Skip to main content

The Use of Bacteriophages in Animal Health and Food Protection

  • Chapter
  • First Online:
Phage Therapy: A Practical Approach

Abstract

Bacteriophage therapy is usually considered as a procedure to treat human diseases. However, the use of bacteriophages to treat bacterial infections in animals is perhaps more advanced than human phage therapy. This is due to the fact that formal regulations on the use of various methods in treatment of animals are considerably less stringent than those for human therapies. This applies also to phage therapy. On the other hand, from studies on animals and development of phage therapy for animals, we can learn a lot about mechanisms and efficacy of application of phages to treat various infections. In this chapter, current stage of development of phage therapy for animals is presented and discussed. Applications of phages in animal breeding, aviculture, and aquaculture are described. The use of phages in food protection is also mentioned. Methods for phage isolation, propagation, purification, and administration in animal phage therapy are also briefly described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatángelo V, Peressutti Bacci N, Boncompain CA et al (2017) Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains. PLoS One 12(7):e0181671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abedon ST (2011) Lysis from without. Bacteriophage 1(1):46–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Abedon ST, Yin J (2009) Bacteriophage plaques: theory and analysis. Methods Mol Biol 501:161–174

    Article  CAS  PubMed  Google Scholar 

  • Ackermann HW, Tremblay D, Moineau S (2004) Long-term bacteriophage preservation. WFCC Newsl 38:35–40

    Google Scholar 

  • Adriaenssens EM, Lehman SM, Vandersteegen K et al (2012) CIM® monolithic anion-exchange chromatography as a useful alternative to CsCl gradient purification of bacteriophage particles. Virology 434(2):265–270

    Article  CAS  PubMed  Google Scholar 

  • Ahmadi H, Wang Q, Lim LT et al (2018) Encapsulation of Listeria phage A511 by alginate to improve its thermal stability. Methods Mol Biol 1681:89–95

    Article  CAS  PubMed  Google Scholar 

  • Ahmadi M, Karimi Torshizi MA, Rahimi S, Dennehy JJ (2016) Prophylactic bacteriophage administration more effective than post infection administration in reducing Salmonella enterica serovar Enteritidis shedding in quail. Front Microbiol 7:1253. https://doi.org/10.3389/fmicb.2016.01253

    Article  PubMed  PubMed Central  Google Scholar 

  • Almeida A, Cunha A, Gomes NCM et al (2009) Phage therapy and photodynamic therapy: low environmental impact approaches to inactivate microorganisms in fish farming plants. Mar Drugs 7:268–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand T, Vaid RK, Bera BCh et al (2015) Isolation and characterization of a bacteriophage with broad host range, displaying potential in preventing bovine diarrhoea. Virus Genes (2):315–321

    Article  CAS  PubMed  Google Scholar 

  • Anand T, Vaid RK, Bera BCh et al (2016) Isolation of a lytic bacteriophage against virulent Aeromonas hydrophila from an organized equine farm. J Basic Microbiol 56(4):432–437

    Article  CAS  PubMed  Google Scholar 

  • Andreatti Filho RL, Higgins JP, Higgins SE, Gaona G, Wolfenden AD, Tellez G, Hargis BM (2007) Ability of bacteriophages isolated from different sources to reduce Salmonella enterica serovar Enteritidis in vitro and in vivo. Poult Sci 86:1904–1909

    Article  CAS  PubMed  Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 2000:145–180

    Article  Google Scholar 

  • Angelova MI, Bitbol AF, Seigneuret M, Staneva G, Kodama A, Sakuma Y, Kawakatsu T, Imai M, Puff N (2018) pH sensing by lipids in membranes: the fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies. Biochim Biophys Acta Biomembr 1860(10):2042–2063. https://doi.org/10.1016/j.bbamem.2018.02.026

    Article  CAS  PubMed  Google Scholar 

  • Angelova MI, Dimitrov DS (1986) Liposome electroformation. Faraday Discuss Chem Soc 81:303–311

    Article  CAS  Google Scholar 

  • Attar A, Becheur H, Gilbert T et al (1998) Hemorrhagic colitis and hemolytic uremic syndrome caused by Escherichia coli O157:H7. Ann Med Interne 149(5):288–290

    CAS  Google Scholar 

  • Atterbury RJ, Dillon E, Swift C, Connerton PL, Frost JA, Dodd CER, Rees CED, Connerton IF (2005) Correlation of Campylobacter bacteriophage with reduced presence of hosts in broiler chicken ceca. Appl Environ Microbiol 71:4885–4887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atterbury RJ, Van Bergen MAP, Oritz F, Lovell MA, Harris JA, De Boer A, Wagenaar JA, Allen VM, Barrow PA (2007) Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl Environ Microbiol 73(14):4543–4549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz RK, Ackermann HW, Petty NK et al (2018) Essential steps in characterizing bacteriophages: biology, taxonomy, and genome analysis. Methods Mol Biol 1681:197–215

    Article  CAS  PubMed  Google Scholar 

  • Bachrach G, Leizerovici-Zigmond M, Zlotkin A et al (2003) Bacteriophage isolation from human saliva. Lett Appl Microbiol 36(1):50–53

    Article  PubMed  Google Scholar 

  • Barash Y, Sulam R, Loya Y et al (2005) Bacterial strain BA-3 and a filterable factor cause a white plague like disease in corals from the Eilat coral reef. Aquat Microb Ecol 40:183–189

    Article  Google Scholar 

  • Bardina C, Spricigo DA, Cortes P et al (2012) Significance of the bacteriophage treatment schedule in reducing Salmonella colonisation of poultry. Appl Environ Microbiol 78(18):6600–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett DJ, Healy AM, Leonard FC et al (2005) Prevalence of pathogens causing subclinical mastitis in 15 dairy herds in the Republic of Ireland. Ir Vet J 58(6):333–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrow P, Lovell M, Berchieri A Jr (1998) Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin Vaccine Immunol 5:294–298

    CAS  Google Scholar 

  • Basdew IH, Laing MD (2011) Biological control of bovine mastitis using bacteriophage therapy. In: Mendez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, Badajoz, pp 386–393

    Google Scholar 

  • Bean JE, Alves DR, Laabei M et al (2014) Triggered release of bacteriophage K from agarose/hyaluronan hydrogel matrixes by Staphylococcus aureus virulence factors. Chem Mater 26:7201–7208

    Article  CAS  Google Scholar 

  • Bengtsson B, Greko C (2014) Antibiotic resistance—consequences for animal health, welfare, and food production. Ups J Med Sci 119(2):96–102

    Article  PubMed  PubMed Central  Google Scholar 

  • Ben-Haim Y, Zicherman-Keren M, Rosenberg E (2003) Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl Environ Microbiol 69:4236–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett AR, Davids FG, Vlahodimou S et al (1997) The use of bacteriophage-based systems for the separation and concentration of Salmonella. J Appl Microbiol 83:259–265

    Article  CAS  PubMed  Google Scholar 

  • Bentala H, Verweij WR, Huizinga-Van der Vlag A et al (2002) Removal of phosphate from lipid A as a strategy to detoxify lipopolysaccharide. Shock 18:561–566

    Article  PubMed  Google Scholar 

  • Bernkop-Schnürch A, Humenberger C, Valenta C (1998) Basic studies on bioadhesive delivery systems for peptide and protein drugs. Int J Pharm 165:217–225

    Article  Google Scholar 

  • Bhetwal A, Maharjan A, Shakya S et al (2017) Isolation of potential phages against multidrug-resistant bacterial isolates: promising agents in the rivers of Kathmandu, Nepal. BioMed Res Int 2017:3723254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bigot B, Lee WJ, McIntyre L et al (2011) Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol. 28:1448–1452

    Article  CAS  PubMed  Google Scholar 

  • Boratyński J, Syper D, Weber-Dąbrowska B et al (2004) Preparation of endotoxin-free bacteriophages. Cell Mol Biol Lett 9:253–259

    PubMed  Google Scholar 

  • Borda-Molina D, Seifert J, Camarinha-Silva A (2018) Current perspectives of the chicken gastrointestinal tract and its microbiome. Comput Struct Biotechnol J 16:131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borie C, Sanchez ML, Navarro C et al (2009) Aerosol spray treatment with bacteriophages and competitive exclusion reduces Salmonella enteritidis infection in chickens. Avian Dis 53(2):250–254

    Article  CAS  PubMed  Google Scholar 

  • Boss R, Cosandey A, Luini M et al (2016) Bovine Staphylococcus aureus: subtyping, evolution, and zoonotic transfer. J Dairy Sci 99(1):515–528

    Article  CAS  PubMed  Google Scholar 

  • Boulanger P (2009) Purification of bacteriophages and SDS-PAGE analysis of phage structural proteins from ghost particles. Methods Mol Biol 502:227–238

    Article  CAS  PubMed  Google Scholar 

  • Bradley A (2002) Bovine mastitis: an evolving disease. Vet J 164(2):116–128

    Article  CAS  PubMed  Google Scholar 

  • Brown TL, Petrovski S, Dyson ZA et al (2016) The formulation of bacteriophage in a semi solid preparation for control of Propionibacterium acnes growth. PLoS One 11(3):e0151184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown TL, Petrovski S, Chan HT et al (2018) Semi-solid and solid dosage forms for the delivery of phage therapy to epithelia. Pharmaceuticals 11(1):26

    Article  PubMed Central  CAS  Google Scholar 

  • Brussow H, Kutter E (2005) Phage ecology. In: Kutter E, Sluakvelidze A (eds) Bacteriophages biology and applications. CRC, Boca Raton, pp 29–66

    Google Scholar 

  • Bryant D, Burke L, McManus JW et al (1998) Reefs at risk. A map-based indicator of threats to the world’s coral reefs. World Resources Institute, Washington, DC

    Google Scholar 

  • Buboltz JT, Feigenson GW (1999) A novel strategy for the preparation of liposomes: rapid solvent exchange. Biochim Biophys Acta 1417:232–245

    Article  CAS  PubMed  Google Scholar 

  • Bucking C, Wood CM (2009) The effect of postprandial changes in pH along the gastrointestinal tract on the distribution of ions between the solid and fluid phases of chyme in rainbow trout. Aquacult Nutr 15:282–296

    Article  CAS  Google Scholar 

  • Calgua B, Mengewein A, Grunert A et al (2008) Development and application of a one-step low cost procedure to concentrate viruses from seawater samples. J Virol Methods 153(2):79–83

    Article  CAS  PubMed  Google Scholar 

  • Callaway TR, Anderson RC, Tellez G (2004) Prevalence of Escherichia coli O157 in cattle and swine in central Mexico. J Food Prot 67(10):2274–2276

    Article  CAS  PubMed  Google Scholar 

  • Calvinho LF, Almeida RA, Oliver SP (1998) Potential virulence factors of Streptococcus dysgalactiae associated with bovine mastitis. Vet Microbiol 61(1–2):93–110

    Article  CAS  PubMed  Google Scholar 

  • Cantas L, Sørby JR, Aleström P et al (2012) Culturable gut microbiota diversity in zebrafish. Zebrafish 9:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capparelli R, Nocerino N, Iannaccone M, Ercolini D, Parlato M, Chiara M, Iannelli D (2010) Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy. J Infect Dis 201(1):52–61

    Article  CAS  PubMed  Google Scholar 

  • Carlson K (2005) Appendix: working with bacteriophages: common techniques and methodological approaches. In: Sulakvelidze A, Kutter E (eds) Bacteriophages: biology and applications. CRC, Boca Raton, pp 437–494

    Google Scholar 

  • Carter CD, Parks A, Abuladze T et al (2012) Bacteriophage cocktail significantly reduces Escherichia coli O157 H7 contamination of lettuce and beef, but does not protect against recontamination. Bacteriophage 2(3):178–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho CM, Gannon BW, Halfhide DE et al (2010) The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol 10:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho C, Costa AR, Silva F et al (2017) Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Crit Rev Microbiol 43(5):583–601

    Article  CAS  PubMed  Google Scholar 

  • Castanon JIR (2007) History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci 86(11):2466–2471

    Article  CAS  PubMed  Google Scholar 

  • Castro-Mejía JL, Muhammed MK, Kot W et al (2015) Optimizing protocols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut. Microbiome 3:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavaillon JM (2018) Exotoxins and endotoxins: inducers of inflammatory cytokines. Toxicon 149:45–53

    Article  CAS  PubMed  Google Scholar 

  • Chan TY (1999) Health hazards due to clenbuterol residues in food. J Toxicol Clin Toxicol 37:517–519

    Article  CAS  PubMed  Google Scholar 

  • Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Fut Microbiol 8(6):769–783

    Article  CAS  Google Scholar 

  • Chen J, Novick RP (2009) Phage-mediated intergeneric transfer of toxin genes. Science 323(5910):139–141

    Article  CAS  PubMed  Google Scholar 

  • Cheng WL, Zhang Z, Xu R et al (2018) Incorporation of bacteriophages in polycaprolactone/collagen fibers for antibacterial hemostatic dual-function. J Biomed Mater Res B Appl Biomater 106:2588–2595

    Article  CAS  PubMed  Google Scholar 

  • Chhibber S, Kaur J, Kaur S (2018) Liposome entrapment of bacteriophages improves wound healing in a diabetic mouse MRSA infection. Front Microbiol 9:561

    Article  PubMed  PubMed Central  Google Scholar 

  • Chi EY, Krishnan S, Randolph TW et al (2003) Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res 20:1325–1336

    Article  CAS  PubMed  Google Scholar 

  • Chibeu A, Agius L, Gao A et al (2013) Efficacy of bacteriophage LISTEX™ P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef. Int J Food Microbiol 167:208–214

    Article  CAS  PubMed  Google Scholar 

  • Cho YI, Yoon KJ (2014) An overview of calf diarrhea – infectious etiology, diagnosis, and intervention. J Vet Sci 15(1):1–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Christiansen RH, Dalsgaard I, Middelboe M et al (2014) Detection and quantification of Flavobacterium psychrophilum-specific bacteriophages in vivo in rainbow trout upon oral administration: implications for disease control in aquaculture. Appl Environ Microbiol 80(24):7683–7693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark WA (1962) Comparison of several methods for preserving bacteriophages. Appl Microbiol 10(5):466–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark WA, Geary D (1973) Preservation of bacteriophages by freezing and freeze-drying. Cryobiology 10(5):351–360

    Article  CAS  PubMed  Google Scholar 

  • Clavijo V, Florez MJV (2018) The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: a review. Poult Sci 97(3):1006–1021

    Article  CAS  PubMed  Google Scholar 

  • Colavecchio A, Goodridge LD (2017) Phage therapy approaches to reducing pathogen persistence and transmission in animal production environments: opportunities and challenges. Microbiol Spectr 5(3):PFS-0017-2017

    Google Scholar 

  • Collado R, Prenafeta A, González-González L et al (2016) Probing vaccine antigens against bovine mastitis caused by Streptococcus uberis. Vaccine 34(33):3848–3854

    Article  CAS  PubMed  Google Scholar 

  • Colom J, Cano-Sarabia M, Otero J et al (2017) Microencapsulation with alginate/CaCO3: a strategy for improved phage therapy. Sci Rep 7:41441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper CJ, Denyer SP, Maillard JY (2013) Stability and purity of a bacteriophage cocktail preparation for nebulizer delivery. Lett Appl Microbiol 58(2):118–122

    Article  PubMed  CAS  Google Scholar 

  • Cornick NA, Helgerson AF (2004) Transmission and infectious dose of Escherichia coli O157:H7 in swine. Appl Environ Microbiol 70(9):5331–5335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortés P, Cano-Sarabia M, Colom J et al (2018) Nano/micro formulations for bacteriophage delivery. Methods Mol Biol 1693:271–283

    Article  PubMed  CAS  Google Scholar 

  • Creaser EH, Taussig A (1957) The purification and chromatography of bacteriophages on anion-exchange cellulose. Virology 4(2):200–208

    Article  CAS  PubMed  Google Scholar 

  • Debarbieux L, Pirnay JP, Verbeken G, De Vos D, Merabishvili M, Huys I, Patey O, Schoonjans D, Vaneechoutte M, Zizi M, Rohde C (2016) A bacteriophage journey at the European Medicines Agency. FEMS Microbiol Lett 362(2):fnv225

    Article  CAS  Google Scholar 

  • Defoirdt T, Boon N, Sorgeloos P et al (2007) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25(10):472–479

    Article  CAS  PubMed  Google Scholar 

  • Delbrück M (1940) The growth of bacteriophage and lysis of the host. J Gen Physiol 23(5):643–660

    Article  PubMed  PubMed Central  Google Scholar 

  • Delisle A (2004) Bacteriophage-encoded enzymes for the treatment and prevention of dental caries and periodontal disease. US Patent 20040234461A1

    Google Scholar 

  • Dho-Moulin M, Fairbrother JM (1999) Avian pathogenic Escherichia coli (APEC). Vet Res 30(2–3):299–316

    CAS  PubMed  Google Scholar 

  • Diarra MS, Rempel H, Champagne J et al (2010) Distribution of antimicrobial resistance and virulence genes in Enterococcus spp. and characterization of isolates from broiler chickens. Appl Environ Microbiol 76:8033–8043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Sánchez S, Moscoso S, de los Santos S et al (2015) Antibiotic use in poultry; A driving force for organic poultry production. Food Prot Trends 35:440–447

    Google Scholar 

  • Dibner JJ, Richards JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84:634–643

    Article  CAS  PubMed  Google Scholar 

  • Dini C, de Urraza PJ (2013) Effect of buffer systems and disaccharides concentration on Podoviridae coliphage stability during freeze drying and storage. Cryobiology 66(3):339–342

    Article  CAS  PubMed  Google Scholar 

  • Dini C, Islan GA, de Urraza PJ et al (2012) Novel biopolymer matrices for microencapsulation of phages: enhanced protection against acidity and protease activity. Macromol Biosci 12:1200–1208

    Article  CAS  PubMed  Google Scholar 

  • Dolmatova LS, Eliseikina MG, Romashina VV (2004) Antioxidant enzymatic activity of coelomocytes of the Far East sea cucumber Eupentacta fraudatrix. J Evol Biochem Physiol 40:126–135

    Article  CAS  Google Scholar 

  • Doss J, Culbertson K, Hahn D et al (2017) A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 9(3):50

