Skip to main content
Log in

Antifungal activity of essential oils against three vegetative-compatibility groups of Verticillium dahliae

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The antifungal activities of volatile phase effects of essential oils from Origanum onites, O. syriacum, O. minutiflorum, O. vulgare, O, marjorana, Thymus vulgaris, T. serpyllum, Rosmarinus officinalis, Salvia officinalis and Micromeria fruticosa were evaluated for their ability to inhibit growth of three vegetative compatibility groups (VCGs) of Verticillium dahliae. Carvacrol was the main component of O. onites, O. minutiflorum and O. vulgare essential oils, while γ-terpinene was the main component of O. syriacum. P-cymene and thymol were the dominant component of T. vulgaris and T. serpyllum. β- thujone and l-camphor were the main component of S. officinalis. Polegone and isomenthone were the dominant components of M. fruticosa essential oil. Based on the in vitro test, the degree of fungistatical effects can be ranked in the following order of inhibition: O. syriacum = O. onites = O. minutiflorum = O. vulgare = T. vulgaris > T. serpyllum > M. fruticosa > S. officinalis = O. marjorana > R. officinalis. The essential oils of S. officinalis, O. marjorana and R. officinalis displayed moderate antifungal activity, that increased with increasing concentrations. Among the VCGs, VCG2A and VCG4B were found to be highly sensitive to the essential oils. The essential oils of O. syriacum, O. onites, O. minutiflorum, O. vulgare and T. vulgaris were the most efficacious, demonstrating strong antifungal activity against all of the tested VCGs of V. dahliae at relatively low concentrations and they could find practical application as natural fungicides in the prevention and protection of plants from V. dahliae infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams RP (1995) Identification of essential oil components by gas chromatography/mass spectroscopy. Allured Publishing, Carol Stream, IL

    Google Scholar 

  • Adams S, Kunz B, Weidenbörner M (1996) Mycelial deformations of Cladosporium herbarum due to the application of eugenol and carvacrol. J Essent Oil Res 8:535–540

    CAS  Google Scholar 

  • Alankararao GSJG, Baby P, Rajendra Prasad Y (1991) Leaf oil of Coleus amboinicus Lour: the in vitro antimicrobial studies. Perfumerie Kosmetics 72:744–745

    Google Scholar 

  • Anonymous (1983) French Pharmacopoeia. Maisonneuve S.A., Moulins, Les Merz, France

  • Arras G, Agabbio M, Piga A, D’hallewin G, Gerasopoulos D, Olympios C, Passam H (1995) Fungicide effect of volatile compounds of Thymus capitatus essential oil. Acta Hortic 379:593–600

    CAS  Google Scholar 

  • Bao JR, Katan J, Shabi E, Katan T (1998) Vegetative-compatibility groups in Verticillium dahliae from Israel. Eur J Plant Pathol 104:263–269

    Article  Google Scholar 

  • Baruah P, Sharma RK, Singh RS, Ghosh AC (1996) Fungicidal activity of some naturally occurring essential oils against Fusarium monoliforme. J Essent Oil Res 8:411–441

    CAS  Google Scholar 

  • Bell AA (1994) Mechanisms of disease resistance in Gossypium and variation in Verticillium dahliae. Proceedings of the world cotton Research Conference-1 (CSIRO, Melbourne, Australia), pp 225–235

  • Bhat RG, Smith RE, Koike ST, Wu BM, Subbarao KV (2003) Characterization of Verticillium dahliae isolates and wilt epidemics of pepper. Plant Dis 87:789–797

    Article  Google Scholar 

  • Bouchra C, Achouri M, Hassani LMI, Hmamouchi M (2003) Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr. J Ethnopharmacol 89:165–169

    Article  CAS  Google Scholar 

  • Bullerman LB, Lieu FY, Seire AS (1977) Inhibition of growth and aflatoxin production by cinnamon and clove oils, cinnamic aldehyde and eugenol. J Food Sci 42:1107–1116

