Skip to main content
Log in

Evaluation of Antioxidant Activities and Antifungal Activity of Different Plants Species Against Pink Mold Rot-Causing Trichothecium roseum

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Trichothecium roseum causes the pink mold rot in many fruits and vegetables around the world. Due to this infection, significant losses arise in foods. In order to control this infection, plant extracts offer alternative treatment for fungicides. In this study, 50 plant species were screened for their antifungal effects against T. roseum. Anthemis arvensis, Origanum vulgare, Sambucus ebulus and Thymus longicaulis powders totally inhibited the mycelia growth of T. roseum at 10% (w/v). The powders of Chelidonium majus and Clinopodium vulgare were effective to T. roseum, with a percentage of inhibition of mycelia growth higher than 70%. MIC of A. arvensis aqueous extracts were lower than the other extracts (125 \(\upmu \hbox {g}\)/ml). Also its extracts inhibited the spore germination by 100% at 1000 \(\upmu \hbox {g}\)/ml. The incidence of the pink mold rot on tomatoes which were treated with C. majus aqueous extracts (75, 150 and 300 mg/ml) was lower than the extracts of other plants when compared to control. At concentration of 300 mg/ml, C. majus extracts prevented the disease by 71.42%. By the SEM, it was determined at the 4MIC extracts, cell wall degradation, swelling, flattening, lysis, collapsing and wrinkling on the hyphal structure. The highest total phenolic and flavanol contents were observed in O. vulgare extracts (310.49 mg GA/g) and T. longicaulis (5.24 mg CE/g). The \(\hbox {EC}_{50}\) values of the experimented extracts were lowered than the \(\hbox {EC}_{50}\) value of Gallic acid (1.87 mg/ml). Meanwhile, in all of the extracts there were phenolic compounds, protocatechuic, chlorogenic, caffeic acid and kaempferol as determined with HPLC system. This research demonstrates that C. majus aqueous extracts may possess high potential to control the pink mold rot on tomatoes as new natural antifungal products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ameziane, N.; Boubaker, H.; Boudyach, H.; Msanda, F.; Jilal, A.; Benaoumar, A.A.: Antifungal activity of moroccan plants against citrus fruit pathogens. Agron. Sustain. Dev. 27, 273–277 (2007)

    Article  Google Scholar 

  2. Phillips, C.A.; Laird, K.; Allen, S.C.: The use of Citri-VTM\(\textregistered \)—an antimicrobial citrus essential oil vapour for the control of Penicillium chrysogenum, Aspergillus niger and Alternaria alternata in vitro and on food. Food Res. Int. 47, 310–314 (2012)

    Article  Google Scholar 

  3. Mishra, A.K.; Dubey, N.K.: Evaluation of some essential oils for their toxicity against fungi causing deterioration of stored food commodities. Appl. Environ. Microbiol. 60, 1101–1105 (1994)

    Google Scholar 

  4. Prakash, B.; Singh, P.; Kedia, A.; Dubey, N.K.: Assessment of some essential oils as food preservatives based on antifungal, antiaflatoxin, antioxidant activities and in vivo efficacy in food system. Food Res. Int. 49, 201–208 (2012)

    Article  Google Scholar 

  5. Chen, F.; Long, X.; Yu, M.; Liu, Z.; Liu, L.: Phenolics and antifungal activities analysis in industrial crop Jerusalem artichoke (Helianthus tuberosus L.) leaves. Ind. Crops Prod. 47, 339–345 (2013)

    Article  Google Scholar 

  6. Boyraz, N.; Özcan, M.: Inhibition of phytopathogenic fungi by essential oil, hydrosol, ground material and extract of summer savory (Satureja hortensis L.) growing wild in Turkey. Int. J. Food Microbiol. 107, 238–242 (2006)

    Article  Google Scholar 

  7. Han, K.S.; Lee, S.C.; Lee, J.S.; Soh, J.W.: First report of pink mold rot on tomato fruit caused by Trichothecium roseum in Korea. Res. Plant Dis. 18, 396–398 (2012). doi:10.5423/RPD.2012.18.4.396

    Article  Google Scholar 

  8. Shamsi, S.; Sultana, R.: Trichothecium roseum link—a new record of hyphomycetous fungus for Bangladesh. Bangladesh J. Plant Taxon. 15, 77–80 (2008)

