 112. https://doi.org/10.1016/j.fitote.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  • Shuzhen W, Yongliang Z, Fu X, Shiming L, Guliang Y (2016) Antifungal activity of Momordica charantia seed extracts toward the pathogenic fungus Fusarium solani L. J Food Drug Anal 24(4):881–887. https://doi.org/10.1016/j.jfda.2016.03.006 ISSN: 1021-9498

    Article  Google Scholar 

  • Sigei EC (2013) Antifungal activities of Camellia sinensis crude extract on selected pathogenic and mycotoxic fungi. BSc thesis, Kenyata University, Nairobi, Kenya

    Google Scholar 

  • Silva F, Ferreira S, Duarte A, Mendonça DI, Domingues FC (2011) Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine 19(1):42–47. https://doi.org/10.1016/j.phymed.2011.06.033

    Article  CAS  PubMed  Google Scholar 

  • Simic A, Sokovic MD, Ristic M, Grujic-Jovanovic S, Vukojevic J, Marin PD (2004) The chemical composition of some Lauraceae essential oils and their antifungal activities. Phytother Res 18(9):713–717. https://doi.org/10.1002/ptr.1516

    Article  CAS  PubMed  Google Scholar 

  • Simonić J, Stajic M, Vukojevic J, Milovanovic I, Muzgonja N (2014) Antioxidant and antifungal potential of Pleurotus ostreatus and Agrocybe cylindracea basidiocarps and mycelia. Curr Pharm Biotechnol 16. https://doi.org/10.2174/1389201015666141202152023

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Rai B (2000) Antifungal potential of some higher plants against Fusarium udum causing wilt disease of Cajanus cajan. Microbios 102(403):165–173

    CAS  PubMed  Google Scholar 

  • Singh J, Dubey AK, Tripathi NN (1994) Antifungal activity of Mentha spicata. Int J Pharmacog 32(4):314–319. https://doi.org/10.3109/13880209409083009

    Article  CAS  Google Scholar 

  • Singh G, Singh OP, Maurya S (2002) Chemical and biocidal investigations on essential oils of some Indian Curcuma species. Prog Cryst Growth Charact Mater 45(1–2):75–81

    Article  CAS  Google Scholar 

  • Skrinjar MM, Mandi AI, Misan AC, Sakac MB, Saric LC, Zec MM (2009) Effect of mint (Mentha piperita L.) and Caraway (Carum carvi L.) on the growth of some toxicogenic Aspergillus species and aflatoxin B1 production. Matica Srpska J Nat Sci 116:131–139

    Article  Google Scholar 

  • Smid J, Kloucek P, Legarova V (2013) Antimicrobial protection of potatoes using combination of essential oils and warm air flow. Mendelnet 2013:609–613

    Google Scholar 

  • Smith RP, Cruz I, Golshani A, Chesnais C, Smith ML (2008) Secondary arrays for testing the mode of action of natural products with bioactivity against fungi. Pharm Biol 46(1–2):16–25. https://doi.org/10.1080/13880200701729695

    Article  CAS  Google Scholar 

  • Sokovic M, VanGriensven LJLD (2006) Antimicrobial activity of essential oils and their components against the threemajor pathogens of the cultivated button mushroom. Eur J Plant Pathol 116:211–224. https://doi.org/10.1007/s10658-006-9053-0

    Article  CAS  Google Scholar 

  • Soylu EM, Soylu S, Sener K (2006a) Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia 161:119–128

    Article  CAS  PubMed  Google Scholar 

  • Soylu EM, Soylu S, Kurt S (2006b) Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia 161(2):119–128. https://doi.org/10.1007/s11046-005-0206-z

    Article  CAS  PubMed  Google Scholar 

  • Stupar M, Grbic ML, Dzamic A, Unkovic N, Ristic M, Jelikic A, Vukojevic J (2014) Antifungal activity of selected essential oils and biocide benzalkonium chloride against the fungi isolated from cultural heritage objects. South Afr J Bot 93:118–124. https://doi.org/10.1016/j.sajb.2014.03.016

    Article  CAS  Google Scholar 

  • Suganthi RU, Manpal S, David ICG, Mech A (2013) Anti-fungal activity of plant products against Aspergillus parasiticus: an exploration in vitro. Indian J Anim Sci 83(9):888–892

    Google Scholar 

  • Szakiel A, Voutquenne-Nazabadioko L, Henry M (2011) Isolation and biological activities of lyoniside from rhizomes and stems of Vaccinium myrtillus. Phytochem Lett 4(2):138–143. https://doi.org/10.1016/j.phytol.2011.02.002 ISSN 1874-3900

    Article  CAS  Google Scholar 

  • Taha KF, Shakour ZTA (2016) Chemical composition and antibacterial activity of volatile oil of Sequoia sempervirens (Lamb.) grown in Egypt. Med Aromat Plant 5:245. https://doi.org/10.4172/2167-0412.1000245

