Skip to main content

Encapsulation of Listeria Phage A511 by Alginate to Improve Its Thermal Stability

  • Protocol
  • First Online:
Bacteriophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1681))

Abstract

Microencapsulation is a versatile method for enhancing the stability of bacteriophages under harsh conditions, such as those which occur during thermal processing. For food applications, encapsulation in food-grade polymer matrices is desirable owing to their nontoxicity and low cost. Here, we describe the encapsulation of Listeria phage A511 using sodium alginate, gum arabic, and gelatin to maximize its viability during thermal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lim L-T (2015) Encapsulation of bioactive compounds using electrospinning and electrospraying technologies, Nanotechnology and functional foods. Wiley, Hoboken, NJ, pp 297–317

    Google Scholar 

  2. Hussain MA, Liu H, Wang Q, Zhong F, Guo Q, Balamurugan S (2017) Use of encapsulated bacteriophages to enhance farm to fork food safety. Crit Rev Food Sci Nutr 57:2801–2810

    Article  CAS  PubMed  Google Scholar 

  3. Kolanowski W, Laufenberg G, Kunz B (2004) Fish oil stabilisation by microencapsulation with modified cellulose. Int J Food Sci Nutr 55(4):333–343

    Article  CAS  PubMed  Google Scholar 

  4. Hategekimana J, Masamba KG, Ma J, Zhong F (2015) Encapsulation of vitamin E: effect of physicochemical properties of wall material on retention and stability. Carbohydr Polym 124:172–179

    Article  CAS  PubMed  Google Scholar 

  5. Chowdhuri S, Cole CM, Devaraj NK (2016) Encapsulation of living cells within giant phospholipid liposomes formed by the inverse-emulsion technique. Chembiochem 17(10):886–889

    Article  CAS  PubMed  Google Scholar 

  6. Zhou Y, Lim LT (2009) Activation of lactoperoxidase system in milk by glucose oxidase immobilized in electrospun polylactide microfibers. J Food Sci 74(2):C170–C176

    Article  CAS  PubMed  Google Scholar 

  7. Moomand K, Lim L-T (2015) Properties of encapsulated fish oil in electrospun zein fibres under simulated in vitro conditions. Food Bioprocess Technol 8(2):431–444

    Article  CAS  Google Scholar 

  8. Kailasapathy K (2002) Microencapsulation of probiotic bacteria: technology and potential applications. Curr Issues Intest Microbiol 3(2):39–48

    CAS  PubMed  Google Scholar 

  9. Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J R Soc Interface 11(100):20140817

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dembczynski R, Jankowski T (2002) Growth characteristics and acidifying activity of Lactobacillus rhamnosus in alginate/starch liquid-core capsules. Enzym Microb Technol 31(1–2):111–115

    Article  CAS  Google Scholar 

  11. Gerez CL, Font de Valdez G, Gigante ML, Grosso CR (2012) Whey protein coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505 to low pH. Lett Appl Microbiol 54(6):552–556

    Article  CAS  PubMed  Google Scholar 

  12. Jiang T, Singh B, Maharjan S, Li H-S, Kang S-K, Bok J-D et al (2014) Oral delivery of probiotic expressing M cell homing peptide conjugated BmpB vaccine encapsulated into alginate/chitosan/alginate microcapsules. Eur J Pharm Biopharm 88(3):768–777

    Article  CAS  PubMed  Google Scholar 

  13. Lee KY, Heo TR (2000) Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl Environ Microbiol 66(2):869–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma Y, Pacan JC, Wang Q, Xu Y, Huang X, Korenevsky A et al (2008) Microencapsulation of bacteriophage felix O1 into chitosan-alginate microspheres for oral delivery. Appl Environ Microbiol 74(15):4799–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Annan NT, Borza AD, Hansen LT (2008) Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Res Int 41(2):184–193

    Article  CAS  Google Scholar 

  16. Stanford K, McAllister TA, Niu YD, Stephens TP, Mazzocco A, Waddell TE et al (2010) Oral delivery systems for encapsulated bacteriophages targeted at Escherichia coli O157:H7 in feedlot cattle. J Food Prot 73(7):1304–1312

    Article  CAS  PubMed  Google Scholar 

  17. Tang Z, Huang X, Baxi S, Chambers JR, Sabour PM, Wang Q (2013) Whey protein improves survival and release characteristics of bacteriophage Felix O1 encapsulated in alginate microspheres. Food Res Int 52(2):460–466

    Article  CAS  Google Scholar 

  18. Speaker TJ, Clark HF, Moser CA, Offit PA, Campos M, Frenchick PJ (2001) Aqueous solvent based encapsulation of a bovine herpes virus type-1 subunit vaccine. Patent EP0873752B1, European Patent register.

    Google Scholar 

  19. Korehei R, Kadla JF (2014) Encapsulation of T4 bacteriophage in electrospun poly(ethylene oxide)/cellulose diacetate fibers. Carbohydr Polym 100:150–157

    Article  CAS  PubMed  Google Scholar 

  20. Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP (2009) Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol 501:69–76

    Article  CAS  PubMed  Google Scholar 

  21. Radford DR, Ahmadi H, Leon-Velarde CG, Balamurugan S (2016) Propagation method for persistent high yield of diverse Listeria phages on permissive hosts at refrigeration temperatures. Res Microbiol 167(8):685–691

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Agriculture and Agri-Food Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balamurugan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ahmadi, H., Wang, Q., Lim, LT., Balamurugan, S. (2018). Encapsulation of Listeria Phage A511 by Alginate to Improve Its Thermal Stability. In: Clokie, M., Kropinski, A., Lavigne, R. (eds) Bacteriophages. Methods in Molecular Biology, vol 1681. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7343-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7343-9_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7341-5

  • Online ISBN: 978-1-4939-7343-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics