Skip to main content

Abstract

Enzymes are protein molecules functioning as specialized catalysts for chemical reactions. The use of enzymes in various industries is increasing rapidly due to reduced processing time, low energy input, cost effectiveness, non toxic and eco-friendly characteristics. Microbial enzymes have gained interest for their widespread uses in industries owing to their stability, catalytic activity, and ease of production and optimization than plant and animal enzymes. Microbial enzymes can be produced easily on large scale by a number of fermentation techniques like solid-state and submerged fermentations. Due to development in recombinant technology and protein engineering, enzymes have evolved as an important molecule that has been widely used in different industrial and therapeutical purposes. The present chapter discusses a comprehensive list of exogenous/commercial enzymes, their microbial sources, safety aspects, and applications in food system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elhalem, B. T., El-Sawy, M., Gamal, R. F., & Abou-Taleb, K. A. (2015). Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Annals of Agricultural Sciences, 60(2), 193–202.

    Article  Google Scholar 

  • Abdeshahian, P., Samat, N., Hamid, A. A., & Yusoff, W. M. W. (2010). Utilization of palm kernel cake for production of β-mannanase by Aspergillus niger FTCC 5003 in solid substrate fermentation using an aerated column bioreactor. Journal of Industrial Microbiology & Biotechnology, 37(1), 103.

    Article  CAS  Google Scholar 

  • Agarwal, S., & Sahu, S. (2014). Safety and regulatory aspects of food enzymes: An industrial perspective. International Journal of Interdisciplinary and Multidisciplinary Studies, 1(6), 253–267.

    Google Scholar 

  • Alsarrani, A. Q. (2011). Production of Mannan-degrading enzyme by Aspergillus niger. Journal of Taibah University for Science, 5(1), 1–6.

    Article  Google Scholar 

  • Anisa, S. K., & Girish, K. (2014). Pectinolytic activity of Rhizopus sp. and Trichoderma viride. International Journal of Research in Pure and Applied Microbiology, 4(2), 28–31.

    Google Scholar 

  • Anjani, K., Kailasapathy, K., & Phillips, M. (2007). Microencapsulation of enzymes for potential application in acceleration of cheese ripening. International Dairy Journal, 17(1), 79–86.

    Article  CAS  Google Scholar 

  • Anto, H., Trivedi, U. B., & Patel, K. C. (2006). Glucoamylase production by solid-state fermentation using rice flake manufacturing waste products as substrate. Bioresource Technology, 97(10), 1161–1166.

    Article  CAS  PubMed  Google Scholar 

  • Antoine, A. A., Jacqueline, D., & Thonart, P. (2010). Xylanase production by Penicillium canescens on soya oil cake in solid-state fermentation. Applied Biochemistry and Biotechnology, 160(1), 50–62.

    Article  CAS  PubMed  Google Scholar 

  • Anwar, A., & Saleemuddin, M. (2000). Alkaline protease from Spilosoma oblique: Potential applications in bio-formulations. Biotechnology and Applied Biochemistry, 31(2), 85–89.

    Article  CAS  PubMed  Google Scholar 

  • Ariffin, H., Abdullah, N., UmiKalsom, M. S., Shirai, Y., & Hassan, M. A. (2006). Production and characterization of cellulase by Bacillus pumilus EB3. International Journal of Engineering and Technology, 3(1), 47–53.

    Google Scholar 

  • Bakri, Y., Manal, A., & Ghassan, A. (2008). Xylanase production by a newly isolated Aspergillus niger SS7 in submerged culture. Polish Journal of Microbiology, 57, 248–251.

    Google Scholar 

  • Beauchemin, K. A., Colombatto, D., Morgavi, D. P., & Yang, W. Z. (2003). Use of fibrolytic enzymes to improve feed utilization by ruminants. Journal of Animal Science, 81, E37–E47.

    Google Scholar 

  • Beauchemin, K. A., Colombatto, D., Morgavi, D. P., Yang, W. Z., & Rode, L. M. (2004). Mode of action of exogenous cell wall degrading enzymes for ruminants. Canadian Journal of Animal Science, 84, 13–22.

    Article  CAS  Google Scholar 

  • Berka, R. M., & Cherry, J. R. (2006). Enzyme biotechnology. In C. Ratledge & B. Kristiansen (Eds.), Basic biotechnology (3rd ed., pp. 477–498). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Bhoopathy, R. (1994). Enzyme technology in food and health industries. Indian Food Industry, 13, 22–31.