    Google Scholar 

  9. Zabka, M.; Drastichova, K.; Jegorov, A.; Soukupova, J.; Nedbal, L.: Direct evidence of plant-pathogenic activity of fungal metabolites of Trichothecium roseum on apple. Mycopathologia 162, 65–68 (2006)

    Article  Google Scholar 

  10. Oh, S.Y.; Nam, K.W.; Yoon, D.H.: Identification of Acremonium acutatum and Trichothecium roseum isolated from grape with white stain symptom in Korea. Mycobiology 42, 269–273 (2014)

    Article  Google Scholar 

  11. Shukla, A.C.: Plant secondary metabolites as source of postharvest disease management; an overview. J. Stored Prod. Postharvest Res. 4, 1–10 (2013)

    Article  Google Scholar 

  12. Al-Reza, S.M.; Rahman, A.; Ahmed, Y.; Kang, S.C.: Inhibition of plant pathogens in vitro and in vivo with essential oil and organic extract of Cestrum nocturnum L. Pestic. Biochem. Physiol. 96, 86–92 (2010)

    Article  Google Scholar 

  13. Soylu, E.M.; Kurt, Ş.; Soylu, S.: In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int. J. Food Microbiol. 143, 183–189 (2010)

    Article  Google Scholar 

  14. Passone, M.A.; Girardi, N.S.; Etcheverry, M.: Antifungal and antiaflatoxigenic activity by vapor contact of three essential oils, and effects of environmental factors on their efficacy. LWT Food Sci. Technol. 53, 434–444 (2013)

    Article  Google Scholar 

  15. Baba, S.A.; Malik, S.A.: Evaluation of antioxidant and antibacterial activity of methanolic extracts of Gentiana kurroo royle. Saudi J. Biol. Sci. 21(5), 8–493 (2014)

    Article  Google Scholar 

  16. De Souza, E.L.; De Oliveira Lima, E.; De Luna Freire, K.R.; De Souza, C.P.: Inhibitory action of some essential oils and phytochemicals on the growth of various moulds isolated from foods. Braz. Arch. Biol. Technol. 48, 245–250 (2005)

    Article  Google Scholar 

  17. Tegegne, G.; Pretorius, J.; Swart, W.: Antifungal properties of Agapanthus africanus L. extracts against plant pathogens. Crop Prot. 27, 1052–1060 (2008)

    Article  Google Scholar 

  18. Luz, C.; Netto, M.C.; Rocha, L.F.: In vitro susceptibility to fungicides by invertebrate-pathogenic and saprobic fungi. Mycopathologia 164, 39–47 (2007)

    Article  Google Scholar 

  19. Abdel-Monaim, M.F.; Abo-Elyousr, K.A.M.; Morsy, K.M.: Effectiveness of plant extracts on suppression of damping-off and wilt diseases of lupine (Lupinus termis Forsik). Crop Prot. 30, 185–191 (2011)

    Article  Google Scholar 

  20. Askarne, L.; Talibi, I.; Boubaker, H.; Amine, S.M.; Boudyach, E.H.; Ait Ben Aoumar, A.: Effects of organic acids and salts on the development of Penicillium italium: the causal agent of citrus blue mould. Plant Pathol. J. 10, 99–107 (2011)

    Article  Google Scholar 

  21. Askarne, L.; Talibi, I.; Boubaker, H.; Boudyach, E.H.; Msanda, F.; Saadi, B.; Serghini, M.A.; Ait Ben Aoumar, A.: In vitro and in vivo antifungal activity of several Moroccan plants against Penicillium italicum, the causal agent of citrus blue mould. Crop Prot. 40, 53–58 (2012)

    Article  Google Scholar 

  22. CLSI: Clinical and Laboratory Standarts Institute, formerly NCCLS, National Committee for Clinical and Laboratory Standarts. Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved Standard, 2nd edn. NCCLS document M27-A2, NCCLS, Wayne, PA. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; Approved Standard, 1st edn. NCCLS document M 38 A, Wayne, PA (2002)