    Article  CAS  Google Scholar 

  • Carta C, Moretti MDL, Peana AT (1996) Activity of the oil of Salvia officinalis L. against Botrytis cinerea. J Essent Oil Res 8:399–404

    CAS  Google Scholar 

  • Chandelier A, Laurent E, Dantinne D, Mariage L, Etienne M, Cavalier M (2003) Genetic and molecular characterization of Verticillium dahliae from woody ornamentals in Belgian nurseries. Eur J Plant Pathol 109:943–952

    Article  CAS  Google Scholar 

  • Chang ST, Chen PF, Chang SC (2001) Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. J Ethnopharmacol 77:123–127

    Article  CAS  Google Scholar 

  • Chen W (1994) Vegetative compatibility groups of Verticillium dahliae from ornamental woody plants. Phytopathology 84:214–219

    Article  Google Scholar 

  • Chu CL, Liu WT, Zhou T, Tsao R (1999) Control of post harvest gray mold rot of modified atmosphere packaged sweet cherries by fumigation with thymol and acetic acid. Can J Plant Sci 79:685–689

    CAS  Google Scholar 

  • Chu CL, Liu WT, Zhou T (2001) Fumigation of sweet cherries with thymol and acetic acid to reduce post harvest brown rot and blue mold rot. Fruits 56:123–130

    Article  Google Scholar 

  • Daayf F, Nicole M, Geiger JP (1995) Differentiation of Verticillium dahliae populations on the basis of vegetative compatibility and pathogenicity on cotton. Eur J Plant Pathol 101:69–79

    Article  Google Scholar 

  • Daferera DJ, Ziagos BN, Polissiou MG (2003) The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Prot 22:39–44

    Article  CAS  Google Scholar 

  • Daouk RK, Dagher SM, Sattout EJ (1995) Antifungal activity of the essential oil of Origanum syriacum L. J Food Protect 58:1147–1149

    CAS  Google Scholar 

  • Deans SG, Ritchie G (1987) Antimicrobial properties of plant essential oils. Int J Food Microbiol 5:165–180

    Article  Google Scholar 

  • Debersac P, Heydel JM, Amiot MJ, Goudonnet H, Artur Y, Suschetet M, Siess MH (2001) Induction of cytochrome P450 and/or detoxication enzymes by various extracts of rosemary: description of speciflic patterns. Food Chem Toxicol 39:907–918

    Article  CAS  Google Scholar 

  • Delaquis PJ, Mazza G (1995) Antimicrobial properties of isothiocyanates in food preservation. Food Technol 49:73–84

    CAS  Google Scholar 

  • Dervis S, Erten L, Soylu S, Tok FM, Kurt S, Yildiz M (2007) Vegetative compatibility groups in Verticillium dahliae isolates from olive in western Turkey. Eur J Plant Pathol 119:437–447

    Article  Google Scholar 

  • Dixit SN, Chandra H, Tiwari R, Dixit V (1995) Development of botanical fungicide against blue mold of mandarins. J Stored Prod Res 31:165–172

    Article  Google Scholar 

  • Elena K, Paplomatas EJ (1998) Vegetative compatibility groups within Verticillium dahliae isolates from different hosts in Greece. Plant Pathol 47:635–640

    Article  Google Scholar 

  • Esen G, Azaz AD, Kurkcuoglu M, Baser KHC, Tinnaz A (2007) Essential oil and antimicrobial activity of wild and cultivated Origanum vulgare L. subsp. Hirtum (Link) letswaart from the Marmara region, Turkey. Flavour Frag J 22:371–376

    Article  CAS  Google Scholar 

  • Farag RS, Daw ZY, Abo-Raya SH (1989) Influence of some spice essential oils on Aspergillus parasiticus growth and production of aflatoxins in a synthetic medium. J Food Sci 54:74–76

    Article  CAS  Google Scholar 

  • Friedman M, Henika PR, Mandrell RE (2002) Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Protect 65:1545–1560

