Skip to main content
Log in

Study of some parameters which affect xylanase production: Strain selection, enzyme extraction optimization, and influence of drying conditions

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Xylanases are glycosidases mainly responsible for the hydrolysis of β-1,4 linkages in xylan. Xylanase was produced in this work by solid-state fermentation using agro industrial residues with Aspergillus niger strain, which was screened through qualitative and quantitative methods. Extraction processes with different solvents were evaluated. Solvent volume, time, and agitation speed (shaker) were optimized using statistical designs. Drying studies of the solid fermented material were also conducted in a laboratory oven where the following conditions were applied: 42°C and 50°C for 20 h and 80°C for 1 h; 50°C and 75°C for 6 and 3 h, respectively. Best extraction conditions were 37 mL of solvent composed by NaCl solution (0.9%) with Tween 80 (0.1%) in 3 g of cultured material with agitation at 133 rpm in shaker for 4 min. Highest xylanase activity was 2,327 IU/gdm. The drying at 42°C for 20 h provided a better maintenance of xylanase activity (58% of xylanase activity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pandey, A., P. Selvakumar, C. R. Soccol, and P. Nigam (1999) Solid state fermentation for the production of industrial enzymes. Curr. Sci. 77: 149–162.

    CAS  Google Scholar 

  2. Tengerdy, R. P. (1998) Solid substrate fermentation for enzyme production. pp.13–16. In: A. Pandey (ed.). Adv. Biotechnol. Educational Publishers & Distributors, New Delhi, India.

    Google Scholar 

  3. Castilho, L. R., R. A. Medronho, and T. L. M. Alves (2000) Production and extraction of pectinases obtained by solid state fermentation of agroindustrial residues with Aspergillus niger. Bioresour. Technol. 71: 45–50.

    Article  CAS  Google Scholar 

  4. Vandenberghe, L. P. S., C. R. Soccol, A. Pandey, and J. M. Lebeault (2000) Solid-state fermentation for the synthesis of citric acid by Aspergillus niger. Bioresour. Technol. 74: 175–178.

    Article  CAS  Google Scholar 

  5. Soccol, C. R. and L. P. S. Vandenberghe (2003) Overview of applied solid-state fermentation in Brazil. Biochem. Eng. J. 13: 205–218.

    Article  CAS  Google Scholar 

  6. Joseleau, J. P., J. Comtat, and K. Ruel (1992) Chemical structure of xylans and their interaction in the plant cell walls. pp. 1–15. In: J. Visser, G. Beldman, M. A. Kusters-van Someren, and A. G. J. Voragen (eds.). Xylans and xylanases: Progress in Biotechnology. Elsevier, NY, USA.

    Google Scholar 

  7. Subramaniyan, S. and P. Prema (2002) Biotechnology of microbial xylanases: enzymology, molecular biology and application. Crit. Rev. Biotechnol. 22: 33–46.

    Article  CAS  Google Scholar 

  8. Gutierrez-Correa, M. and R. P. Tengerdy (1998) Xylanase production by fungal mixed culture solid substrate fermentation on sugar cane bagasse. Biotechnol. Lett. 20: 45–47.

    Article  CAS  Google Scholar 

  9. Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler (1988) Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol. Rev. 52: 305–317.

    CAS  Google Scholar 

  10. Tunga, R., R. Banerjee, and B. C. Bhattacharya (1999) Some studies on optimization of extraction process for protease production in SSF. Bioprocess Biosyst. Eng. 20: 485–489.

    CAS  Google Scholar 

  11. Yano, T., S. Ashida, T. Tachiki, H. Kumagai, and T. Tochikura (1991) Development of a soft gel cultivation method. Agric. Biol. Chem. 55: 379–385.

    CAS  Google Scholar 

  12. Ghildyal, N. P., M. Ramakrishna, B. K. Lonsane, N. G. Karanth, and M. M. Krishnaiah (1993) Temperature variations and amyloglucosidase levels at different bed depths in a solid state fermentation system. Chem. Eng. J. Biochem. Eng. J. 51: 17–23.

    Google Scholar 

  13. Sa-Pereira, P., H. Paveia, M. Costa-Ferreira, and M. R. Aires-Barros (2003) A new look at xylanases: an overview of purification strategies. Mol. Biotechnol. 24: 257–281.

    Article  CAS  Google Scholar 

  14. Whitaker, J. R., A. G. J. Voragen, and D. W. S. Wong (2002) Handbook of Food Enzymology. 1st ed., pp. 890–900. CRC, NY, USA.