  • Tajehmiri A, Rahmani MR, Moosavi SS, Davari K, Ebrahimi SS (2018) Antifungal effects of six herbal extracts against Aspergillus sp. and compared to amphotericin B and nystatin. Int J Adv Appl Sci 5(7):53–57. https://doi.org/10.21833/ijaas.2018.07.007

    Article  Google Scholar 

  • Takayama C, Meki N, Kurita Y, Takano H (1995) Computer-aided molecular modeling and structure-activity studies of new antifungal tertiary amines. In: Hansch C, Fujita T (eds) Classical and three-dimensional QSAR in agrochemistry. American Chemical Society, Washington, DC, USA, pp 154–170

    Google Scholar 

  • Talib WH, Mahasneh AM (2010) Antimicrobial, cytotoxicity and phytochemical screening of Jordanian plants used in traditional medicine. Molecules 15(3):1811–1824. https://doi.org/10.3390/molecules15031811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tehranifar A, Selahvarzi Y, Kharrazi M, Bakhsh VJ (2011) High potential of agro-industrial by-products of pomegranate (Punica granatum L.) as the powerful antifungal and antioxidant substances. Ind Crops Prod 34(3):1523–1527. https://doi.org/10.1016/j.indcrop.2011.05.007

    Article  CAS  Google Scholar 

  • Terry LA, Joyce DC, Adikaram NKB, Khambay BPS (2004) Preformed antifungal compounds in strawberry fruit and flower tissues. Postharvest Biol Technology 31(2):201–212. https://doi.org/10.1016/j.postharvbio.2003.08.003

    Article  CAS  Google Scholar 

  • Thakur N, Sareen N, Shama B, Jagota K (2013) Studies on in vitro antifungal activity of Foeniculum vulgare Mill. against spoilage fungi. Glob J Bio-Sci Biotechnol 2(3):427–430. ISSN 2278–9103

    Google Scholar 

  • Thirach S, Tragoolpua K, Punjaisee S, Khamwan C, Jatisatienr C, Kunyanone N (2003) Antifungal activity of some medicinal plant extracts against Candida albicans and Cryptococcus neoformans. Acta Hortic 597:217–221. https://doi.org/10.17660/ActaHortic.2003.597.31

    Article  Google Scholar 

  • Thobunluepop P, Jatisatienr C, Pawelzik E, Vearasilp S (2009) In vitro screening of the antifungal activity of plant extracts as fungicides against rice seed borne fungi. Acta Hortic 837:223–228. https://doi.org/10.17660/ActaHortic.2009.837.29

    Article  Google Scholar 

  • Thomidis T, Filotheou A (2016) Evaluation of five essential oils as bio-fungicides on the control of Pilidiella granati rot in pomegranate. Crop Prot 89:66–71. https://doi.org/10.1016/j.cropro.2016.07.002

    Article  CAS  Google Scholar 

  • Tian J, Ban X, Zeng H, He J, Chen Y, Wang Y (2012) The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PLoS ONE 7(1):e30147. https://doi.org/10.1371/journal.pone.0030147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolouee M, Alinezhad S, Saberi R, Eslamifar A, Zad SJ, Jaimand K, Taeb J, Rezaee MB, Kawachi, M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2010) Effect of Matricaria chamomilla L. flower essential oil on the growth and ultrastructure of Aspergillus niger van Tieghem. Int J Food Microbiol 139(3):127–133. https://doi.org/10.1016/j.ijfoodmicro.2010.03.032

    Article  CAS  PubMed  Google Scholar 

  • Tomescu A, Sumalan RM, Pop G, Alexa E, Poiana MA, Copolovici DM, Mihai CSS, Negrea M, Galuscan A (2015) Chemical composition and protective antifugal activity of Mentha piperita L. and Salvia officinalis L. essential oils against Fusarium graminearum spp. Rev Chim 66(7):1027–1030

    Google Scholar 

  • Tonea A, Oana L, Badea M, Sava S, Voina C, Ranga F, Vodnar D (2016) HPLC analysis, antimicrobial and antifungal activity of an experimental plant based gel, for endodontic usage. Stud Univ Babes-Bolyai, Chem 61(4):53–68

    CAS  Google Scholar 

  • Tonucci-Zanardo NM, Pascholati SF, Di Piero RM (2015) Atividade antimicrobiana in vitro de extratos aquosos de isolados de L. edodes contra Colletotrichum sublineolum e Xanthomonas axonopodis pv. passiflorae. Sum Phytopathol 41(1):13–20

    Google Scholar 

  • Turkolmez S, Soylu EM (2014) Antifungal efficacies of plant essential oils and main constituents against soil-borne fungal disease agents of bean. J Essent Oil Bear Plants 17(2):203–211. https://doi.org/10.1080/0972060X.2014.895160

    Article  CAS  Google Scholar 

  • Uddin DR, Nusrat A, Parv INS, Roni MZK, Mayda U, Parvin S (2003) 25. Antibacterial and antifungal activities of Vanilla planifolia grown in Sher-E-Bangla Agricultural University. Bangladesh Res Publ J 11:34–39

    Google Scholar 

  • Ujváry I, Oros G (2002) Ceveratrum alkaloids as fungal membrane disruptants and models for new anti-oomycota agents. In: Dehne HW, Gisi U, Kuck H, Russel PE, Lyr H (eds) Modern fungicides and antifungal compounds III. AgroConcept Gmbh, Bonn, pp 307–316

    Google Scholar 

  • Urziya A, Gulbaram U, Kaldanay K, Yudina Y, Strilets O, Strelnikov L (2016) Study of antimicrobial activity of Plantago major and Acorus calamus carbon dioxide extracts. Res J Pharm Biol Chem Sci 7(2):2081–2085

    CAS  Google Scholar 

  • Uslu ME, Erdogan I, Oguzbayraktar O, Ates M (2013) Optimization of extraction conditions for active components in Equisetum arvense extract. Rom Biotechnol Lett 18(2):8115–8131

    CAS  Google Scholar 

  • Van Etten HV, Temporini E, Wasmann C (2001) Phytoalexin (and phytoanticipin) tolerance as a virulence trait: why is it not required by all pathogens? Physiol Mol Plant Pathol 59:83–93

    Article  CAS  Google Scholar 

  • Vânia V, Jham GN, Marangon Jardim C, Onkar D, Ion G (2014) Major antifungals in nutmeg essential oil against Aspergillus flavus and A. ochraceus. J Food Res 4. https://doi.org/10.5539/jfr.v4n1p51

    Article  Google Scholar 

  • Verma RK, Chaurasia L, Katiyar S (2008) Potential antifungal plants for controlling building fungi. Nat Prod Rad 7(4):374–387

    Google Scholar 

  • Visnjevec AM, Ota A, Skrt M, Butinar B, Mozina SS, Cimerman NG, Necemer M, Arbeiter AB, Hladnik M, Krapac M, Ban D, Bucar-Miklavcic M, Ulrih NP, Bandelj D (2017) Genetic, biochemical, nutritional and antimicrobial characteristics of pomegranate (Punica granatum L.) grown in Istria. Food Technol Biotechnol 55(2):151–163. https://doi.org/10.17113/ftb.55.02.17.4786

  • Vitoratos A, Bilalis D, Karkanis A, Efthimiadou A (2013) Antifungal activity of plant essential oils against Botrytis cinerea, Penicillium italicum and Penicillium digitatum. Not Bot Horti Agrobot Cluj Napoca 41(1):86–92

    Article  Google Scholar 

  • Vokk R, Lõugas T, Mets K, Kravets M (2011) Dill (Anethum graveolens L.) and parsley (Petroselinum crispum (Mill.) Fuss) from Estonia: seasonal differences in essential oil composition. Agron Res 9:515–520

    Google Scholar 

  • Waithaka PN, Gathuru EM, Githaiga BM, Onkoba KM (2017) Antimicrobial activity of mushroom (Agaricus bisporus) and fungal (Trametes gibbosa) extracts from mushrooms and fungi of egerton main campus, Njoro Kenya. J Biomed Sci 6(3):19. https://doi.org/10.4172/2254-609X.100063

    Article  Google Scholar 

  • Walker JC, Morell S, Foster HH (1937) Toxicity of mustard oils and related sulfur compouns to sertain fungi. Am J Bot 24(10):536–541

    Article  CAS  Google Scholar 

  • Wang J, Chen HL, Gao J, Guo JX, Zhao XS, Zhou YF (2018) Ginsenosides and ginsenosidases in the pathobiology of ginseng-Cylindrocarpon destructans (Zinss) Scholten. Plant Physiol Biochem 123:406–413. https://doi.org/10.1016/j.plaphy.2017.12.038

    Article  CAS  PubMed  Google Scholar 

  • Wegiera M, Kosikowska U, Malm A, Smolarz HD (2011) Antimicrobial activity of the extracts from fruits of Rumex L. species. Cent Eur J Biol 6(6):1036–1043. https://doi.org/10.2478/s11535-011-0066-0

  • Wen YP (2009) Secondary metabolites from Pepper (Piper nigrum) and Tahitian Noni (Morinda citrifolia) and their biological activities. MSc thesis, University Putra, Selangar, Malaysia

    Google Scholar 

  • Wink M (1993) Allelochemical properties or the raison d’etre of alkaloids. In: Cordell GA (ed) The alkaloids. Chemistry and pharmacology, vol 43. Academic Press, San Diego, USA, pp 1–104