    Google Scholar 

  • Bhoria, P., Singh, G., & Hoondal, G. S. (2009). Optimization of mannanase production from Streptomyces sp. PG-08-03 in submerged fermentation. BioResources, 4(3), 1130–1138.

    CAS  Google Scholar 

  • Binod, P., Singhania, R. R., Soccol, C. R., & Pandey, A. (2008). Industrial enzymes. In A. Pandey, C. Larroche, C. R. Soccol, & C. G. Dussap (Eds.), Advances in fermentation technology (pp. 291–320). New Delhi, India: Asiatech Publishers.

    Google Scholar 

  • Bocchini, D. A., Oliveira, O. M. M. F., Gomes, E., & Da Silva, R. (2005). Use of sugarcane bagasse and grass hydrolysates as carbon sources for xylanase production by Bacillus circulans D1 in submerged fermentation. Process Biochemistry, 40(12), 3653–3659.

    Article  CAS  Google Scholar 

  • Brady, D., & Jordaan, J. (2009). Advances in enzyme immobilisation. Biotechnology Letters, 31(11), 1639–1650.

    Article  CAS  PubMed  Google Scholar 

  • Cao, L., van Langen, L., & Sheldon, R. A. (2003). Immobilised enzymes: Carrier-bound or carrier-free? Current Opinion in Biotechnology, 14(4), 387–394.

    Article  CAS  PubMed  Google Scholar 

  • Cauvain, S., & Young, L. (2006). Ingredients and their influences. In S. Cauvain & L. Young (Eds.), Baked products. Science, technology and practice (pp. 72–98). Oxford, UK: Blackwell Publishing.

    Chapter  Google Scholar 

  • Chabane, M. H., Abuaf, N., & Leynadier, F. (1994). Why are some allergens enzymes? Annales de Biologie Clinique, 52(6), 425–431.

    CAS  PubMed  Google Scholar 

  • Chaudhary, S., Sagar, S., Kumar, M., Sengar, R. S., & Tomar, A. (2015). The use of enzymes in food processing: A review. South Asian Journal of Food Technology and Environment, 1(4), 2394–5168.

    Google Scholar 

  • Chauhan, P. S., Puri, N., Sharma, P., & Gupta, N. (2012). Mannanases: Microbial sources, production, properties and potential biotechnological applications. Applied Microbiology and Biotechnology, 93(5), 1817–1830.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J. M., Han, S. S., & Kim, H. S. (2015). Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology Advances, 33(7), 1443–1454.

    Article  CAS  PubMed  Google Scholar 

  • Cumbee, B., Hildebrand, D. F., & Addo, K. (1997). Soybean flour lipoxygenase isozymes effects on wheat flour dough rheological and breadmaking properties. Journal of Food Science, 62(2), 281–283.

    Article  CAS  Google Scholar 

  • de Assis, S. A., Ferreira, B. S., Fernandes, P., Guaglianoni, D. G., Cabral, J. M., & Oliveira, O. M. M. F. (2004). Gelatin-immobilized pectin methylesterase for production of low methoxyl pectin. Food Chemistry, 86(3), 333–337.

    Article  CAS  Google Scholar 

  • de Segura, A. G., Alcalde, M. J., Plou, F., Remaud-simeon, M., Monsan, P., & Ballesteros, A. (2003). Encapsulation in LentiKats of dextransucrase from Leuconostoc mesenteroides NRRL B-1299, and its effect on product selectivity. Biocatalysis and Biotransformation, 21(6), 325–331.

    Article  CAS  Google Scholar 

  • de Siqueira, F. G., de Siqueira, E. G., Jaramillo, P. M. D., Silveira, M. H. L., Andreaus, J., Couto, F. A., … Ferreira Filho, E. X. (2010). The potential of agro-industrial residues for production of holocellulase from filamentous fungi. International Biodeterioration and Biodegradation, 64(1), 20–26.

    Article  CAS  Google Scholar 

  • Dhawan, S., & Kaur, J. (2007). Microbial mannanases: An overview of production and applications. Critical Reviews in Biotechnology, 27(4), 197–216.