    Google Scholar 

  15. De Lopez, S., M. Tissot, and M. Delmas (1996) Integrated cereal straw valorization by an alkaline preextraction of hemicellulose prior to soda-anthraquinone pulping: case study of barley straw. Biomass and Bioenergy 10: 201–211.

    Article  Google Scholar 

  16. Bandivadekar, K. R. and V. V. Deshpande (1994) Enhanced stability of cellulase-free xylanase from Chainia sp. (NCL 82.5.1). Biotechnol. Lett. 16: 179–182.

    Article  CAS  Google Scholar 

  17. A.O.A.C. (2000) Official Methods of Analysis of AOAC International, Association of Official Analytical Chemists, Washington, DC, USA.

    Google Scholar 

  18. Bailey, M. J., P. Biely, and K. Poutanen (1992) Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257–271.

    Article  CAS  Google Scholar 

  19. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analyt. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  20. Ten, L. N., W-T. Ima, M-K. M. S. Kanga, and S-T. Leea (2004) Development of a plate technique for screening polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J. Microbiol. Methods 56: 375–382.

    Article  CAS  Google Scholar 

  21. Haltrich, D., B. Nidetzky, K. D. Kulbe, W. Steiner, and S. Zupancic (1996) Production of fungal xylanases. Bioresour. Technol. 58: 137–161.

    Article  CAS  Google Scholar 

  22. Kulkarni, N., A. Shendye, and M. Rao (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411–456.

    Article  CAS  Google Scholar 

  23. Singh, S. A., M. Ramakrishna, and A. G. A. Rao (1999) Optimisation of downstream processing parameters for the recovery of pectinase from the fermented bran of Aspergillus carbonarius. Process Biochem. 35: 411–417.

    Article  CAS  Google Scholar 

  24. Rezende, M. I., A. M. Barbosa, A. F. D. Vasconcelos, and A. S. Endo (2002) Xylanase production by Trichoderma harzianum rifai by solid state fermentation on sugarcane bagasse. Braz. J. Microbiol. 33: 67–72.

    Article  CAS  Google Scholar 

  25. Diaz, A. B., I. De Ory, I. Caro, and A. Blandino (2005) Recovery of hydrolytic enzymes obtained by solid state fermentation of grape pomace with Aspergillus awamorii. The Seventh Italian Conference on Chemical and Process Engineering. May 15–18. Giardini di Naxos, Italy.

  26. Silva, W. O. B., S. Mitidieri, A. Schrank, and M. H. Vainstein (2005) Production and extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliae. Process Biochem. 40: 321–326.

    Article  CAS  Google Scholar 

  27. Fadel, M. (2001) High-level xylanase production from sorghum flour by a newly isolate of Trichoderma harzianum cultivated under solid state fermentation. Annals Microbiol. 51: 61–78.

    CAS  Google Scholar 

  28. Qadeer, M. A., J. I. Anjum, and R. Akhtar (1980) Biosynthesis of enzymes by solid substrate fermentation. Part II: Production of alpha-amylase by Bacillus subtilis. Pak. J. Sci. Ind. Res. 23: 25–29.

    CAS  Google Scholar 

  29. Ramakrishna, S. V., L. T. Suseela, N. P. Ghildyal, S. A. Jaleel, P. Prema, B. K. Lonsane, and S. Y. Ahmed (1982) Recovery of amyloglucosidase from moldy bran. Indian J. Technol. 20: 476–480.

    CAS  Google Scholar 

  30. Fadel, M. and M. M. Abd-El Kader (1994) Production of cellulase and b-glucosidase by new isolate of Aspergillus niger F-92. Egypt J. Microbiol. 29: 175–182.

    CAS  Google Scholar 

  31. Rao, M., R. Seeta, and V. Deshpand (1983) Effect at pretreatment of cellulose by Penicillum funiculosum and recovery of enzyme. Biotechnol. Bioeng. 25: 1863–1867.

    Article  CAS  Google Scholar 

  32. Ghildyal, N. P., M. Ramakrishna, B. K. Lonsane, and N. G. Karanth (1991) Efficient and simple extraction of mouldy bran in a pulsed column extractor for recovery of amyloglucosidase in concentrated form. Process Biochem. 26: 235–241.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giselle Maria Maciel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maciel, G.M., de Souza Vandenberghe, L.P., Fendrich, R.C. et al. Study of some parameters which affect xylanase production: Strain selection, enzyme extraction optimization, and influence of drying conditions. Biotechnol Bioproc E 14, 748–755 (2009). https://doi.org/10.1007/s12257-009-0053-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-0053-8

Keywords

Navigation