    Article  PubMed Central  CAS  Google Scholar 

  • Dubreuil JD (2017) Enterotoxigenic Escherichia coli and probiotics in swine: what the bleep do we know? Biosci Microbiota Food Health 36(3):75–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duckworth DH, Gulig PA (2002) Bacteriophages: potential treatment for bacterial infections. BioDrugs 16:57–62

    Article  CAS  PubMed  Google Scholar 

  • Efrony R, Atad I, Rosenberg E (2009) Phage therapy of coral white plague disease: properties of phage BA3. Curr Microbiol 58(2):139–145

    Article  CAS  PubMed  Google Scholar 

  • EFSA and ECDC (2015) EU summary report on antimicrobial resistance in zootonic and indicator bacteria from humans, animals and food in 2013. EFSA J. https://doi.org/10.2903/j.efsa.2015.4036

  • El-Gohary FA, Huff WE, Huff GR, Rath NC, Zhou ZY, Donoghue AM (2014) Environmental augmentation with bacteriophage prevents colibacillosis in broiler chickens. Poult Sci 93:2788–2792

    Article  CAS  PubMed  Google Scholar 

  • Eloy JO, Claro de Souza M, Petrilli R et al (2014) Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids Surf B Biointerfaces 123:345–363

    Article  CAS  PubMed  Google Scholar 

  • El-Shibiny A, Scott A, Timms A et al (2009) Application of a group II Campylobacter bacteriophage to reduce strains of Campylobacter jejuni and Campylobacter coli colonizing broiler chickens. J Food Protect 72:733–740

    Article  CAS  Google Scholar 

  • El-Shibiny A, El-Sahhar S, Adel M (2017) Phage application for improving food safety and infection control in Egypt. J Appl Microbiol 123(2):556–567

    Article  CAS  PubMed  Google Scholar 

  • Engel HWB, Smith D, Berwald LG (1974) The preservation of mycobacteriophages by means of freeze drying. Am Rev Respir Dis 109:561–566

    CAS  PubMed  Google Scholar 

  • Esteban PP, Alves DR, Enright MC et al (2014) Enhancement of the antimicrobial properties of bacteriophage-K via stabilization using oil-in-water nano-emulsions. Biotechnol Prog 30(4):932–944

    Article  CAS  PubMed  Google Scholar 

  • European Union (2009) Regulation (EC) No 470/2009 of 6 May 2009 laying down community procedures for the establishment of residue limits of pharmacologically active substances in foodstuffs of animal origin, repealing Council Regulation (EEC) No 2377/90 and amending Directive 2001/82/EC of the European Parliament and of the Council and Regulation (EC) No 726/2004 of the European Parliament and of the Council Of J L, 152:11–22

    Google Scholar 

  • Fadiel A, Anidi I, Eichenbaum KD (2005) Farm animal genomics and informatics: an update. Nucleic Acids Res 33(19):6308–6318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fairbrother JM, Nadeau E, Gyles CL (2005) Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev 6(1):17–39

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Zeng Z, Mai K et al (2016) Preliminary treatment of bovine mastitis caused by Staphylococcus aureus, with trx-SA1, recombinant endolysin of S. aureus bacteriophage IME-SA1. Vet Microbiol 191:65–71

    Article  CAS  PubMed  Google Scholar 

  • Fancello L, Raoult D, Desnues C (2012) Computational tools for viral metagenomics and their application in clinical research. Virology 434(2):162–174

    Article  CAS  PubMed  Google Scholar 

  • Fauconnier A (2017) Regulating phage therapy. The biological master file concept could help to overcome regulatory challenge of personalized medicine. EMBO Rep 18(2):198–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feasey NA, Dougan G, Kingsley RA et al (2012) Invasive non-typhoidal Salmonella disease: an emerging and neglected tropical disease in Africa. Lancet 379(9835):2489–2499

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferens WA, Hovde CJ (2011) Escherichia coli O157:H7: animal reservoir and sources of human infection. Foodborne Pathog Dis 8(4):465–487

    Article  PubMed  PubMed Central  Google Scholar 

  • Filho RA, Ferreira C, Kanashiro AM et al (2016) Antimicrobial susceptibility of Salmonella Gallinarum and Salmonella Pullorum isolated from ill poultry in Brazil. Ciencia Rural 46(3):513–518

    Article  Google Scholar 

  • Fiorentin L, Vieira ND, Barioni W Jr (2005) Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers. Avian Pathol 34:258–263

    Article  PubMed  Google Scholar 

  • Firlieyanti AS, Connerton PL, Connerton IF (2016) Campylobacters and their bacteriophages from chicken liver: the prospect of phage biocontrol. Int J Food Microbiol 237:121–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher S, Kittler S, Klein G, Glunder G (2013) Impact of a single phage and phage cocktail application in broilers on reduction of Campylobacter jejuni and development of resistance. PLoS One. https://doi.org/10.1371/journal.pone.0078543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2016) The state of world fisheries and aquaculture contributing to food security and nutrition for all. FAO report. FAO, Rome, Italy. ISBN: 9789251091852

    Google Scholar 

  • Food and Drug Administration (2000) New animal drugs for use in animal feeds. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=558.3

  • Food and Drug Administration (2005) Final decision of the Commissioner: proposal to withdraw the approval of the new animal drug application for enrofloxacin for poultry

    Google Scholar 

  • Food and Drug Administration (2012) 21 CFR Part 530 [Docket No. FDA–2008–N–0326]. New animal drugs; cephalosporin drugs; extralabel animal drug use; order of prohibition

    Google Scholar 

  • Fortier LC, Moineau S (2009) Phage production and maintenance of stocks, including the expected stock lifetime. Methods Mol Biol 501:203–219

    Article  CAS  PubMed  Google Scholar 

  • Fortier LC, Sekulovic O (2013) Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4(5):354–365

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedman CR, Neimann J, Wegener HC et al (2000) Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. In: Nachamkin I, Blaser MJ (eds) Campylobacter. ASM, Washington, DC, pp 121–138

    Google Scholar 

  • Fukuda Y, Nguyen HD, Furuhashi M et al (1996) Mass mortality of cultured sevenband grouper, Epinephelus septemfasciatus, associated with viral nervous necrosis. Fish Pathol 31(3):165–170

    Article  Google Scholar 

  • Gal-Mor O, Boyle EC, Grassl GA (2014) Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front Microbiol 5:319. https://doi.org/10.3389/fmicb.2014.00391

    Article  Google Scholar 

  • Gencay YE, Brik T, Sorensen MC, Brondsted L (2017) Methods for isolation, purification and propagation of bacteriophages of Campylobacter jejuni. Methods Mol Biol 1512:19–28

    Article  PubMed  Google Scholar 

  • Gervais L, Gel M, Allain B et al (2007) Immobilization of biotinylated bacteriophages on biosensor surfaces. Sens Actuators B Chem 125(2):615–621

    Article  CAS  Google Scholar 

  • Gill J, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 11(1):2–14

    Article  CAS  PubMed  Google Scholar 

  • Gill JJ, Pacan JC, Carson ME et al (2006a) Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle. Antimicrob Agents Chemother 50(9):2912–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill JJ, Sabour PM, Leslie KE et al (2006b) Bovine whey proteins inhibit the interaction of Staphylococcus aureus and bacteriophage K. J Appl Microbiol 101(2):377–386

    Article  CAS  PubMed  Google Scholar 

  • Goh S, Hussain H, Chang BJ et al (2013) Phage ϕC2 mediates transduction of Tn6215, encoding erythromycin resistance, between Clostridium difficile strains. mBio 4(6):e00840-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomes F, Saavedra MJ, Henriques M (2016) Bovine mastitis disease/pathogenicity: evidence of the potential role of microbial biofilms. Pathog Dis 74(3):1–7

    Article  CAS  Google Scholar 

  • Gonzalez Ronquillo M, Angeles Hernandez JC (2015) Antibiotic and synthetic growth promoters in animal diets: review of impact and analytical methods. Food Contr 72(Part B):255–267

    Google Scholar 

  • Goulden EF, Hall MR, Bourne DG et al (2012) Pathogenicity and infection cycle of Vibrio owensii in larviculture of the ornate spiny lobster (Panulirus ornatus). Appl Environ Microbiol 78:2841–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gracia P, Martinez B, Obeso JM et al (2008) Bacteriophages and their application in food safety. Lett Appl Microbiol 47(6):479–485

    Article  Google Scholar 

  • Griffin PM, Tauxe RV (1991) The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev 13:60–98

    Article  CAS  PubMed  Google Scholar 

  • Gudding R, Van Muiswinkel WB (2013) A history of fish vaccination: science-based disease prevention in aquaculture. Fish Shellfish Immunol 35:1683–1688

    Article  CAS  PubMed  Google Scholar 

  • Gul O, Dervisoglu M (2017) Application of multicriteria decision technique to determine optimum sodium alginate concentration for microencapsulation of Lactobacillus casei Shirota by extrusion and emulsification. J Food Process Eng 40:1–10

    Article  CAS  Google Scholar 

  • Gupta A, Patel SS, Langute SM et al (2017) Bacterial diseases of livestock animals and their impact on human health. Innovare J Sci 5(1):8–11

    Google Scholar 

  • Hagiwara S, Mori K, Okada H et al (2014) Acute Escherichia coli mastitis in dairy cattle: diagnostic parameters associated with poor prognosis. J Vet Med Sci 76(11):1431–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatha M, Vivekanandhan AA, Joice GJ, Christol (2005) Antibiotic resistance pattern of motile aeromonads from farm raised fresh water fish. Int J Food Microbiol 98(2):131–134