    Article  CAS  PubMed  Google Scholar 

  • Dobrev, G. T., Pishtiyski, I. G., Stanchev, V. S., & Mircheva, R. (2007). Optimization of nutrient medium containing agricultural wastes for xylanase production by Aspergillus niger B03 using optimal composite experimental design. Bioresource Technology, 98(14), 2671–2678.

    Article  CAS  PubMed  Google Scholar 

  • Eun, J. S., & Beauchemin, K. A. (2005). Effects of a proteolytic feed enzyme on intake, digestion, ruminal fermentation, and milk production. Journal of Dairy Science, 88(6), 2140–2153.

    Article  CAS  PubMed  Google Scholar 

  • Ezike, T. C., Eze, S. O. O., Nsude, C. A., & Chilaka, F. C. (2014). Production of pectinases from Aspergillus niger using submerged fermentation with orange peels as carbon source. Sylwan, 158(8), 434–440.

    Google Scholar 

  • Fernandes, P. (2010). Enzymes in food processing: A condensed overview on strategies for better biocatalysts. Enzyme Research, 2010, 1–19.

    Article  CAS  Google Scholar 

  • Gado, H. M., Salem, A. Z. M., Robinson, P. H., & Hassan, M. (2009). Influence of exogenous enzymes on nutrient digestibility, extent of ruminal fermentation as well as milk production and composition in dairy cows. Animal Feed Science and Technology, 154(1–2), 36–46.

    Article  CAS  Google Scholar 

  • Gaur, R., Pant, H., Jain, R., & Khare, S. K. (2006). Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae β-galactosidase. Food Chemistry, 97(3), 426–430.

    Article  CAS  Google Scholar 

  • Grassin, C., & Fauquembergue, P. (1996). Fruit juices. In T. Godfrey & S. West (Eds.), Industrial enzymology (2nd ed., p. 227). London, UK: Macmillan.

    Google Scholar 

  • Grosová, Z., Rosenberg, M., Rebroš, M., Šipocz, M., & Sedláčková, B. (2008). Entrapment of β-galactosidase in polyvinylalcohol hydrogel. Biotechnology Letters, 30(4), 763–767.

    Article  PubMed  CAS  Google Scholar 

  • Gurung, N., Ray, S., Bose, S., & Rai, V. (2013). A broader view: Microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Research International, 2013, 1–18.

    Article  CAS  Google Scholar 

  • Hamilton, S. (2009). Introduction to a special issue on food and innovation. Business History Review, 83, 233–238.

    Article  Google Scholar 

  • Heck, J. X., de Barros Soares, L. H., & Ayub, M. A. Z. (2005). Optimization of xylanase and mannanase production by Bacillus circulans strain BL53 on solid-state cultivation. Enzyme and Microbial Technology, 37(4), 417–423.

    Article  CAS  Google Scholar 

  • IDF, International Dairy Federation. (1990). Bull, 247, 24–38.

    Google Scholar 

  • Ikasari, L., & Mitchell, D. A. (1996). Leaching and characterization of Rhizopus oligosporus acid protease from solid-state fermentation. Enzyme and Microbial Technology, 19(3), 171–175.

    Article  CAS  Google Scholar 

  • Jacob, M., Jaros, D., & Rohm, H. (2011). Recent advances in milk clotting enzymes. International Journal of Dairy Technology, 64(1), 14–33.

    Article  CAS  Google Scholar 

  • Jayani, R. S., Saxena, S., & Gupta, R. (2005). Microbial pectinolytic enzymes: A review. Process Biochemistry, 40(9), 2931–2944.

    Article  CAS  Google Scholar 

  • Jin, B., Van Leeuwen, H. J., Patel, B., & Yu, Q. (1998). Utilisation of starch processing wastewater for production of microbial biomass protein and fungal α-amylase by Aspergillus oryzae. Bioresource Technology, 66(3), 201–206.

    Article  CAS  Google Scholar 

  • Jooyandeh, H., Amarjeet, K., & Minhas, K. S. (2009). Lipases in dairy industry: A review. Journal of Food Science and Technology, 46(3), 181–189.

    CAS  Google Scholar 

  • Kailasapathy, K., & Lam, S. H. (2005). Application of encapsulated enzymes to accelerate cheese ripening. International Dairy Journal, 15(6–9), 929–939.

    Article  CAS  Google Scholar 

  • Kammoun, R., Naili, B., & Bejar, S. (2008). Application of a statistical design to the optimization of parameters and culture medium for α-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product). Bioresource Technology, 99(13), 5602–5609.