    Google Scholar 

  • Wuthi-Udomlert M, Grisanapan W, Luanratana O, Caichompoo W (2000) Antifungal activity of Curcuma longa grown in Thailand. Southeast Asian J Trop Med Public Health 31:178–182

    PubMed  Google Scholar 

  • Xie YJ, Wang ZJ, Huang QQ, Zhang DY (2017) Antifungal activity of several essential oils and major components against wood-rot fungi. Ind Crops Prod 108:278–285. https://doi.org/10.1016/j.indcrop.2017.06.041

    Article  CAS  Google Scholar 

  • Xu S, Yan F, Ni Z, Chen Q, Zhang H, Zheng X (2014) In vitro and in vivo control of Alternaria alternata in cherry tomato by essential oil from Laurus nobilis of Chinese origin. J Sci Food Agric 94(7):1403–1408

    Article  CAS  PubMed  Google Scholar 

  • Xue P, Yang XS, Sun XY, Ren GX (2017) Antifungal activity and mechanism of heat-transformed ginsenosides from notoginseng against Epidermophyton floccosum, Trichophyton rubrum, and Trichophyton mentagrophytes. RSC Adv 7(18):10939–10946. https://doi.org/10.1039/c6ra27542g

    Article  CAS  Google Scholar 

  • Yahyazadeh M, Omidbaigi R, Zare R, Taheri H (2008) Effect of some essential oils on mycelial growth of Penicillium digitatum Sacc. World J Microbiol Biotechnol 24(8):1445–1450. https://doi.org/10.1007/s11274-007-9636-8

    Article  Google Scholar 

  • Yanar Y, Gokce A, Kadioglu I, Cam H, Whalon M (2011a) In vitro antifungal evaluation of various plant extracts against early blight disease (Alternaria solani) of potato. Afr J Biotechnol 10(42):8291–8295

    Article  CAS  Google Scholar 

  • Yanar Y, Kadioglu I, Gokce A, Demirtas I, Goren N, Cam H, Whalon M (2011b) In vitro antifungal activities of 26 plant extracts on mycelial growth of Phytophthora infestans (Mont.) de Bary. Afr J Biotechnol 10(14):2625–2629

    Google Scholar 

  • Yazdani D, Rezazadeh SH, Amin GH, Zainal Abidin MA, Shahnazi S, Jamalifar H (2009) Antifungal activity of dried extracts of anise (Pimpinella anisum L.) and star anise (Illicium verum Hook. f.) against dermatophyte and saprophyte fungi. J Med Plant 8(5):24–29. https://www.researchgate.net/publication/202312370

  • Yeo HD, Jung JY, Nam JB, Kim JW, Kim HK, Choi MS, Alm G, Rinker DL, Yang JK (2009): Antifungal activity against Trichoderma spp. of water soluble essential oil extracted from Pinus densiflora and Chamaecyparis obtusa. J Korean Wood Sci Technol 37(6):585–599

    Google Scholar 

  • Yilmaz A, Ermis E, Boyraz N (2016) Investigation of in vitro and in vivo anti-fungal activities of different plant essential oils against postharvest apple rot diseases—Colletotrichum gloeosporioides, Botrytis cinerea and Penicillium expansum. J Food Saf Food Qual 67(5):122–131. https://doi.org/10.2376/0003-925X-67-122

    Article  Google Scholar 

  • Yoon MY, Cha B, Kim JC (2013) Recent trends in studies on botanical fungicides in agriculture. Plant Pathol J 29. https://doi.org/10.5423/ppj.rw.05.2012.0072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarai Z, Kadri A, Ben Chobba I, Ben Mansour R, Bekir A, Mejdoub H, Gharsallah N (2011) The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L. essential oil grown in Tunisia. Lipids Health Dis 10:161. https://doi.org/10.1186/1476-511x-10-161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZZ, Li YB, Qi L, Wan X (2006) Antifungal activities of major tea leaf volatile constituents toward Colletorichum camelliae Massea. J Agric Food Chem 54(11):3936–3940. https://doi.org/10.1021/jf060017m

    Article  CAS  PubMed  Google Scholar 

  • Zhao YX, Schenk DJ, Takahashi S, Chappell J, Coates RM (2004) Eremophilane sesquiterpenes from capsidiol. J Org Chem 69(22):7428–7435. https://doi.org/10.1021/jo049058c

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research work was supported by The Hungarian Scientific Research Fund (Grant K-67688).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Kállai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oros, G., Kállai, Z. (2019). Phytoanticipins: The Constitutive Defense Compounds as Potential Botanical Fungicides. In: Jogaiah, S., Abdelrahman, M. (eds) Bioactive Molecules in Plant Defense. Springer, Cham. https://doi.org/10.1007/978-3-030-27165-7_11

Download citation

Publish with us

Policies and ethics