Skip to main content
Log in

Optimization of the Production of Thermostable endo-β-1,4 Mannanases from a Newly Isolated Aspergillus niger gr and Aspergillus flavus gr

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this work was to establish optimal conditions for the maximum production of endo-β-1,4 mannanases using cheaper sources. Eight thermotolerant fungal strains were isolated from garden soil and compost samples collected in and around the Gulbarga University campus, India. Two strains were selected based on their ability to produce considerable endo-β-1,4 mannanases activity while growing in liquid medium at 37 °C with locust bean gum (LBG) as the only carbon source. They were identified as Aspergillus niger gr and Aspergillus flavus gr. The experiment to evaluate the effect of different carbon sources, nitrogen sources, temperatures and initial pH of the medium on maximal enzyme production was studied. Enzyme productivity was influenced by the type of polysaccharide used as the carbon source. Copra meal defatted with n-hexane showed to be a better substrate than LBG and guar gum for endo-β-1,4 mannanases production by A. niger gr (40.011 U/ml), but for A. flavus gr (33.532 U/ml), the difference was not significant. Endo-β-1,4 mannanases produced from A. niger gr and A. flavus gr have high optimum temperature (65 and 60 °C) and good thermostability in the absence of any stabilizers (maintaining 50% of residual activity for 8 and 6 h, respectively, at 60 °C) and are stable over in a wide pH range. These new strains offer an attractive alternative source of enzymes for the food and feed processing industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Harris, P. J. (2005). In K. M. Entwistle, & J. C. F. Walker (Eds.), Non-cellulosic polysaccharides in plant cell walls (pp.13–35). Christchurch, New Zealand: University of Canterbury.

  2. Burke, R. M., & Cairney, J. W. G. (1997). Mycological Research, 101(9), 1135–1139.

    Article  CAS  Google Scholar 

  3. Reese, T., & Shibata, Y. (1965). Canadian Journal of Microbiology, 11, 167–183.

    Article  CAS  Google Scholar 

  4. Lin, T. C., & Chen, C. (2004). Process Biochemistry, 39, 1103–1109.

    Article  CAS  Google Scholar 

  5. Ademark, P., Varga, A., Medve, J., Harjunpaa, V., Drakenberg, T., Tjerneld, F., et al. (1998). Journal of Biotechnology, 63, 199–210.

    Article  CAS  Google Scholar 

  6. Regalado, C., Garcia-Almendarez, B. E., Venegas-Barrera, L. M., Tellez-Jurado, A., Rodriguez-Serrano, G., Huerta-Qchoa, S., et al. (2000). Journal of the Science of Food and Agriculture, 80, 1343–1350.

    Article  CAS  Google Scholar 

  7. Arisan, A. I., Hodits, R., Kristufek, D., & Kubicek, C. P. (1993). Applied Microbiology and Biotechnology, 39, 58–62.

    Google Scholar 

  8. Gubitz, G. M., Hayn, M., Urbanz, G., & Steiner, W. (1996). Journal of Biotechnology, 45, 165–172.

    Article  Google Scholar 

  9. Tomotari, M. (1990). Journal of Industrial Microbiology, 6, 263–268.

    Article  Google Scholar 

  10. Kobayashi,Y., Echizen, R., Mada, M., & Mutai, M. (1984). In T. Mitsuoka (Ed.), Proceedings of the 4th Kiken symposium on intestinal flora (pp. 69-90). Tokyo: Japan Scientific Societies Press.

  11. Christgan, S., Andersen, L. N., Kauppinen, S., Heldt-Hansen, H. P., & Dalboege, H. (1994). Patent Novo-Nordisk, 9425576, 10 November, 1994.

  12. Gubitz, G. M., Lischnig, T., Stebbing, D., & Saddler, J. N. (1997). Biotechnology Letters, 19(5), 491–495.

    Article  CAS  Google Scholar 

  13. Chandrakant, P., & Bisaria, V. S. (1998). Critical Reviews in Biotechnology, 18(4), 295–331.

    Article  CAS  Google Scholar 

  14. Ray, S., Pubols, M. H., & Mgginnis, J. (1982). Poultry Science, 61, 488–494.

    CAS  Google Scholar 

  15. Hashimoto, Y., & Fukumoto, J. (1969). Nippon Nogei Kagakukaishi, 43(5), 317–322.

    CAS  Google Scholar 

  16. McCutchen, C. M., Duffaud, G. D., Leduc, P., Petersen, A. R. H., Tayal, A., Khan, S. A., et al. (1996). Biotechnology and Bioengineering, 52, 332–339.