    Article  CAS  PubMed  Google Scholar 

  • Kapilan, R., & Arasaratnam, V. (2011). Paddy husk as support for solid state fermentation to produce xylanase from Bacillus pumilus. Rice Science, 18(1), 36–45.

    Article  Google Scholar 

  • Kathiresan, K., & Manivannan, S. (2006). Amylase production by Penicilliumfellutanum isolated from mangrove rhizosphere soil. African Journal of Biotechnology, 5(10), 829–832.

    CAS  Google Scholar 

  • Kheadr, E. E., Vuillemard, J. C., & El-Deeb, S. A. (2003). Impact of liposome-encapsulated enzyme cocktails on cheddar cheese ripening. Food Research International, 36(3), 241–252.

    Article  CAS  Google Scholar 

  • Kim, D. Y., Ham, S. J., Lee, H. J., Kim, Y. J., Shin, D. H., Rhee, Y. H., … Park, H. Y. (2011). A highly active endo-1,4-β-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Enzyme and Microbial Technology, 48, 365–370.

    Article  CAS  PubMed  Google Scholar 

  • Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13(4), 345–351.

    Article  CAS  PubMed  Google Scholar 

  • Konsoula, Z., & Liakopoulou-Kyriakides, M. (2007). Co-production of α-amylase and β galactosidase by Bacillus subtilis in complex organic substrates. Bioresource Technology, 98(1), 150–157.

    Article  CAS  PubMed  Google Scholar 

  • Kote, N. V., Patil, A. G. G., & Mulimani, V. H. (2009). Optimization of the production of thermostable endo-β-1, 4 mannanases from a newly isolated Aspergillus niger gr and Aspergillus flavus gr. Applied Biochemistry and Biotechnology, 152(2), 213–223.

    Article  CAS  PubMed  Google Scholar 

  • Kubicek, C.P. (1993). From cellulose to cellulase inducers: Facts and fiction. In: Proceedings of the second TRICEL symposium on Trichoderma reesei cellulases and other hydrolytic enzymes (pp. 181–188). Espoo, Finland: Foundation of Biotechnical and Industrial Fermentation Research.

    Google Scholar 

  • Kuhad, R. C., Manchanda, M., & Singh, A. (1999). Hydrolytic potential of extracellular enzymes from a mutant strain of Fusarium oxysporum. Bioprocess Engineering, 20(2), 133–135.

    CAS  Google Scholar 

  • Kumar, A. G., Swarnalatha, S., Sairam, B., & Sekaran, G. (2008). Production of alkaline protease by Pseudomonas aeruginosa using protein aceous solid waste generated from leather manufacturing industries. Bioresource Technology, 99(6), 1939–1944.

    Article  CAS  Google Scholar 

  • Lee, S. M., & Koo, Y. M. (2001). Pilot-scale production of cellulase using Trichoderma reesei Rut C-30 Fed-Batch Mode. Journal of Microbiology and Biotechnology, 11(2), 229–233.

    CAS  Google Scholar 

  • Lee, W. C., Yusof, S., Hamid, N. S. A., & Baharin, B. S. (2006). Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). Journal of Food Engineering, 73(1), 55–63.

    Article  CAS  Google Scholar 

  • Li, S., Yang, X., Yang, S., Zhu, M., & Wang, X. (2012). Technology prospecting on enzymes: Application, marketing and engineering. Computational and Structural Biotechnology Journal, 2(3), e201209017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, L., Yang, H., Shin, H. D., Chen, R. R., Li, J., Du, G., & Chen, J. (2013). How to achieve high-level expression of microbial enzymes: Strategies and perspectives. Bioengineered, 4(4), 212–223.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopuszanska-Rusek, M., & Bilik, K. (2011). Influence of pre-and postpartum supplementation of fibrolytic enzymes and yeast culture, or both, on performance and metabolic status of dairy cows. Annals of Animal Science, 11(4), 531–545.

    Article  Google Scholar 

  • Mabrouk, M. E., & El Ahwany, A. M. (2008). Production of 946-mannanase by Bacillus amylolequifaciens 10A1 cultured on potato peels. African Journal of Biotechnology, 7(8), 1123–1128.

