Skip to main content

Lentil (Lens culinaris Medik.) Diversity, Cytogenetics and Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Legumes

Abstract

Lentil (Lens culinaris Medik. ssp. culinaris) is one of the oldest cultivated plants that originated from L. culinaris Medik.ssp. orientalis in the Near East arc and Asia Minor. This cool season legume crop is an excellent food source to provide energy, proteins and iron in the human diet. Most lentil-growing countries have a shared objective of higher and more stable seed yield, which often entails breeding for adaptation to abiotic and biotic stresses, which otherwise cause a substantial reduction in crop yield and production. Lentil domestication and selection over thousands of years led to the low amount of genetic variation in the current cultivated species and this scarcity in genetic variability represents a major constraint for lentil breeding. Thus far, lentil breeders have been successful in improving some easily manageable monogenic traits using conventional breeding techniques of selection and recombination. However, these conventional techniques are insufficient to address economic traits like seed yield due to polygenic inheritance and genotype-environment interaction. Other species of the genus Lens are important sources of genetic variation for breeding key traits into new lentil varieties. Induced mutagenesis is a powerful breeding tool and can greatly supplement the availability of lentil genomic resources. Impressive progress in applications of biotechnological innovations in the utilization of genetic resources for lentil genetic improvement will further accelerate the development of improved varieties. This chapter provides an overview on present status of lentil genetic improvement and summarizes the various important aspects of lentil diversity, cytogenetic and breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahloowalia BS, Maluszynski M (2001) Induced mutations – a new paradigm in plant breeding. Euphytica 118:167–173

    Article  CAS  Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation derived varieties. Euphytica 135(2):187–204

    Article  Google Scholar 

  • Akcay UC, Mahmoudian M, Kamci H et al (2009) Agrobacterium tumefaciens-mediated genetic transformation of a recalcitrant grain legume, lentil (Lens culinaris Medik.). Plant Cell Rep 28:407–417. https://doi.org/10.1007/s00299-008-0652-4

    Article  CAS  PubMed  Google Scholar 

  • Aldemir S, Ateş D, Temel HY et al (2017) QTLs for iron concentration in seeds of the cultivated lentil (Lens culinaris Medic.) via genotyping by sequencing. Turk J Agric For 41:243–255

    Article  CAS  Google Scholar 

  • Ali M, Gupta S (2012) Carrying capacity of Indian agriculture: pulse crops. Curr Sci 102:874–881

    Google Scholar 

  • Al-Qurainy F, Khan S (2009) Mutagenic effects of sodium azide and its application in crop improvement. World Appl Sci J 6(12):1589–1601

    CAS  Google Scholar 

  • Amin R, Laskar RA, Khan S (2015) Assessment of genetic response and character association for yield and yield components in lentil (Lens culinaris L.) population developed through chemical mutagenesis. Cogent Food Agric 1:1000715. https://doi.org/10.1080/23311932.2014.1000715

    Article  CAS  Google Scholar 

  • Andrews M, Mckenzie BA (2007) Adaptation and ecology. In: Yadav SS, McNeil DL, Stevenson PC (eds) Lentil-an ancient crop for modern times. Springer, Dordrecht, pp 23–32

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9(3):208–218

    Article  CAS  Google Scholar 

  • Asnake F, Bejiga G (2003) Breeding lentil for wider adaptation in forage and food legumes of Ethiopia: progress and prospects. In: Kemal A, Gemechu K, Seid A et al (eds) Proceedings of the workshop on food and forage legumes. EIAR and ICARDA, Aleppo/Addis Ababa, pp 80–86

    Google Scholar 

  • Ates D, Aldemir S, Alsaleh A et al (2018a) A consensus linkage map of lentil based on DArT markers from three RIL mapping populations. PLoS One 13(1):e0191375. https://doi.org/10.1371/journal.pone.0191375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ates D, Aldemir S, Yagmur B et al (2018b) QTL mapping of genome regions controlling manganese uptake in lentil seed. G3 Genes Genomes Genet. https://doi.org/10.1534/g3.118.200259

  • Atif RM, Patat-Ochatt EM, Svabova L et al (2013) Gene transfer in legumes. In: Lüttge U, Beyschlag W, Francis D, Cushman J (eds) Progress in botany, vol 74. Springer, Berlin/Heidelberg, pp 37–100. https://doi.org/10.1007/978-3-642-30967-0_2

    Chapter  Google Scholar 

  • Auerbach C (1965) Past achievements and future task of research in chemical mutagenesis. Proc 11th Int Cong Genet 2:275–284

    Google Scholar 

  • Auerbach C, Robson JM (1942) Experiments on the action of mustard gas in Drosophila, production of sterility and mutation. RepMinistSupp 3979