  23. Talibi, I.; Askarne, L.; Boubaker, H.; Boudyach, E.H.; Msanda, F.; Saadi, B.; Ait Ben Aoumar, A.: Antifungal activity of some Moroccan plants against Geotrichum candidum, the causel agent of postharvest citrus sour rot. Crop Prot. 35, 41–46 (2012)

    Article  Google Scholar 

  24. Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M.: Analysis of total phenol sandother oxidation substrates and antioxidants by means of folin-ciocalteure agent. Methods Enzymol. 299, 152–178 (1999). doi:10.1016/S0076-6879(99)99017-1

    Article  Google Scholar 

  25. Arnous, A.; Makris, D.P.; Kefalas, P.: Effect of principal polyphenolic components in relation to antioxidant characteristics of aged red wines. J. Agric. Food Chem. 49, 5736–5742 (2001)

    Article  Google Scholar 

  26. Baydar, N.G.; Baydar, H.: Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extract. Ind. Crops Prod. 41, 375–380 (2013)

    Article  Google Scholar 

  27. Caponio, F.; Alloggio, V.; Gomes, T.: Phenolic compounds of virgin olive oil: influence of paste preperation techniques. Food Chem. 64, 203–209 (1999)

    Article  Google Scholar 

  28. Baba, S.A.; Malik, S.A.: Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. Taibah Univ. Sci. 9(4), 449–454 (2015)

    Article  Google Scholar 

  29. Baba, S.A.; Malik, A.H.; Wani, Z.A.; Mohiuddin, T.; Shah, Z.; Abbas, N.; Ashraf, N.: Phytochemical analysis and antioxidant activity of different tissue types of Crocus sativus and oxidative stress alleviating potential of saffron extract in plants, bacteria, and yeast. S. Afr. J. Bot. 99, 80–87 (2015)

    Article  Google Scholar 

  30. Bolis, M.S.: Antioxidants determination by the use of a stable free radical. Nature 181, 1199–1200 (1958)

    Article  Google Scholar 

  31. Parvu, M.; Vlase, L.; Fodorpataki, L.; Parvu, O.; Roscacasian, O.; Bartha, C.; Barbu-Tudoran, L.; Parvu, A.E.: Chemical composition of Celandine (Chelidonium majus L.) extract and its effects on Botrytis tulipae (Lib.) lind fungus and the Tulip. Not. Bot. Horti. Agrobot. 41(2), 414–426 (2013)

    Google Scholar 

  32. Stefanović, O.; Radojević, I.; Vasić S.; Čomić, L.: Antibacterial activity of naturally occurring compounds from selected plants, In: Antimicrobial Agents. In Tech, pp.1–24 (2012)

  33. Mahboubi, A.; Kamalinejad, M.; Shalviri, M.; Karbasi, Z.; Jafariazar, Z.; Asgharian, R.: Evaluation of antibacterial activity of three Iranian medicinal plants. Afr. J. Microbiol. Res. 6, 2048–2052 (2012)

    Google Scholar 

  34. Knežević, S.V.; Ivan Kosalec, I.; Babac, M.; Petrović, M.; Ralić, J.; Matica, B.; Blažeković, B.: Antimicrobial activity of Thymus longicaulis C. Presl essential oil against respiratory pathogens. Cent. Eur. J. Biol. 7, 1109–1115 (2012)

    Google Scholar 

  35. Kocić-Tanackov, S.D.; Dimić, G.R.; Tanackov, I.J.; Pejin, D.J.; Mojović, L.V.; Pejin, J.D.: Antifungal activity of Oregano (Origanum vulgare L.) extract on the growth of Fusarium and Penicillium species isolated from food. Hem. Ind. 66, 33–41 (2012)

    Article  Google Scholar 

  36. Şahin, F.; Güllüce, M.; Daferera, D.; Sökmen, A.; Sökmen, M.; Polissiou, M.; Agar, G.; Özer, H.: Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control 15, 549–557 (2004)

    Article  Google Scholar 

  37. Deressa, T.; Wakjira, M.: Antifungal activity of some invasive alien plant leaf extracts against mango (Mangiferaindica) anthracnose caused by Colletotrichum gloeosporioides. Int. J. Pest Manag. 61, 99–105 (2015)