    Article  CAS  PubMed  Google Scholar 

  • Hathaway H, Alves DR, Bean J et al (2015) Poly(N-isopropylacrylamide-co-allylamine) (PNIPAM-co-ALA) nanospheres for the thermally triggered release of Bacteriophage K. Eur J Pharm Biopharm 96:437–441

    Article  CAS  PubMed  Google Scholar 

  • Hernandez SM, Keel K, Sanchez S et al (2012) Epidemiology of a Salmonella enterica subsp. enterica serovar Typhimurium strain associated with a songbird outbreak. Appl Environ Microbiol 78:7290–7298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyse S, Hanna LF, Woolston J et al (2015) Bacteriophage cocktail for biocontrol of Salmonella in dried pet food. J Food Prot 78(1):97–103

    Article  PubMed  Google Scholar 

  • Higuera G, Bastías R, Tsertsvadze G et al (2013) Recently discovered Vibrio anguillarum phages can protect against experimentally induced vibriosis in Atlantic salmon, Salmo salar. Aquaculture 392–395:128–133

    Article  CAS  Google Scholar 

  • Hjelmsø MH, Hellmér M, Fernandez-Cassi X et al (2017) Evaluation of methods for the concentration and extraction of viruses from sewage in the context of metagenomic sequencing. PLoS One 12(1):e0170199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hogan J, Smith KL (2003) Coliform mastitis. Vet Res 34(5):507–519

    Article  PubMed  Google Scholar 

  • Hogeveen H, Huijps K, Lam TJ (2011) Economic aspects of mastitis: new developments. N Z Vet J 59(1):16–23

    Article  CAS  PubMed  Google Scholar 

  • Housby JN, Mann NH (2009) Phage therapy. Drug Discov Today 14:536–540

    Article  CAS  PubMed  Google Scholar 

  • Hua S, Marks E, Schneider JJ et al (2015) Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine 11(5):1117–1132

    Article  CAS  PubMed  Google Scholar 

  • Huff WE, Huff GR, Rath NC et al (2002a) Prevention of Escherichia coli respiratory infection in broiler chickens with bacteriophage (SPR02). Poult Sci 81:437–441

    Article  CAS  PubMed  Google Scholar 

  • Huff WE, Huff GR, Rath NC et al (2002b) Prevention of Escherichia coli infection in broiler chickens with a bacteriophage aerosol spray. Poult Sci 81:1486–1491

    Article  CAS  PubMed  Google Scholar 

  • Huff WE, Huff GR, Rath NC et al (2004) Therapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers. Poult Sci 83:1944–1947

    Article  CAS  PubMed  Google Scholar 

  • Huff WE, Huff GR, Rath NC et al (2009) Critical evaluation of bacteriophage to prevent and treat colibacillosis in poultry. J Ark Acad Sci 63:93–98

    Google Scholar 

  • Hultgren J, Svensson C (2009) Lifetime risk and cost of clinical mastitis in dairy cows in relation to heifer rearing conditions in southwest Sweden. J Dairy Sci 92(7):3274–3280

    Article  CAS  PubMed  Google Scholar 

  • Hurley A, Maurer JJ, Lee MD (2008) Using bacteriophages to modulate Salmonella colonisation of the chicken gastrointestinal tract: lessons learned from in silico and in vivo modelling. Avian Dis 52(4):599–607

    Article  CAS  PubMed  Google Scholar 

  • Hyman P, Abedon ST (2009) Practical methods for determining phage growth parameters. Methods Mol Biol 501:175–202

    Article  CAS  PubMed  Google Scholar 

  • Igbinosa IH, Igumbor UE, Aghdasi F et al (2012) Emerging Aeromonas species infections and their significance in public health. ScientificWorldJournal 2012:625023

    PubMed  PubMed Central  Google Scholar 

  • Intralytix Inc. EcoShield ™ product description. www.intralytics.com

  • Intralytix Inc. ListPhage™ product description. www.intralytics.com

  • Intralytix Inc. ListShield™ product description. www.intralytics.com

  • Intralytix Inc. SalmoFresh™ product description. www.intralytics.com

  • Intralytix Inc. SalmoLyse® product description. www.intralytics.com

  • Jain S, Chen L, Dechet A et al (2008) An outbreak of enterotoxigenic Escherichia coli associated with sushi restaurants in Nevada. Clin Infect Dis 47(1):1–7

    Article  PubMed  Google Scholar 

  • Jamali H, Radmehr B, Ismail S (2014) Short communication: Prevalence and antibiotic resistance of Staphylococcus aureus isolated from bovine clinical mastitis. J Dairy Sci 97(4):2226–2230

    Article  CAS  PubMed  Google Scholar 

  • Jamalludeen N, Johnson RP, Friendship R, Kropinski AM, Lingohr EJ, Gyles CL (2007) Isolation and characterization of nine bacteriophages that lyse O149 enterotoxigenic Escherichia coli. Vet Microbiol 124(1–2):47–57

    Article  CAS  PubMed  Google Scholar 

  • Jamalludeen N, Johnson RP, Shewen PE, Gyles CL (2009) Evaluation of bacteriophages for prevention and treatment of diarrhea due to experimental enterotoxigenic Escherichia coli O149 infection of pigs. Vet Microbiol 136(1–2):135–141. https://doi.org/10.1016/j.vetmic.2008.10.021

    Article  PubMed  Google Scholar 

  • Janez N, Loc Carillo C (2013) Use of phages to control Campylobacter spp. J Microbiol Methods 95:68–75

    Article  PubMed  Google Scholar 

  • Jeong KC, Kang MY, Kang J et al (2011) Reduction of Escherichia coli O157:H7 shedding in cattle by addition of chitosan microparticles to feed. Appl Environ Microbiol 77(8):2611–2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RP, Gyles CL, Huff WE et al (2008) Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs. Anim Health Res Rev 9(2):201–215

    Article  CAS  PubMed  Google Scholar 

  • Jurczak-Kurek A, Gąsior T, Nejman-Faleńczyk B et al (2016) Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Sci Rep 6:34338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalatzis PG, Bastías R, Kokkari C, Katharios P (2016) Isolation and characterization of two lytic bacteriophages, φSt2 and φGrn1; phage therapy application for biological control of Vibrio alginolyticus in aquaculture live feeds. PLoS One 11(3):e0151101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalatzis PG, Castillo D, Katharios P et al (2018) Bacteriophage interactions with marine pathogenic Vibrios: implications for phage therapy. Antibiotics 7(1):15

    Article  PubMed Central  CAS  Google Scholar 

  • Karunasagar I, Shivu MM, Girisha SK et al (2007) Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture 268:288–292

    Article  Google Scholar 

  • Kaur S, Harjai K, Chhibber S (2012) Methicillin-resistant Staphylococcus aureus phage plaque size enhancement using sublethal concentrations of antibiotics. Appl Environ Microbiol 78:8227–8233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawato Y, Nakai T (2012) Infiltration of bacteriophages from intestinal tract to circulatory system in goldfish. Fish Pathol 47(1):1–6

    Article  Google Scholar 

  • Kazi M, Annapure US (2016) Bacteriophage biocontrol of foodborne pathogens. J Food Sci Technol 53(3):1355–1362

    Article  PubMed  Google Scholar 

  • Keefe GP (1997) Streptococcus agalactiae mastitis: a review. Can Vet J 38(7):429–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerri M, Mullen EC, Peters C (2004) Coral resistance to disease. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Heidelberg, pp 377–399

    Google Scholar 

  • Kim JH, Gomez DK, Nakai T et al (2010) Isolation and identification of bacteriophages infecting ayu Plecoglossus altivelis altivelis specific Flavobacterium psychrophilum. Vet Microbiol 140:109–115

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Jo A, Ahn J (2015) Application of chitosan–alginate microspheres for the sustained release of bacteriophage in simulated gastrointestinal conditions. Int J Food Sci Technol 50:913–918

    Article  CAS  Google Scholar 

  • Kittler S, Wittmann J, Mengden R et al (2017) The use of bacteriophages as one-health approach to reduce multi drug resistant bacteria. Sustain Chem Pharm 5:80–83

    Article  CAS  Google Scholar 

  • Knobl T, Baccaro MR, Moreno A et al (2001) Virulence properties of Escherichia coli isolated from ostriches with respiratory disease. Vet Microbiol 83(1):71–80

    Article  CAS  PubMed  Google Scholar 

  • Koning GA, Kamps JAAM, Scherphof GL (2002) Interference of macrophages with immunotargeting of liposomes. J Liposome Res 12(1–2):107–119

    Article  CAS  PubMed  Google Scholar 

  • Korehei R, Kadla JF (2013) Incorporation of T4 bacteriophage in electrospun fibres. J Appl Microbiol 114:1425–1434

    Article  CAS  PubMed  Google Scholar 

  • Korehei R, Kadla JF (2014) Encapsulation of T4 bacteriophage in electrospun poly (ethylene oxide)/cellulose diacetate fibers. Carbohydr Polym 100:150–157

    Article  CAS  PubMed  Google Scholar 

  • Kramberger P, Honour RC, Herman RE et al (2010) Purification of the Staphylococcus aureus bacteriophages VDX-10 on methacrylate monoliths. J Virol Methods 166(1–2):60–64

    Article  CAS  PubMed  Google Scholar 

  • Kramer JG, Singleton FL (1992) Variations in rRNA content of marine Vibrio spp. during starvation-survival and recovery. Appl Environ Microbiol 58:201–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kropinski AM, Mazzocco A, Waddell TE et al (2009) Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol 501:69–77

    Article  CAS  PubMed  Google Scholar 

  • Kumari D, Mishra SK, Lather D (2013) Pathomicrobial studies on Salmonella Gallinarum infection in broiler chickens. Vet World 6(10):725–729

    Article  Google Scholar 

  • Kummerer K (2009) Antibiotics in the aquatic environment—a review—Part I. Chemosphere 75:417–434

    Article  PubMed  CAS  Google Scholar 

  • Kwon YK, Kim A, Kang MS et al (2010) Prevalence and characterization of Salmonella Gallinarum in the chicken in Korea during 2000 to 2008. Poult Sci 89(2):236–242

    Article  CAS  PubMed  Google Scholar 

  • Lagana P, Caruso G, Minutoli E et al (2011) Susceptibility to antibiotics of Vibrio spp. and Photobacterium damselae ssp. piscicida strains isolated from Italian aquaculture farms. New Microbiol 34(1):53–63

    PubMed  Google Scholar 

  • Lai TM, Sano M, Ransangan J (2016) Genome characterization of a novel vibriophage VpKK5 (Siphoviridae) specific to fish pathogenic strain of Vibrio parahaemolyticus. J Basic Microbiol 56(8):872–888

    Article  CAS  Google Scholar 

  • Lammers A, van Vorstenbosch CJ, Erkens JH et al (2001) The major bovine mastitis pathogens have different cell tropisms in cultures of bovine mammary gland cells. Vet Microbiol 80(3):255–265

    Article  CAS  PubMed  Google Scholar 

  • Lang AS, Zhaxybayeva O, Beatty JT (2012) Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol 10(7):472–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaVergne S, Hamilton T, Biswas B et al (2018) Phage therapy for multi-drug resistant Acinetobacter baumannii craniectomy site infection. Open Forum Infect Dis 5(4):ofy064. https://doi.org/10.1093/ofid/ofy064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le TS, Southgate PC, O’Connor WP et al (2017) Bacteriophages as biological control agents of enteric bacteria contaminating edible oysters. Curr Microbiol 75:1–9

    Google Scholar 

  • Lee N Harris DL (2001) The effect of bacteriophage treatment to reduce the rapid dissemination of Salmonella typhimurium in pigs. Swine Research Report 2000. 50

    Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MD, Newell DG (2006) Campylobacter in poultry: filling an ecological niche. Avian Dis 50:1–9

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kwon T, Chae SJ et al (2016) Complete genome sequence of bacteriophage MA12, which infects both Campylobacter jejuni and Salmonella enterica serovar Enteritidis. Genome Announc 4(6):e00810-16. https://doi.org/10.1128/genomeA.00810-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Leung SSY, Parumasivam T, Gao FG et al (2016) Production of inhalation phage powders using spray freeze drying and spray drying techniques for treatment of respiratory infections. Pharm Res 33:1486–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li E, Wei X, Ma Y et al (2016a) Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes. Sci Rep 6:28338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Li X, Zhang J et al (2016b) Use of phages to control Vibrio splendidus infection in the juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immunol 54:302–311

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhang J, Li X et al (2016c) Efficiency of a bacteriophage in controlling vibrio infection in the juvenile sea cucumber Apostichopus japonicus. Aquaculture 451:345e352

    Google Scholar 

  • Liljebjelke KA, Hofacre CL, Liu TR et al (2005) Vertical and horizontal transmission of Salmonella within integrated broiler production system. Foodborne Pathog Dis 2:90–102

    Article  CAS  PubMed  Google Scholar 

  • Liljebjelke KA, Hofacre CL, White DG et al (2017) Diversity of antimicrobial resistance phenotypes in Salmonella isolated from commercial poultry farms. Front Vet Sci 4:96. https://doi.org/10.3389/fvets.2017.00096

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim T, Lee D, Lee Y et al (2011) Efficacy of bacteriophage therapy on horizontal transmission of Salmonella Gallinarum on commercial layer chickens. Avian Dis 55(3):435–438

    Article  PubMed  Google Scholar 

  • Lin DM, Koskella B, Lin HC (2017) Phage therapy: an alternative to antibiotics in age of multi-drug resistance. World J Gastrointest Pharmacol Ther 8(3):162–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu K, Wen Z, Li N et al (2012) Purification and concentration of mycobacteriophage D29 using monolithic chromatographic columns. J Virol Methods 186(1–2):7–13

    Article  CAS  PubMed  Google Scholar 

  • Lobanova JS, Gak ER, Andreeva IG et al (2017) Complete nucleotide sequence and annotation of the temperate corynephage ϕ16 genome. Arch Virol 162(8):2489–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loc-Carillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1(2):111–114

    Article  Google Scholar 

  • Loc Carillo C, Atterbury RJ, El-Shibiny A et al (2005) Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl Environ Microbiol. 71(11):6554–6563

    Article  CAS  Google Scholar 

  • Los JM, Golec P, Wegrzyn G et al (2008) Simple method for plating Escherichia coli bacteriophages forming very small plaques or no plaques under standard conditions. Appl Environ Microbiol 74(16):5113–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louesdon S, Charlot-Rougé S, Juillard V et al (2014) Osmotic stress affects the stability of freeze-dried Lactobacillus buchneri R1102 as a result of intracellular betaine accumulation and membrane characteristics. J Appl Microbiol 117:196–207

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Hofacre C, Smith F, Lee MD (2008) Effects of feed additives on the development on the ileal bacterial community of the broiler chicken. Animal 2:669–676

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Pacan JC, Wang Q et al (2012) Enhanced 406 alginate microspheres as means of oral delivery of bacteriophage for reducing 407 Staphylococcus aureus intestinal carriage. Food Hydrocolloids 26(2):434–440

    Article  CAS  Google Scholar 

  • Madsen L, Bertelsen SK, Dalsgaard I et al (2013) Dispersal and survival of Flavobacterium psychrophilum phages in vivo in rainbow trout and in vitro under laboratory conditions: implications for their use in phage therapy. Appl Environ Microbiol 79(16):4853–4861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maleknejad R, Sudagar M, Mazandarani M, Abbas Hosseini A (2014) Effect of different live foods source (Culex Larvae, Chironomus Larvae and Artemia) on pigmentation of electric yellow fish (LabidochromisCaeruleus). Int J Adv Biol Biom Res 2(12):2884–2890

    Google Scholar 

  • Malik DJ, Sokolov IJ, Vinner GK et al (2017) Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci 249:100–133

    Article  CAS  PubMed  Google Scholar 

  • Malinowski E, Gajewski Z (2009) Characteristics of cows mastitis caused by human foodborne pathogens. Życie Weterynaryjne 84(4):290–294

    Google Scholar 

  • Martínez-Díaz SF, Hipólito-Morales A (2013) Efficacy of phage therapy to prevent mortality during the vibriosis of brine shrimp. Aquaculture 400:120–124

    Article  Google Scholar 

  • Maszewska A, Zygmunt M, Grzejdziak I et al (2018) Use of polyvalent bacteriophages to combat biofilm of Proteus mirabilis causing catheter-associated urinary tract infections. J Appl Microbiol

    Google Scholar 

  • Matinkhoo S, Lynch KH, Dennis JJ et al (2011) Spray-dried respirable powders containing bacteriophages for the treatment of pulmonary infections. J Pharm Sci 100(12):5197–5520

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki S, Tanaka S, Koga T (1992) Broad-host-range vibriophage, KVP40, isolated from sea water. Microbiol Immunol 36(1:93–97

    Article  Google Scholar 

  • Matsuzaki S, Rashel M, Uchiyama J et al (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11(5):211–219

    Article  PubMed  Google Scholar 

  • Mattila S, Ruotsalainen P, Jalasvuori M (2015) On-demand isolation of bacteriophages against drug-resistant bacteria for personalized phage therapy. Front Microbiol 6:1271

    Article  PubMed  PubMed Central  Google Scholar 

  • McConnell EL, Fadda HM, Basit AW (2008) Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm 364:213–226

    Article  CAS  PubMed  Google Scholar 

  • McNair K, Aziz RK, Pusch GD et al (2018) Phage genome annotation using the RAST pipeline. Methods Mol Biol 1681:231–238

    Article  CAS  PubMed  Google Scholar 

  • McVay CS, Velásquez M, Fralick JA (2007) Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother 51(6):1934–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehdi Y, Letourneau-Montminy M-P, Gaucher M-L et al (2018) Use of antibiotics in broiler production: global impacts and alternatives. Anim Nutr 4(2):170–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendez J, Jofre J, Lucena F et al (2002) Conservation of phage reference materials and water samples containing bacteriophages of enteric bacteria. J Virol Methods 106(2):215–224

    Article  CAS  PubMed  Google Scholar 

  • Merabishvili M, De Vos D, Verbeken G et al (2012) Selection and characterization of a candidate therapeutic bacteriophage that lyses the Escherichia coli O104:H4 strain from the 2011 Outbreak in Germany. PLoS One 7(12):e52709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merabishvili M, Vervaet C, Pirnay JP et al (2013) Stability of Staphylococcus aureus Phage ISP after freeze-drying (lyophilization). PLoS One 8(7):e68797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao J, Pangule RC, Paskaleva EE et al (2011) Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32(36):9557–9567