    Google Scholar 

  • Azadbakht L, Kimiagar M, Mehrabi Y et al (2007) Dietary soya intake alters plasma antioxidant status and lipid peroxidation in postmenopausal women with the metabolic syndrome. Brit J Nutrit 98:807–813

    CAS  PubMed  Google Scholar 

  • Bagheri A, Omraan VG, Hatefi S (2012) Indirect in vitro regeneration of lentil (Lens culinaris Medik.). J Plant Mol Breed 1:43–50

    Google Scholar 

  • Bajaj YP, Dhanju MS (1979) Regeneration of plants from apical meristem tips of some legumes. Curr Sci 84(20):906–907

    Google Scholar 

  • Barbana C, Boye JI (2011) Angiotensin I-converting enzyme inhibitory properties of lentil protein hydrolysates: determination of the kinetics of inhibition. Food Chem 127:94–101

    Article  CAS  Google Scholar 

  • Baum M, Erskine W, Ramsay G (1997) Biotechnology and genetic resource of grain legumes: lentil and faba beans. In: Watanabe KN, Pehu E (eds) Plant biotechnology and plant genetic resource for sustainability and productivity. RG Landes Company/Academic Press Inc, Austin, pp 117–132

    Google Scholar 

  • Bejiga G (2006) Lens culinaris Medik. In: Brink M, Belay G (eds) Plant resources of tropical Africa, Cereals and pulses, vol 1. Prota Foundation/Backhuys Publishers/CTA, Leiden/Wageningen, pp 91–96

    Google Scholar 

  • Bejiga G, Tessema T (1981) Identification on the optimum time of emasculation and pollination to increase percentage of hybrid seed set in chickpea. J Agric Sci 3:129–134

    Google Scholar 

  • Bermejo C, Espósito M, Cravero V et al (2012) In vitro plant regeneration from cotyledonary nodes of recombinant inbred lines of lentil. Sci Hortic 134:13–19. https://doi.org/10.1016/j.scienta.2011.11.029

    Article  CAS  Google Scholar 

  • Bermejo C, Gatti I, Cointry E (2016) In vitro embryo culture to shorten the breeding cycle in lentil (Lens culinaris Medik). Plant Cell Tissue Organ Cult. https://doi.org/10.1007/s11240-016-1065-7

  • Bett K, Ramsay L, Chan C et al (2016) The lentil genome – from the sequencer to the field. In: International conference on pulses, Marrakesh, Morocco, 18–20 April, Abstract

    Google Scholar 

  • Bhat TA, Wani AA (2017) Mutagenic effects on meiosis in legumes and a practical case study of Vicia faba L. In: Bhat T, Wani A (eds) Chromosome structure and aberrations. Springer Nature, New Delhi, pp 219–244

    Chapter  Google Scholar 

  • Bhat TA, Khan AH, Parveen S (2007) Spectrum and frequency of chlorophyll mutations induced by MMS, gamma rays and their combinations in two varieties of Vicia faba L. Asian J Plant Sci 6(3):558–561

    Article  Google Scholar 

  • Bhosle SS, Kothekar VS (2010) Mutagenic efficiency and effectiveness in cluster bean (Cyamopsis tetragonoloba (L ) Taub ). J Phytol 2(6):21–27

    Google Scholar 

  • Bind D, Dwivedi VK, Singh SK (2016) Induction of chlorophyll mutations through physical and chemical mutagenesis in cowpea [Vigna unguiculata (L ) Walp]. Int J Adv Res 4(2):49–53

    CAS  Google Scholar 

  • Blixt S, Mossberg R (1967) Studies of induced mutations in peas, XX A preliminary test of the mutagenicity of different chemicals. Agric Hort Genet 25:105–111

    CAS  Google Scholar 

  • Boye JI, Roufik S, Pesta N, Barbana C (2010) Angiotensin I-converting enzyme inhibitory properties and SDS-PAGE of red lentil protein hydrolysates. LWT-Food Sci Technol 43:987–991

    Article  CAS  Google Scholar 

  • Branch WD (2002) Variability among advanced gamma-irradiation induced large seeded mutant breeding lines in the ‘Georgia Brown’ peanut cultivar. Plant Breed 121:275–277

    Article  Google Scholar 

  • Brock RD (1965) Induced mutations affecting quantitative characters. In: The use of induced mutations in plant breeding. Rad Bot (Suppl) 5:451–464

    Google Scholar 

  • Canci H, Cagirgan MI, Toker C (2004) Genotypic variation for root and shoot growth at seedling stage in chickpea mutants. Int Chickpea Pigeonpea Newsl 11:11–12

    Google Scholar 

  • Chhabra G, Chaudhary D, Varma M et al (2008) TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.). Physiol Mol Biol Plants 14:347–353. https://doi.org/10.1007/s12298-008-0033-z