    CAS  Google Scholar 

  • Fu Y, Zu YG, Chen LY, Shi X, Wang Z, Sun S, Efferth T (2007) Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother Res 21:989–994

    Article  Google Scholar 

  • Gogoi R, Baruah P, Nath SC (1997) Antifungal activity of the essential oil of Litsea cubeba Pers. J Essent Oil Res 9:213–215

    CAS  Google Scholar 

  • Gore ME (2009) Vegetative compatibility and pathogenicity of Verticillium dahliae isolates from chrysanthemum in Turkey. Phytoparasitica 37:87–94

    Article  Google Scholar 

  • Guillén MD, Cabo N (1996) Characterisation of the essential oils of some cultivated aromatic plants of industrial interest. J Sci Food Agricsss 70:359–363

    Article  Google Scholar 

  • Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86:985–990

    Article  CAS  Google Scholar 

  • Jain SK (1985) Medicinal Plants. National Book Trust, New Delhi

    Google Scholar 

  • Joaquim TR, Rowe RC (1990) Reassessment of vegetative compatibility relationships among strains of Verticillium dahliae using nitrate-nonutilizing mutants. Phytopathology 80:160–1166

    Article  Google Scholar 

  • Joaquim TR, Rowe RC (1991) Vegetative compatibility and virulence of strains of Verticillium dahliae from soil and potato plants. Phytopathology 81:552–558

    Article  Google Scholar 

  • Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10:813–829

    Article  CAS  Google Scholar 

  • Katan T (2000) Vegetative compatibility in populations of Verticillium-an overview. In: Tjamos EC, Rowe RC, Heale JB, Fravel DR (eds) Advances in Verticillium research and disease management. APS, St. Paul, MN, pp 69–86

    Google Scholar 

  • Kordali S, Cakir A, Ozer H, Cakmakci R, Kesdek M, Mete E (2008) Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour Technol 99:8788–8795

    Article  CAS  Google Scholar 

  • Korolev N, Katan T (1997) Improved medium for selecting nitrate nonutilizing (nit) mutants of Verticillium dahliae. Phytopathology 87:1067–1070

    Article  CAS  Google Scholar 

  • López-Escudero FJ, Blanco-López MA (2005) Recovery of young olive trees from Verticillium dahliae. Eur J Plant Pathol 113:367–375

    Article  Google Scholar 

  • López-Escudero FJ, del Río C, Caballero JM, Blanco-López MA (2004) Evaluation of olive cultivars for resistance to Verticillium dahliae. Eur J Plant Pathol 110:79–85

    Article  Google Scholar 

  • Mansour F, Ravid U, Putievsky E (1986) Studies of essential oils isolated from 14 species of Labiateae on the carimine spider mint Tetranychus cinnabarinus. Phytoparasitica 14:137–142

    Article  CAS  Google Scholar 

  • Marino M, Bersani C, Comi G (2001) Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. Int J Food Microbiol 67:185–187

    Article  Google Scholar 

  • Meepagala KM, Sturtz G, Wedge DE (2002) Antifungal constituents of the essential oil fraction of Artemisia drancunculus L. var. dracunculus. J Agric Food Chem 50:6989–6992

    Article  CAS  Google Scholar 

  • Mercado-Blanco J, Rodríguez-Jurado D, Parrilla-Araujo S, Jiménez-Díaz RM (2003) Simultaneous detection of the defoliating and nondefoliating Verticillium dahliae pathotypes in infected olive plants by duplex, nested polymerase chain reaction. Plant Dis 87:1487–1494

    Article  CAS  Google Scholar 

  • Mishra AK, Dubey NK (1994) Evaluation of some essential oils for their toxicity against fungi causing deterioration of stored food commodities. Appl Environ Microbiol 60:1101–1105

    CAS  Google Scholar 

  • Muller-Riebau F, Berger B, Yegen O (1995) Chemical composition and fungitoxic properties to phytopathogenic fungi of essential oils of selected aromatic plants growing wild in Turkey. J Agric Food Chem 43:2262–2266