    Article  CAS  PubMed  Google Scholar 

  • Micreos Food Safety BV. LISTEX™ product description. www.phageguard.com

  • Micreos Food Safety BV. Salmonellex™ product description. www.phageguard.com

  • Migueis S, Saraiva C, Esteves A (2017) Efficacy of LISTEX P100 at different concentrations for reduction of Listeria monocytogenes inoculated in sashimi. J Food Prot 80(12):2094–2098

    Article  CAS  PubMed  Google Scholar 

  • Miller RW, Skinner J, Sulakvelidze A et al (2010) Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian Dis. 54:33–40

    Article  PubMed  Google Scholar 

  • Millet S, Maertens L (2011) The European ban on antibiotic growth promoters in animal feed: from challenges to opportunities. Vet J 187(2):143–144

    Article  PubMed  Google Scholar 

  • Mirzaei MK, Nilsson AS (2015) Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS One 10(3):e0118557

    Article  CAS  Google Scholar 

  • Mohamed AA, Maqbool TK, Suresh KS (2003) Microbial quality of shrimp products of export trade produced from aquacultured shrimp. J Food Microbiol 82(3):213

    Article  Google Scholar 

  • Monjezi R, Tey BT, Sieo CC et al (2010) Purification of bacteriophage M13 by anion exchange chromatography. J Chromatogr B 878(21):1855–1859

    Article  CAS  Google Scholar 

  • Moriarty DJW (1998) Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 164(1–4):351–358

    Article  Google Scholar 

  • Morita M, Tanji Y, Mizoguchi K et al (2002) Characterization of a virulent bacteriophage specific for Escherichia coli O157:H7 and analysis of its cellular receptor and two tail fiber genes. FEMS Microbiol Lett 211(1):77–83

    Article  CAS  PubMed  Google Scholar 

  • Moxley RA, Smith DR (2010) Attaching-effacing Escherichia coli infections in cattle. Vet Clin North Am Food Anim Pract 26(1):29–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Muktar Y, Mamo G, Tesfaye B et al (2015) A review on major bacterial causes of calf diarrhea and its diagnostic method. J Vet Med Anim Health 7(5):173–185

    Article  Google Scholar 

  • Nair SV, Del Valle H, Gross PS et al (2005) Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate. Physiol Genomics 22:33–47

    Article  CAS  PubMed  Google Scholar 

  • Nakai T, Park SC (2002) Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol 153(1):13–18

    Article  PubMed  Google Scholar 

  • Nakai T, Sugimoto R, Park K et al (1999) Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Dis Aquat Organ 37:33–41

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa M, Akiba M, Sameshima T (1999) Swine as a potential reservoir of Shiga toxin-producing Escherichia coli O157:H7 in Japan. Emerg Infect Dis 5(6):833–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasukawa T, Uchiyama J, Taharaguchi S et al (2017) Virus purification by CsCl density gradient using general centrifugation. Arch Virol 162:3523

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Garcia F (2014) Escherichia coli O104:H4 pathogenesis: an enteroaggregative E. coli/Shiga toxin-producing E. coli explosive cocktail off high virulence. Microbiol Spectr 2(6)

    Google Scholar 

  • Nhung NT, Chansiripornchai N, Carrique-Mas JJ (2017) Antimicrobial resistance in bacterial poultry pathogens: a review. Front Vet Sci 4:126. https://doi.org/10.3389/fvets.2017.00126

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieth A, Verseux C, Barnert S et al (2015) A first step toward liposome-mediated intracellular bacteriophage therapy. Expert Opin Drug Deliv 12:1411–1424

    Article  PubMed  Google Scholar 

  • Niu YD, Johnson RP, Xu Y et al (2008) Host range and lytic capability of four bacteriophages against bovine and clinical human isolates of Shiga toxin-producing Escherichia coli O157:H7. J Appl Microbiol 107:645–656

    Google Scholar 

  • Nogueira F, Karumidze N, Kusradze I et al (2017) Immobilization of bacteriophage in wound-dressing nanostructure. Nanomedicine 13(8):2475–2484

    Article  CAS  PubMed  Google Scholar 

  • Norris AH (1990) Use of bacteriophages to inhibit dental caries. US Patent US4957686A

    Google Scholar 

  • Notcovich S, deNicolo G, Williamson NB et al (2016) The ability of four strains of Streptococcus uberis to induce clinical mastitis after intramammary inoculation in lactating cows. N Z Vet J 64(4):218–223

    Article  CAS  PubMed  Google Scholar 

  • Nyiendo J, Seidler RJ, Sandine WE et al (1974) Preparation and storage of high-titer lactic Streptococcus bacteriophages. Appl Microbiol 27(1):72–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oakley B, Lillehoj H, Kogut M et al (2014) The chicken gastrointestinal microbiome. FEMS Microbiol Lett 360(2):100–112. https://doi.org/10.1111/1574-6968.12608

    Article  CAS  PubMed  Google Scholar 

  • O’Flaherty S, Ross RP, Coffey A (2009) Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol Rev 33:801–819

    Article  CAS  PubMed  Google Scholar 

  • Oksanen HM, Domanska A, Bamford DH (2012) Monolithic ion exchange chromatographic methods for virus purification. Virology 434(2):271–277

    Article  CAS  PubMed  Google Scholar 

  • Oliveira A, Sereno R, Nicolau A, Azeredo J (2009) The influence of the mode of administration in the dissemination of three coliphages in chickens. Poult Sci 88:728–733

    Article  CAS  PubMed  Google Scholar 

  • Oliveira A, Sereno R, Azeredo J (2010) In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Vet Microbiol 146:303–308

    Article  PubMed  Google Scholar 

  • Oliveira J, Castilho F, Cunha A et al (2012) Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquacult Int 20:879–910

    Article  Google Scholar 

  • Opal SM (2010) Endotoxins and other sepsis triggers. Endotoxemia Endotoxin Shock Dis Diagn Ther 167:14–24

    Article  CAS  Google Scholar 

  • Pal M, Ketema A, Anberber M, Mulu S, Duuta Y (2016) Microbial quality of fish and fish products. Beverage Food World 43:46–49

    Google Scholar 

  • Park S, Nakai T (2003) Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis. Dis Aquat Organ 53:33–39

    Article  PubMed  Google Scholar 

  • Park SC, Shimamura I, Fukunaga M et al (2000) Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl Environ Microbiol 66:1416–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passport Food Safety Solutions. Finalyse product description. www.passportfoodsafety.com

  • Pearson HA, Sahukhal GS, Elasri MO et al (2013) Phage-bacterium war on polymeric surfaces; can surface-anchored bacteriophages eliminate microbial infections? Biomacromolecules 14(5):1257–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira C, Salvador S, Arrojado C et al (2011) Evaluating seasonal dynamics of bacterial communities in marine fish aquaculture: a preliminary study before applying phage therapy. J Environ Monit Home 13(4):1053–1058

    Article  CAS  Google Scholar 

  • Petersson-Wolfe CS, Currin J (2012) Streptococcus uberis—a practical summary for controlling mastitis. http://pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/DASC/DASC-8P/DASC-8P_pdf.pdf

  • Pirisi A (2000) Phage therapy-advantages over antibiotics? Lancet 2000(356):1418

    Article  Google Scholar 

  • Plaza N, Castillo D, Pérez-Reytor D et al (2018) Bacteriophages in the control of pathogenic vibrios. Electron J Biotechnol 31:24–33

    Article  CAS  Google Scholar 

  • Porter J, Anderson J, Carter L et al (2016) In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. J Dairy Sci 99(3):2053–2062

    Article  CAS  PubMed  Google Scholar 

  • Prasad Y, Arpana, Kumar D (2011) Lytic bacteriophages specific to Flavobacterium columnare rescue catfish, Clarias batrachus (Linn.) from columnaris disease. J Environ Biol 32(2):161–168

  • Puapermpoonsiri U, Ford SJ, van der Walle CF (2010) Stabilization of bacteriophage during freeze drying. Int J Pharm 389(1–2):168–175

    Article  CAS  PubMed  Google Scholar 

  • Rasool M, Mohammad S, Arezoo A (2014) Effect of different live foods source (Culex Larvae, Chironomus Larvae and Artemia) on pigmentation of electric yellow fish (Labidochromis Caeruleus). Int J Adv Biol Biomed Res 2(4):355–363

    Google Scholar 

  • Raya RR, Varey P, Oot RA et al (2006) Isolation and characterization of a new T-even bacteriophage, CEV1, and determination of its potential to reduce Escherichia coli O157:H7 levels in sheep. Appl Environ Microbiol 72(9):6405–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raya RR, Oot RA, Moore-Maley B et al (2011) Naturally resident and exogenously applied T4-like and T5-like bacteriophages can reduce Escherichia coli O157:H7 levels in sheep guts. Bacteriophage 1(1):15–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhouma M, Fairbrother JM, Beaudry F et al (2017) Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies. Acta Vet Scand 59:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richards GP (2014) Bacteriophage remediation of bacterial pathogens in aquaculture: a review of the technology. Bacteriophage 4(4):e975540

    Article  PubMed  PubMed Central  Google Scholar 

  • Rios AC, Vila MMDC, Lima R et al (2018) Structural and functional stabilization of bacteriophage particles within the aqueous core of a W/O/W multiple emulsion: a potential biotherapeutic system for the inhalational treatment of bacterial pneumonia. Process Biochem 64:177–192

    Article  CAS  Google Scholar 

  • Rozema EA, Stephens TP, Bach SJ et al (2009) Oral and rectal administration of bacteriophages for control of Escherichia coli O157:H7 in feedlot cattle. J Food Prot 72(2):241–250

    Article  PubMed  Google Scholar 

  • Ryan EM, Gorman SP, Donnelly RF et al (2011) Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy. J Pharm Pharmacol 63:1253–1264

    Article  CAS  PubMed  Google Scholar 

  • Santos SB, Carvalho CM, Sillankorva S et al (2009) The use of antibiotics to improve phage detection and enumeration by the double-layer agar technique. BMC Microbiol 9:148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarhan WA, Azzazy HM (2017) Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity. Nanomedicine 12(17):2055–2067

    Article  CAS  PubMed  Google Scholar 

  • Schiewe MH, Trust TJ, Crosa JH (1981) Vibrio ordalii sp. nov.: a causative agent of vibriosis in fish. Curr Microbiol 6:343–348

    Article  Google Scholar 

  • Schmelcher M, Powell AM, Camp MJ et al (2015) Synergistic streptococcal phage λSA2 and B30 endolysins kill streptococci in cow milk and in a mouse model of mastitis. Appl Microbiol Biotechnol 99(20):8475–8486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwaiger K, Huther S, Holzel et al (2012) Prevalence of antibiotic-resistant Enterobacteriaceae isolated from chicken and pork meat purchased at the slaughterhouse and at retail in Bavaria, Germany, Int J Food Microbiol, 154:206-211.

    Article  PubMed  Google Scholar 

  • Scott J, Thompson-Mayberry P, Lahmamsi S et al (2008) Phage-associated mutator phenotype in group A streptococcus. J Bacteriol 190(19):6290–6301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seed KD, Yen M, Shapiro BJ et al (2014) Evolutionary consequences of intra-patient phage predation on microbial populations. Microbiol Infect Dis 3:e03497

    Google Scholar 

  • Sharif A, Muhammadand G, Sharif MA (2009) Mastitis in buffaloes. Pak J Zool Suppl Ser 9:479–490

    Google Scholar 

  • Sheng H, Knecht HJ, Kudva IT et al (2006) Application of bacteriophages to control intestinal Escherichia coli O157:H7 levels in ruminants. Appl Environ Microbiol 72(8):5359–5366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sillankorva SM, Oliveira H, Azeredo J (2012) Bacteriophages and their role in food safety. Int J Microbiol 2012:863945

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva E, Figueiredo A, Miranda F et al (2014a) Control of Listeria monocytogenes growth in soft cheeses by bacteriophage P100. Braz J Microbiol. 45(1):11–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva YJ, Costa L, Pereira C et al (2014b) Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production. PLoS One 9(12):e114197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singer RS, Hofacre CL (2006) Potential impacts of antibiotic use in poultry production. Avian Dis 50(2):161–172

    Article  PubMed  Google Scholar 

  • Singh S, Yadav AS, Singh SM, Bharti P (2010) Prevalence of Salmonella in chicken eggs collected from poultry farms and marketing channels and their antimicrobial resistance. Food Res Int 43:2027–2030

    Article  CAS  Google Scholar 

  • Singla S, Harjai K, Raza K et al (2016) Phospholipid vesicles encapsulated bacteriophage: a novel approach to enhance phage biodistribution. J Virol Methods 236:68–76

    Article  CAS  PubMed  Google Scholar 

  • Skaradzińska A, Śliwka P, Kuźmińska-Bajor M et al (2017) The efficacy of isolated bacteriophages from pig farms against ESBL/AmpC-producing Escherichia coli from pig and turkey farms. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00530

  • Skurnik M, Strauch E (2006) Phage therapy: facts and fiction. Int J Med Microbiol 296:5–14

    Article  CAS  PubMed  Google Scholar 

  • Skurnik M, Pajunen M, Kiljunen S (2007) Biotechnological challenges of phage therapy. Biotechnol Lett 29(7):995–1003

    Article  CAS  PubMed  Google Scholar 

  • Smith HW, Huggins MB (1983) Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J Gen Microbiol 129(8):2659–2675

    CAS  PubMed  Google Scholar 

  • Soffer N, Abuladze T, Woolston J, Li M et al (2016) Bacteriophages safely reduce Salmonella contamination in pet food and raw pet food ingredients. Bacteriophage 6(3):e1220347. https://doi.org/10.1080/21597081.2016.1220347

    Article  PubMed  PubMed Central  Google Scholar 

  • Soni KA, Nannapaneni R (2010) Bacteriophage significantly reduces Listeria monocytogenes on raw salmon fillet tissue. J Food Prot 73(1):32–38

    Article  PubMed  Google Scholar 

  • Sordillo LM, Streicher KL (2002) Mammary gland immunity and mastitis susceptibility. Mammary Gland Biol Neoplasia 7(2):135–146

    Article  Google Scholar 

  • Sorensen MC, Gencay YE, Brik T et al (2015) Primary isolation strain determines both phage type and receptors recognized by Campylobacter jejuni bacteriophages. PLoS One 10(1):e0116287

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorensen MC, Gencay YE, Brondsted L (2017) Methods of initial characterisation of Campylobacter jejuni bacteriophages. Methods Mol Biol 1512:91–105

    Article  PubMed  Google Scholar 

  • Stanford K, Niu YD, Johnson R (2010) Oral delivery systems for encapsulated bacteriophages targeted at Escherichia coli O157:H7 in feedlot cattle. J Food Prot 73:1304–1312

    Article  CAS  PubMed  Google Scholar 

  • Steele PR, Davies JD, Greaves RI (1969) Some factors affecting the viability of freeze-thawed T4 bacteriophage. II. The influence of certain electrolytes on the degree of inactivation. J Hyg 67(4):679–690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stern NJ, Clavero MR, Bailey JS, Cox NA, Robach MC (1995) Campylobacter spp. in broilers on the farm and after transport. Poult Sci 74:937–941

    Article  CAS  PubMed  Google Scholar 

  • Stevenson RMW, Airdrie DW (1984) Isolation of Yersinia ruckeri bacteriophages. Appl Environ Microbiol 47:1201–1205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subharthi P (2015) Phage therapy an alternate disease control in aquaculture: a review on recent advancements. J Agric Vet Sci 8(9):68–81

    Google Scholar 

  • Sulakvelidze A, Kutter E (2005) Bacteriophage therapy in humans. In: Kutter E, Sulakvelidze A (eds) Bacteriophages—biology and applications. CRC, Boca Raton, pp 381–436

    Google Scholar 

  • Sulakvelidze A, Alavidze Z, Morris JG (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45(3):649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suojala L, Kaartinen L, Pyörälä S (2013) Treatment for bovine Escherichia coli mastitis—an evidence-based approach. J Vet Pharmacol Ther 36(6):521–531

    Article  CAS  PubMed  Google Scholar 

  • Surh J, Mun S, McClements DJ (2007) Preparation and characterization of water/oil and water/oil/water emulsions containing biopolymer-gelled water droplets. J Agric Food Chem 55(1):175–184

    Article  CAS  PubMed  Google Scholar 

  • Svircev A, Roach D, Castle A (2018) Framing the future with bacteriophages in agriculture. Viruses 10(5):218

    Article  PubMed Central  CAS  Google Scholar 

  • Swaminathan J, Ehrhardt C (2012) Liposomal delivery of proteins and peptides. Expert Opin Drug Deliv 9(12):1489–1503

    Article  CAS  PubMed  Google Scholar 

  • Switt AIM, den Bakker HC, Vongkamjan K et al (2013) Salmonella bacteriophage diversity reflects host diversity on dairy farms. Food Microbiol 36(2):275–285

    Article  PubMed  PubMed Central  Google Scholar 

  • Szermer-Olearnik B, Boratyński J (2015) Removal of endotoxins from bacteriophage preparations by extraction with organic solvents. PLoS One 10(3):e0122672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szweda P, Schielmann M, Frankowska A et al (2014) Antibiotic resistance in Staphylococcus aureus strains isolated from cows with mastitis in Eastern Poland and analysis of susceptibility of resistant strains to alternative nonantibiotic agents: lysostaphin, nisin and polymyxin B. J Vet Med Sci 76(3):355–362

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi H, Matsui Y, Sugihara H et al (2005) Effectiveness of submicron-sized, chitosan-coated liposomes in oral administration of peptide drugs. Int J Pharm 303:160–170

    Article  CAS  PubMed  Google Scholar 

  • Thompson FL, Iida T, Swings J (2004) Biodiversity of vibrios. Microbiol Mol Biol Rev 68(3):403–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JR, Marcelino L, Polz MF (2005) Diversity, sources and detection of human bacterial pathogens in the marine environment. In: Belkin S, Colwell RR (eds) Oceans and health: pathogens in the marine environment. Springer, New York, pp 29–69

    Chapter  Google Scholar 

  • Thompson FL, Barash Y, Sawabe T et al (2006) Thalassomonas loyana sp. nov., a causative agent of the white plague-like disease of corals on the Eilat coral reef. Int J Syst Evol Microbiol 56:365–368

    Article  CAS  PubMed  Google Scholar 

  • Tie K, Yuan Y, Yan S et al (2018) Isolation and identification of Salmonella Pullorum bacteriophage YSP2 and its use as a therapy for chicken diarrhea. Virus Genes. https://doi.org/10.1007/s11262-018-1549-0

    Article  CAS  PubMed  Google Scholar 

  • Tindall BJ, Grimont PA, Garrity GM et al (2005) Nomenclature and taxonomy of the genus Salmonella. Int J Syst Evol Microbiol 55:521–524

    Article  CAS  PubMed  Google Scholar 

  • Tithi SS, Aylward FO, Jensen RV et al (2018) FastViromeExplorer: a pipeline for virus and phage identification and abundance profiling in metagenomics data. PeerJ 6:e4227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomley FM, Shirley MW (2009) Livestock infectious diseases and zoonoses. Philos Trans R Soc B 364:2637–2642

    Article  Google Scholar 

  • Toranzo AE, Magariños B, Romalde JL (2005) A review of the main bacterial fish diseases in mariculture systems. Aquaculture 246:37–61

    Article  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  CAS  PubMed  Google Scholar 

  • Torro H, Price SB, McKee S et al (2005) Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens. Avian Dis 49:118–124

    Article  Google Scholar 

  • Urakami T, Kawaguchi AT, Akai S et al (2009) In vivo distribution of liposome-encapsulated hemoglobin determined by positron emission tomography. Artif Organs 33(2):164–168

    Article  CAS  PubMed  Google Scholar 

  • U.S. FDA/CFSAN: Agency Response Letter, GRAS Notice No. 000198

    Google Scholar 

  • U.S. FDA/CFSAN: Agency Response Letter, GRAS Notice No. 000218

    Google Scholar 

  • Vadstein O (1997) The use of immunostimulation in marine larviculture: possibilities and challenges. Aquaculture 155:401–417

    Article  Google Scholar 

  • Van Belleghem JD, Merabishvili M, Vergauwen B et al (2017) A comparative study of different strategies for removal of endotoxins from bacteriophage preparations. J Microbiol Methods 132:153–159

    Article  CAS  PubMed  Google Scholar 

  • Van Twest R, Kropinski AM (2009) Bacteriophage enrichment from water and soil. Methods Mol Biol 501:15–21

    Article  CAS  PubMed  Google Scholar 

  • Vandenheuvel D, Singh A, Vandersteegen K et al (2013) Feasibility of spray drying bacteriophages into respirable powders to combat pulmonary bacterial infections. Eur J Pharm Biopharm 84(3):578–582

    Article  CAS  PubMed  Google Scholar 

  • Ventola CL (2015) The antibiotic resistance crisis: Part 1: Causes and threats. Pharm Ther 40(4):277–283

    Google Scholar 

  • Vinod MG, Shivu MM, Umesha KR et al (2006) Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture 255:117–124

    Article  CAS  Google Scholar 

  • Vonasek E, Le P, Nitin N (2014) Encapsulation of bacteriophages in whey protein films for extended storage and release. Food Hydrocoll 37:7–13

    Article  CAS  Google Scholar 

  • Waddell T, Mazzocco A, Johnson R et al. (2000) Control of Escherichia coli O157: H7 infection of calves by bacteriophages. In: 4th International symposium and workshop on Shiga toxin (verocytotoxin)-producing Escherichia coli (VTEC 2000) Kyoto, Japan [abstract]

    Google Scholar 

  • Wagenaar JA, Van Bergen MAP, Mueller MA et al (2005) Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet Microbiol 109:275–283

    Article  PubMed  Google Scholar 

  • Wang MS, Nitin N (2014) Rapid detection of bacteriophages in starter culture using water-in-oil-in-water emulsion microdroplets. Appl Microbiol Biotechnol 98(19):8347–8355

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Zhao T, Doyle MP (1996) Fate of enterohemorrhagic Escherichia coli O157:H7 in bovine feces. Appl Environ Microbiol 62(7):2567–2570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Su W, Li Q et al (2013) Preparation and evaluation of lidocaine hydrochloride-loaded TAT-conjugated polymeric liposomes for transdermal delivery. Int J Pharm 441(1–2):748–756

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Wang Z, Yan Z et al (2015) Bovine mastitis Staphylococcus aureus: antibiotic susceptibility profile, resistance genes and molecular typing of methicillin-resistant and methicillin-sensitive strains in China. Infect Genet Evol 31:9–16

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Sauvageau D, Elias A (2016) Immobilization of active bacteriophages on polyhydroxyalkanoate surfaces. ACS Appl Mater Interfaces 8(2):1128–1138

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Qu K, Li X et al (2017a) Use of bacteriophages to control Escherichia coli O157:H7 in domestic ruminants, meat products, and fruits and vegetables. Foodborne Pathog Dis 14(9):483–493

    Article  PubMed  Google Scholar 

  • Wang Y, Barton M, Elliott L et al (2017b) Bacteriophage therapy for the control of Vibrio harveyi in greenlip abalone (Haliotis laevigata). Aquaculture 473:251–258

    Article  CAS  Google Scholar 

  • Watts JL (1988) Etiological agents of bovine mastitis. Vet Microbiol 16(1):41–66

    Article  CAS  PubMed  Google Scholar 

  • Weber B, Chen C, Milton DL (2010) Colonization of fish skin is vital for Vibrio anguillarum to cause disease. Environ Microbiol Rep 2:133–139

    Article  CAS  PubMed  Google Scholar 

  • Weber-Dąbrowska B, Mulczyk M, Górski A (2000) Bacteriophage therapy of bacterial infections: an update of our Institute’s experience. Arch Immunol Ther Exp 48:547–551

    Google Scholar 

  • Weber-Dąbrowska B, Jończyk-Matysiak E, Żaczek M (2016) Bacteriophage procurement for therapeutic purposes. Front Microbiol 7:1177

    PubMed  PubMed Central  Google Scholar 

  • Wegener CH (2003) Ending the use of antimicrobial growth promoters is making a difference. ASM News 69(9):443–448

    Google Scholar 

  • Wegener HC, Hald T, Wong DLF et al (2003) Salmonella control programs in Denmark. Emerg Infect Dis 9:774–780

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinberger A, Tsai FC, Koenderink GH et al (2013) Gel-assisted formation of giant unilamellar vesicles. Biophys J 105:154–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wernicki A, Nowaczek A, Urban-Chmiel R (2017) Bacteriophage therapy to combat bacterial infections in poultry. Virol J 14:179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • WHO (2014) Antimicrobial resistance: global report on surveillance. Geneva, Switzerland. http://apps.who.int/iris/bitstream/handle/10665/112642/9789241564748_eng.pdf;jsessionid=65F6A8EF1812569D6B168B927A5A2070?sequence=1

  • Wójcik EA, Wojtasik A, Górecka E et al (2015) Application of bacteriophage preparation BAFASAL® in boiler chickens experimentally exposed to Salmonella spp. Proteon Pharmaceuticals S.A.

    Google Scholar 

  • Wu JL, Lin HM, Jan L et al (1981) Biological control of fish pathogen, Aeromonas hydrophila, by bacteriophage AH1. Fish Pathol 15:271–276

    Article  Google Scholar 

  • Yasumoto S, Kuzuya Y, Yasuda M et al (2006) Oral immunization of common carp with a liposome vaccine fusing koi herpes antigen. Fish Pathol 41(4):141–145

    Article  CAS  Google Scholar 

  • Yeh Y, de Moura FH, Van Den Broek K et al (2018) Effect of ultraviolet light, organic acids and bacteriophage on Salmonella populations in ground beef. Meat Sci 139:44–48

    Article  CAS  PubMed  Google Scholar 

  • Zhang H (2017) Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol Biol 1522:17–22

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Li W, Liu W et al (2013) T4-like phage Bp7, a potential antimicrobial agent for controlling drug-resistant Escherichia coli in chickens. Appl Environ Microbiol 79(18):5559–5565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Cao Z, Li Z et al (2015a) Effect of bacteriophages on Vibrio alginolyticus infection in the sea cucumber Apostichopus japonicus (Selenka). J World Aquac Soc 46:149–158

    Article  CAS  Google Scholar 

  • Zhang J, Li Z, Cao Z et al (2015b) Bacteriophages as antimicrobial agents against major pathogens in swine: a review. J Anim Sci Biotechnol 6(1):1–7

    Article  CAS  Google Scholar 

  • Zimmer M, Scherer S, Loessner MJ (2002a) Genomic analysis of Clostridium perfringens bacteriophage phi3626, which integrates into guaA and possibly affects sporulation. J Bacteriol 184:4359–4368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer M, Vukov N, Scherer S, Loessner MJ (2002b) The murein hydrolase of the bacteriophage phi3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl Environ Microbiol 68:5311–5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Węgrzyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kosznik-Kwaśnicka, K. et al. (2019). The Use of Bacteriophages in Animal Health and Food Protection. In: Górski, A., Międzybrodzki, R., Borysowski, J. (eds) Phage Therapy: A Practical Approach. Springer, Cham. https://doi.org/10.1007/978-3-030-26736-0_9

Download citation

Publish with us

Policies and ethics