    Article  CAS  PubMed  Google Scholar 

  • Chhun T, Taketa S, Tsurumi S, Ichii M (2003) Interaction between two auxinresistant mutants and their effects on lateral root formation in rice (Oryza sativa L.). J Exp Bot 393:2701–2708

    Article  CAS  Google Scholar 

  • Chopra VL (2005) Mutagenesis, investigating the process and processing the outcome for crop improvement. Curr Sci 89(2):353–359

    CAS  Google Scholar 

  • Chopra R, Prabhakar A, Saini R (2011) The role of thidiazuron on somatic embryogenesis in lentil (Lens culinaris Medik). Ann Agri Bio Res J Agri Bio Res 16:1–5

    Google Scholar 

  • Chowrira GM, Akella V, Fuerst PE, Lurquin PF (1996) Transgenic grain legumes obtained by in plant a electroporation-mediated gene transfer. Mol Biotechnol 5:85–96. https://doi.org/10.1007/bf02789058

    Article  CAS  PubMed  Google Scholar 

  • Cokkizgin A, Shtaya MJY (2013) Lentil: origin, cultivation techniques, utilization and advances in transformation. Agric Sci 1(1):55–62

    Google Scholar 

  • Crujeiras AB, Parra D, Abete I, Martinez JA (2007) A hypocaloric diet enriched in legumes specifically mitigates lipid peroxidation in obese subjects. Free Radic Res 41:498–506

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Cruz CA, González-Arnao MT, Engelmann F (2013) Biotechnology and conservation of plant biodiversity. Resources 2:73–95. https://doi.org/10.3390/resources2020073

    Article  Google Scholar 

  • Cubero JI (1981) Origin, taxonomy and domestication. In: Webb C, Hawtin GC (eds) Lentils. Commonwealth Agricultural Bureau, Slough, pp 15–38

    Google Scholar 

  • Cubero JI, Perez De La Vega M, Frantini R (2009) Origin, phylogeny, domestication and spread. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) Lentil – botany, production and uses. CABI, Wallingford, pp 13–33

    Chapter  Google Scholar 

  • Das SK, Shethi KJ, Hoque MI, Sarker RH (2012) Agrobacteriummediated genetic transformation in lentil (Lens culinaris Medik.) followed by in vitro flowering and seed formation. Plant Tissue Cult Biotechnol 22:13–26. https://doi.org/10.3329/ptcb.v22i1.11243

    Article  Google Scholar 

  • Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171

    Article  CAS  PubMed  Google Scholar 

  • David S, Mukandala L, Mafuru J (2002) Seed availability, an ignored factor in crop varietal adoption studies: a case study of beans in Tanzania. J Sustain Agric 21:5–20

    Article  Google Scholar 

  • De Vries H (1901) Die mutation theorie. Viet and Co, Leipzig. Obit. Blakeslee AF (1935) Hugo de Vries 1848–1935. Science 81:581–582

    Google Scholar 

  • Desouky O, Ding N, Zhou G (2015) Targeted and non-targeted effects of ionizing radiation. J Radiat Res Appl Sci 8:247–254

    Article  CAS  Google Scholar 

  • Dhuppar P, Biyan S, Chintapalli B, Rao S (2012) Lentil crop production in the context of climate change: an appraisal. Indian Res J Ext Educ 2:33–35

    Google Scholar 

  • Dixit P, Dubey DK (1986) Karyotype study in lentil. LENS Newsl 13(1):8–10

    Google Scholar 

  • Donini P, Sonnino A (1998) Induced mutation in plant breeding. In: Jain SM, Dar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutation in crop plants: current and future outlook. Kluwer Academic Publishers, Netherlands, pp 255–292

    Chapter  Google Scholar 

  • Duke JA (1981) Handbook of legumes of world economic importance. Plenum Press, New York, pp 52–57

    Book  Google Scholar 

  • Duran Y, Fratini R, Garcia P, De la Vega MP (2004) An intersubspecific genetic map of Lens. Theor Appl Genet 108:1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Encheva J (2009) Creating sunflower mutant lines (Helianthus annuus L.) using induced mutagenesis. Bulg J Agric Sci 15:109–118

    Google Scholar 

  • Erskine W, Adham Y, Holly L (1989) Geographic distribution of variation in quantitative characters in a world lentil collection. Euphytica 43:97–103

    Article  Google Scholar 

  • Erskine W, Chandra S, Chaudhury M et al (1998) A bottleneck in lentil: widening the genetic base in South Asia. Euphytica 101:207–211

    Article  Google Scholar 

  • Esmaillzadeh A, Azadbakht L (2012) Legume consumption is inversely associated with serum concentrations of adhesion molecules and inflammatory biomarkers among Iranian women. J Nutr 142:334–339