    Article  CAS  Google Scholar 

  17. Oda, Y., Komaki, T., & Tonomura, K. (1993). Food Microbiology, 10, 353–358.

    Article  CAS  Google Scholar 

  18. Hossain, M. Z., Abe, J., & Hizukuri, S. (1996). Enzyme and Microbial Technology, 18, 95–108.

    Article  CAS  Google Scholar 

  19. Guarte, R. C., Muhlbauer, W., & Kellert, M. (1996). Postharvest Biology and Technology, 9, 361–372.

    Article  CAS  Google Scholar 

  20. Creswell, D. C., & Brooks, C. C. (1971). Journal of Animal Science, 33, 366–369.

    CAS  Google Scholar 

  21. NRC (1994). Washington, DC: National Academy.

  22. Lin, T. C., & Chen, C. J. (2001). Journal of the Biomass Energy Society of China, 20(3–4), 57–68.

    Google Scholar 

  23. Nelson, N. (1944). Journal of Biological Chemistry, 153, 375–380.

    CAS  Google Scholar 

  24. Somogyi, M. (1952). Journal of Biological Chemistry, 195, 19–23.

    CAS  Google Scholar 

  25. Gibbs, P. A., Seviour, R. J., & Schmid, F. (2002). Critical Reviews in Biotechnology, 20(1), 17–48.

    Article  Google Scholar 

  26. De Vries, R. P., & Visser, J. (2001). Microbiology and Molecular Biology Reviews, 65, 497–522.

    Article  Google Scholar 

  27. de Souza, D. F., de Souza, C. G. M., & Peralta, R. M. (2001). Process Biochemistry, 36, 835–838.

    Article  Google Scholar 

  28. Haltrich, D., Nidetzky, B., Kulbe, K. D., Steiner, W., & Zupancic, S. (1996). Bioresource Technology, 58, 137–161.

    Article  CAS  Google Scholar 

  29. Lawrence, A. A. (1973). Park Ridge, NJ: Noyes Data.

  30. Kato, K., & Matsuda, K. (1969). Agricultural and Biological Chemistry, 33(10), 1446–53.

    CAS  Google Scholar 

  31. Santoso, U., Kubok, K., Ota, T., Tadokoro, T., & Maekawa, A. (1996). Food Chemistry, 57(2), 299–304.

    Article  CAS  Google Scholar 

  32. Rajoka, M. I., Akhtar, M. W., Hanif, A., & Khalid, A. M. (2006). World Journal of Microbiology & Biotechnology, 22, 991–998.

    Article  CAS  Google Scholar 

  33. Christov, L. P., Szakacs, G., & Balakrishnan, H. (1999). Process Biochemistry, 34, 511–517.

    Article  CAS  Google Scholar 

  34. Puchart, V., Vrsanska, M., Svoboda, P., Pohl, J., Ogel, Z. B., & Biely, P. (2004). Biochimica et Biophysica Acta, 1674, 239–250.

    CAS  Google Scholar 

  35. Barbasgaard, Hansen, H. P., & Diderichsen, B. (1992). Applied Microbiology and Biotechnology, 36, 569–572.

    Google Scholar 

Download references

Acknowledgments

One of the authors, Mr. Naganagouda V Kote, wishes to thank the Indian Council of Medical Research (ICMR), New-Delhi, India for its financial support in the form of a Senior Research Fellowship (SRF) during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. H. Mulimani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kote, N.V., Patil, A.G.G. & Mulimani, V.H. Optimization of the Production of Thermostable endo-β-1,4 Mannanases from a Newly Isolated Aspergillus niger gr and Aspergillus flavus gr . Appl Biochem Biotechnol 152, 213–223 (2009). https://doi.org/10.1007/s12010-008-8250-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8250-z

Keywords

Navigation