    Article  Google Scholar 

  • Nagao H, Hiroaki A, Oshima S, Koike M, Iijima T (1998) Vegetative compatibility of an isolate of Verticillium dahliae pathogenic to both tomato and pepper. Mycoscience 39:37–42

    Article  Google Scholar 

  • Paster N, Menasherov M, Ravid U, Juven B (1995) Antifungal activity of oregano and thyme essential oils applied as fumigants against fungi attacking stored grain. J Food Protect 58:81–85

    CAS  Google Scholar 

  • Pina-Vaz C, Rodrigues AG, Pinto E, Costa-de-Oliveira S, Tavares C, Salgueiro LR, Cavaleiro C, Goncalves MJ, Martinez-de-Oliveira J (2004) Antifungal activity of Thymus oils and their major compounds. J Eur Acad Dermatol 18:73–78

    Article  CAS  Google Scholar 

  • Pitarokili D, Tzakou O, Couladis M, Verykokidou E (1999) Composition and antifungal activity of the essential oil of Salvia pomifera subsp. calycina growing wild in Greece. J Essent Oil Res 11:655–659

    CAS  Google Scholar 

  • Reuveni R, Fleischer A, Putievski E (1984) Fungistatic activity of essential oils from Ocimum basilicum chemotypes. J Phytopathol 110:20–22

    Article  CAS  Google Scholar 

  • Rowe RC (1995) Recent progress in understanding relationships between Verticillium species and subspecific groups. Phytoparasitica 23:31–38

    Article  Google Scholar 

  • SAS Institute (1985) SAS User’s guide: statistics. SAS Institute, USA, 268

  • Soesanto L, Termorshuizen AJ (2001) Effect of temperature on the formation of microsclerotia of Verticillium dahliae. J Phytopathol 149:685–691

    Article  Google Scholar 

  • Sokovic M, Tzakou O, Pitarakoli D, Couladis M (2002) Antifungal activities of selected aromatic plants growing wild in Greece. Nahrung/Food 46:317–320

    Article  CAS  Google Scholar 

  • Soylu EM, Soylu S, Kurt S (2006) Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia 161:119–128

    Article  CAS  Google Scholar 

  • Stenhagen E, Abrahamsson S, McLafferty FW (1974) Registry of Mass Spectral Data. John Wiley, NY, USA

    Google Scholar 

  • Strausbaugh CA (1993) Assessment of vegetative compatibility and virulence of Verticillium dahliae from Idaho potatoes and tester strains. Phytopathology 83:1253–1258

    Article  Google Scholar 

  • Tripathi P, Dubey NK (2004) Exploitation of natural products as alternative strategy to control post-harvest fungal rotting of fruits and vegetables. Postharvest Biol Technol 32:235–245

    Article  Google Scholar 

  • Tripathi P, Dubey NK, Shukla AK (2008) Use of some essential oils as post-harvest botanical fungicides in the management of grey mould of grapes caused by Botrytis cinerea. World J Microbiol Biotechnol 24:39–46

    Article  CAS  Google Scholar 

  • Ultee A, Bennik MHJ, Moezelaar R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 68:1561–1568

    Article  CAS  Google Scholar 

  • Wakatabe D, Nagao H, Hiroaki A, Shiraishi T, Koike M, Iijima T (1997) Vegetative compatibility groups of Japanese isolates of Verticillium dahliae. Mycoscience 38:17–23

    Article  Google Scholar 

  • Wilson CL, Solar JM, El Ghaouth A, Wisniewski ME (1997) Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis cinerea. Plant Dis 81:204–210

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Arslan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arslan, M., Dervis, S. Antifungal activity of essential oils against three vegetative-compatibility groups of Verticillium dahliae . World J Microbiol Biotechnol 26, 1813–1821 (2010). https://doi.org/10.1007/s11274-010-0362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0362-2

Keywords

Navigation