    Article  Google Scholar 

  38. Carvalho, D.D.C.; Alves, E.; Camargos, R.B.; Oliveira, D.F.; Scolforo, J.R.S.; De Carvalho, D.A.; Batista, T.R.S.: Plant extracts to control alternaria alternate in Murcott tangor fruits. Rev. Iberoam. Micol. 28, 173–178 (2011)

    Article  Google Scholar 

  39. Garduno-Pizana, C.; Barrera-Necha, L.L.; Gomez, Y.R.: Evaluation of the fungicidal activity of leaves powders and extracts of fifteen Mexican plants against Fusarium oxysporum f. sp. gladioli. Plant Pathol. J. 9, 103–111 (2010)

    Article  Google Scholar 

  40. Amsalu, A.; Fikire, L.; Diriba, M.: The antifungal activity of some medicinal plants against coffee berry disease caused by Colletotrichum kahawe. Int. J. Agric. Res. 6, 268–279 (2011)

    Article  Google Scholar 

  41. Wang, J.; Li, J.; Cao, J.; Jiang, W.: Antifungal activities of neem (Azadirachta indica) seed kernel extracts on postharvest diseases in fruits. Afr. J. Microbiol. Res. 4, 1100–1104 (2010)

  42. Cutter, C.N.: Antimicrobial effect of herb extracts against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella typhimurium associated with beef. J. Food Prot. 63, 601–607 (2000)

    Article  Google Scholar 

  43. Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V.: Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel) 6, 1451–1474 (2013). doi:10.3390/ph6121451

    Article  Google Scholar 

  44. Jakovljević, Z.D.; Stanković, M.S.; Topuzović, D.M.: Seasonal variability of Chelidonium majus L. secondary metabolites content and antioxidant activity. EXCLI J. 12, 260–268 (2013)

    Google Scholar 

  45. Ebrahimzade, M.A.; Nabavi, S.F.; Nabav, S.M.: Antioxidant activities of methanol extract of Sambucus ebulus L. Flower. Pak. J. Biol. Sci. 12, 447–450 (2009)

    Article  Google Scholar 

  46. Sarikurkcu, C.; Sabih Ozer, M.; Eskici, M.; Tepe, B.; Can, S.; Mete, E.: Essential oil composition and antioxidant activity of Thymus longicaulis C. Presl subsp. longicaulis var. Longicaulis. Food Chem. Toxicol. 48, 1801–1805 (2010)

    Article  Google Scholar 

  47. Trigui, M.; Hsouna, A.B.; Tounsi, S.; Jaoua, S.: Chemical composition and evaluation of antioxidant and antimicrobial activities of Tunisian Thymelaea hirsute with special reference to its mode of action. Ind. Crops Prod. 41, 150–157 (2013)

    Article  Google Scholar 

  48. Duke, S.O.; Baerson, S.R.; Dayan, F.E.; Rimando, A.M.; Scheffler, B.E.; Tellez, M.R.; Wedge, D.E.; Schrader, K.K.; Akey, D.H.; Arthur, F.H.; Lucca, A.J.D.; Gibson, D.M.; Harrison, H.F.; Peterson, J.K.; Gealy, D.R.; Tworkoski, T.; Wilson, C.L.; Morris, J.B.: United States Department of Agriculture—Agricultural Research Service research on natural products for pest management. Pest. Manag. Sci. 59, 708–717 (2003)

    Article  Google Scholar 

  49. Wen, A.; Delaquis, P.; Stanich, K.; Toivonen, P.: Antilisterial activity of selected phenolic acids. Food Microbiol. 20, 305–311 (2003)

    Article  Google Scholar 

  50. Sisti, M.; De Santi, M.; Fraternale, D.; Ninfali, P.; Scoccianti, V.; Brandi, G.: Antifungal activity of Rubus ulmifolius Schott standardized in vitro culture. LWT Food Sci. Technol. 41, 946–950 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Balkan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balkan, B., Balkan, S., Aydoğdu, H. et al. Evaluation of Antioxidant Activities and Antifungal Activity of Different Plants Species Against Pink Mold Rot-Causing Trichothecium roseum . Arab J Sci Eng 42, 2279–2289 (2017). https://doi.org/10.1007/s13369-017-2484-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2484-4

Keywords

Navigation