    CAS  Google Scholar 

  • Maciel, G. M., de Souza Vandenberghe, L. P., Fendrich, R. C., Della Bianca, B. E., Haminiuk, C. W. I., & Soccol, C. R. (2009). Study of some parameters which affect xylanase production: Strain selection, enzyme extraction optimization, and influence of drying conditions. Biotechnology and Bioprocess Engineering, 14(6), 748–755.

    Article  CAS  Google Scholar 

  • Markets and Markets Watch. (2015). Industrial enzymes market by type (carbohydrases, proteases, non-starch polysaccharides and others), application (food and beverage, cleaning agents, animal feed and others), brands and by region—Global trends and forecasts to 2020. www.bccresearch.com. http://www.marketsandmarkets.com/Market-Reports/industrial-enzymesmarket-237327836.html. Accessed on 24 Mar 2016.

  • Martins, E. S., Silva, D., Da Silva, R., & Gomes, E. (2002). Solid state production of thermostable pectinases from thermophilic Thermoascus aurantiacus. Process Biochemistry, 37(9), 949–954.

    Article  CAS  Google Scholar 

  • Meenakshi, Singh, G., Bhalla, A., & Hoondal, G. S. (2010). Solid state fermentation and characterization of partially purified thermostable mannanase from Bacillus sp. MG-33. BioResources, 5(3), 1689–1701.

    CAS  Google Scholar 

  • Meshram, M., Kulkarni, A., Jayaraman, V. K., Kulkarni, B. D., & Lele, S. S. (2008). Optimal xylanase production using Penicilium janthinellum NCIM 1169: A model based approach. Biochemical Engineering Journal, 40(2), 348–356.

    Article  CAS  Google Scholar 

  • Miladi, B., El Marjou, A., Boeuf, G., Bouallagui, H., Dufour, F., Di Martino, P., & Elm’selmi, A. (2012). Oriented immobilization of the tobacco etch virus protease for the cleavage of fusion proteins. Journal of Biotechnology, 158(3), 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, S. S., Ray, R. C., Rosell, C. M., & Panda, D. (2016). Microbial enzymes in food applications: History of progress. In Microbial enzyme technology in food applications (pp. 3–18). Boca Raton, FL: Taylor & Francis Group, CRC Press.

    Google Scholar 

  • Mohamad, S. N., Ramanan, R. N., Mohamad, R., & Ariff, A. B. (2011). Improved mannan-degrading enzymes’ production by Aspergillus niger through medium optimization. New Biotechnology, 28(2), 146–152.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed, D. E. D. A., Borhami, B. E., El-Shazly, K. A., & Sallam, S. M. A. (2013). Effect of dietary supplementation with fibrolytic enzymes on the productive performance of early lactating dairy cows. Journal of Agricultural Science, 5(6), 146–155.

    Article  Google Scholar 

  • Morgavi, D. P., Beauchemin, K. A., Nsereko, V. L., Rode, L. M., Iwaasa, A. D., Yang, W. Z., … Wang, Y. (2000). Synergybetween ruminalfibrolytic enzymes and enzymes from Trichoderma longibrachiatum 1. Journal of Dairy Science, 83, 1310–1321.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, A. K., Adhikari, H., & Rai, S. K. (2008). Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium: Characterization and application of enzyme in detergent formulation. Biochemical Engineering Journal, 39(2), 353–361.

    Article  CAS  Google Scholar 

  • Nascimento, R. P., Coelho, R. R., Marques Alver, S. L., Girio, E. P. S., & Amaral-Collago, M. T. (2003). A novel strain of Streptomyces malaysiensis from Brazilian soil produces high endo-1,4xylanasetitres. World Journal of Microbiology and Biotechnology, 19, 879–881.

    Article  Google Scholar 

  • Nelson, J. M., & Griffin, E. G. (1916). Adsorption of invertase. Journal of the American Chemical Society, 38(5), 1109–1115.

    Article  CAS  Google Scholar 

  • Nighojkar, A., Srivastava, S., & Kumar, A. (1995). Production of low methoxyl pectin using immobilized pectinesterase bioreactors. Journal of Fermentation and Bioengineering, 80(4), 346–349.

    Article  CAS  Google Scholar 

  • Oliveira, L. A., Porto, A. L., & Tambourgi, E. B. (2006). Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes. Bioresource Technology, 97(6), 862–867.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. T., Singh, D., & Mohan, R. (2000). Advances in microbial amylases. Biotechnology and Applied Biochemistry, 31(2), 135–152.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, A., Selvakumar, P., Soccol, C. R., & Nigam, P. (1999). Solid-state fermentation for the production of industrial enzymes. Current Science, 77, 149–162.

    CAS  Google Scholar 

  • Pariza, M. W., & Johnson, E. A. (2001). Evaluating the safety of microbial enzyme preparations used in food processing: Update for a new century. Regulatory Toxicology and Pharmacology, 33(2), 173–186.

    Article  CAS  PubMed  Google Scholar 

  • Patil, S. R., & Dayanand, A. (2006). Optimization of process for the production of fungal pectinases from deseeded sunflower head in submerged and solid-state conditions. Bioresource Technology, 97(18), 2340–2344.

    Article  CAS  PubMed  Google Scholar 

  • Penella, J. S., Collar, C., & Haros, M. (2008). Effect of wheat bran and enzyme addition on dough functional performance and phytic acid levels in bread. Journal of Cereal Science, 48(3), 715–721.

    Article  CAS  Google Scholar 

  • Prakasham, R. S., Rao, C. S., & Sarma, P. N. (2006). Green gram husk—An inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresource Technology, 97(13), 1449–1454.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan, G., & Krishnan, C. (2008). Immobilization of malto-oligosaccharide forming α-amylase from Bacillus subtilis KCC103: Properties and application in starch hydrolysis. Journal of Chemical Technology and Biotechnology, 83(11), 1511–1517.

    Article  CAS  Google Scholar 

  • Ramachandran, S., Patel, A. K., Nampoothiri, K. M., Francis, F., Nagy, V., Szakacs, G., & Pandey, A. (2004). Coconut oil cake––A potential raw material for the production of α-amylase. Bioresource Technology, 93(2), 169–174.

    Article  CAS  PubMed  Google Scholar 

  • Rebroš, M., Rosenberg, M., Mlichova, Z., & Krištofíková, L. (2007). Hydrolysis of sucrose by invertase entrapped in polyvinyl alcohol hydrogel capsules. Food Chemistry, 102(3), 784–787.

    Article  CAS  Google Scholar 

  • Rebroš, M., Rosenberg, M., Mlichová, Z., & Paluch, M. (2006). A simple entrapment of glucoamylase into LentiKats® as an efficient catalyst for maltodextrin hydrolysis. Enzyme and Microbial Technology, 39(4), 800–804.

    Article  CAS  Google Scholar 

  • Reshmi, R., Sanjay, G., & Sugunan, S. (2006). Enhanced activity and stability of α-amylase immobilized on alumina. Catalysis Communications, 7(7), 460–465.

    Article  CAS  Google Scholar 

  • Reshmi, R., Sanjay, G., & Sugunan, S. (2007). Immobilization of α-amylase on zirconia: A heterogeneous biocatalyst for starch hydrolysis. Catalysis Communications, 8(3), 393–399.

    Article  CAS  Google Scholar 

  • Rodrigues, B.S.S. (2011). Production and purification of new microbial cellulases.

    Google Scholar 

  • Rodríguez-Nogales, J. M., & López, A. D. (2006). A novel approach to develop β-galactosidase entrapped in liposomes in order to prevent an immediate hydrolysis of lactose in milk. International Dairy Journal, 16(4), 354–360.

    Article  CAS  Google Scholar 

  • Rose, S. H., & Van Zyl, W. H. (2008). Exploitation of Aspergillus niger for the heterologous production of cellulases and hemicellulases. The Open Biotechnol Journal, 2, 167–175.

    Article  CAS  Google Scholar 

  • Roy, J. J., & Abraham, T. E. (2004). Strategies in making cross-linked enzyme crystals. Chemical Reviews, 104(9), 3705–3722.

    Article  CAS  Google Scholar 

  • Sandri, I. G., Fontana, R. C., Barfknecht, D. M., & da Silveira, M. M. (2011). Clarification of fruit juices by fungal pectinases. LWT - Food Science and Technology, 44(10), 2217–2222.

    Article  CAS  Google Scholar 

  • Santhi, R. (2014). Microbial production of protease by Bacillus cereus using cassava waste water. European Journal of Experimental Biology, 4(2), 19–24.

    CAS  Google Scholar 

  • Seyis, I., & Aksoz, N. (2005). Xylanase production from Trichoderma harzianum 1073 D 3 with alternative carbon and nitrogen sources. Food Technology and Biotechnology, 43(1), 37–40.

    CAS  Google Scholar 

  • Sheldon, R. A. (2007). Enzyme immobilization: The quest for optimum performance. Advanced Synthesis & Catalysis, 349(8–9), 1289–1307.

    Article  CAS  Google Scholar 

  • Singh, S. A., Ramakrishna, M., & Rao, A. G. A. (1999). Optimization of downstream processing parameters for the recovery of pectinase from the fermented broth of Aspergillus carbonarious. Process Biochemistry, 35, 411–417.

    Article  CAS  Google Scholar 

  • Siswoyo, T. A., Tanaka, N., & Morita, N. (1999). Effect of lipase combined with α-amylase on retrogradation of bread. Food Science and Technology Research, 5(4), 356–361.

    Article  CAS  Google Scholar 

  • Spök, A. (2006). Safety regulations of food enzymes. Food Technology and Biotechnology, 44(2), 197–209.

    Google Scholar 

  • Spök, A., Aberer, W., Boyer, A., Getzinger, G., Krajnik, P., Kränke, B., Preiss, M., Scherbler, B.M., Steindl, J., Suschek-Berger, J. & Weinberger, F. (1998). Enzyme in Wasch-und Reinigungsmitteln. Technikfolgenabschätzung und-bewertung unter besonderer Berücksichtigung der Anwendungen der Gentechnologie (Enzymes in detergents and cleansers. Technology assessment focussing on the application of genetic engineering methods). Series of the Federal Ministry for Environment, Youth and Family, 29.

    Google Scholar 

  • Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005). Microbial cellulases-production, applications and challenges. Journal of Scientific and Industrial Research, 64(11), 832–844.

    CAS  Google Scholar 

  • Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Titapoka, S., Keawsompong, S., Haltrich, D., & Nitisinprasert, S. (2008). Selection and characterization of mannanase-producing bacteria useful for the formation of prebiotic manno-oligosaccharides from copra meal. World Journal of Microbiology and Biotechnology, 24(8), 1425–1433.

    Article  CAS  Google Scholar 

  • Tumturk, H., Demirel, G., Altinok, H., Aksoy, S., & Hasirci, N. (2008). Immobilization of glucose isomerase in surface-modified alginate gel beads. Journal of Food Biochemistry, 32(2), 234–246.

    Article  CAS  Google Scholar 

  • Walde, P., & Ichikawa, S. (2001). Enzymes inside lipid vesicles: Preparation, reactivity and applications. Biomolecular Engineering, 18(4), 143–177.

    Article  CAS  PubMed  Google Scholar 

  • Waseem, I., Gulsher, M., & Choudhry, S. (2014). Cellulase production from newly isolated bacterial strains from local habitat. International Journal of Recent Scientific Research, 5(8), 1454–1459.

    Google Scholar 

  • Xu, Z. H., Bai, Y. L., Xu, X., Shi, J. S., & Tao, W. Y. (2005). Production of alkali-tolerant cellulase-free xylanase by Pseudomonas sp. WLUN024 with wheat bran as the main substrate. World Journal of Microbiology and Biotechnology, 21(4), 575–581.

    Article  CAS  Google Scholar 

  • Yang, W. Z., Beauchemin, K. A., & Rode, L. M. (2000). A comparison of methods of adding fibrolytic enzymes to lactating cow diets. Journal of Dairy Science, 83, 2512–2520.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Chen, X. L., Zhang, Z. H., Sun, C. Y., Chen, L. L., He, H. L., … Zhang, Y. Z. (2009). Purification and functional characterization of endo-β-mannanase MAN5 and its application in oligosaccharide production from konjac flour. Applied Microbiology and Biotechnology, 83(5), 865–873.

    Article  CAS  PubMed  Google Scholar 

  • Zurmiati, W., Abbas, M. H., & Mahata, M. E. (2017). Production of extracellular β-mannanase by Bacillus amyloliquefaciens on a coconut waste substrate. Pakistan Journal of Nutrition, 16(9), 700–707.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farooq, S., Shah, M.A., Ganaie, T.A., Mir, S.A. (2021). Exogenous Enzymes. In: Gani, A., Ashwar, B.A. (eds) Food biopolymers: Structural, functional and nutraceutical properties. Springer, Cham. https://doi.org/10.1007/978-3-030-27061-2_14

Download citation

Publish with us

Policies and ethics