    Article  CAS  PubMed  Google Scholar 

  • Eujayl I, Baum M, Powell W et al (1998) A genetic linkage map of lentil (Lens sp) based on RAPD and AFLP markers using recombinant inbred lines. Theor Appl Genet 97:83–89

    Article  CAS  Google Scholar 

  • FAO (2009) How to feed the world in 2050. FAO, Rome

    Google Scholar 

  • FAO (2011) Save and grow- a policy maker’s guide to the sustainable intensification of smallholder crop production. FAO, Rome

    Google Scholar 

  • FAO (2018) Production share of lentils by region. FAOSTAT www.fao.org/statistics/

  • Faris MAE, Takruri HR, Issa AY (2013) Role of lentils (Lens culinaris L.) in human health and nutrition: a review. Mediterr J Nutr Metab 6(1):3–16

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress effects, mechanisms and management. Agron Sustain Dev 29(1):185–212

    Article  Google Scholar 

  • Ferguson M (2000) Lens spp: conserved resources, priorities for collection and future prospects. In: Knight R (ed) Proceedings of the third international food legumes research conference: linking research and marketing opportunities for pulses in the 21st century. Current plant science and biotechnology in agriculture, vol 34, Adelaide, Australia, September 22–26, 1997. Kluwer Academic Publishers, Dordrecht, pp 613–620

    Google Scholar 

  • Ferguson ME, Erskine W (2001) Lentils (Lens L.). In: Maxted N, Bennett SJ (eds) Plant genetic resources of legumes in the Mediterranean. KluwerAcademic Publishers, Dordrecht, pp 132–157

    Google Scholar 

  • Ferguson M, Ford-Lloyd BV, Robertson LD et al (1998) Mapping the geographical distribution of genetic variation in the genus Lens for the enhanced conservation of plant genetic diversity. Mol Ecol 7:1743–1755

    Article  Google Scholar 

  • Ferguson ME, Maxted N, Van Slageren M, Robertson LD (2000) A re-assessment of the taxonomy of Lens Mill. (Leguminosae, Papilionoideae, Vicieae). Bot J Linn Soc 133:41–59

    Article  Google Scholar 

  • Fiala JV, Tullu A, Banniza S et al (2009) Interspecies transfer of resistance to anthracnose in lentil (Lens culinaris Medik.). Crop Sci 49:825–830. https://doi.org/10.2135/cropsci2008.05.0260

    Article  Google Scholar 

  • Ford R, Rubeena RRJ et al (2007) Lentil. In: Kole C (ed) Genome mapping and molecular breeding in plants: pulses, sugar and tuber crops, vol 3. Springer, Berlin/Heidelberg, pp 91–108

    Chapter  Google Scholar 

  • Fratini RM, de la Vega MP, Sánchez MLR (2014) Lentil. In: Singh M, Bisht IS, Dutta M (eds) Broadening the genetic base of grain legumes. Springer, New Delhi, pp 115–148

    Google Scholar 

  • Gaffarzadeh-Namazi L, Asghari-Zakaria R, Babaeian N, Kazemi-Tabar K (2007) Comparative study of chromosome morphology and C-banding patterns in several genotypes of Lens culinaris. Pak J Biol Sci 10:1811–1816

    Article  CAS  PubMed  Google Scholar 

  • Gaikwad NB, Kothekar VS (2004) Mutagenic effectiveness and efficiency of ethylmethane sulphonate and sodium azide in lentil (Lens culinaris Medik.). Indian J Genet 64(1):73–74

    Google Scholar 

  • Gatti I, Guindón F, Bermejo C et al (2016) In vitro tissue culture in breeding programs of leguminous pulses: use and current status. Plant Cell Tissue Organ Cult 127(3):543–559. https://doi.org/10.1007/s11240-016-1082-6

    Article  CAS  Google Scholar 

  • Gaul H (1964) Mutations in plant breeding. Radiat Bot 4:155–232

    Article  Google Scholar 

  • Gaul H (1965) The concept of macro and micromutations in barley. Rad Bot (Suppl) 5:407–428

    Google Scholar 

  • Girija M, Dhanavel D (2009) Mutagenic effectiveness and efficiency of gamma rays, ethylmethane sulphonate and their combined treatments in cowpea (Vigna unguiculata (L.) Walp). Global J Mol Sci 4(2):68–75

    CAS  Google Scholar 

  • Goodspeed TB (1929) The effects of X-rays and radium on species of genus Nicotiana. J Hered 20:243–259

    Article  Google Scholar 

  • Gottschalk W (1978a) The dependence of the penetrance of mutant genes on environment and genotypic background. Genetics 49:21–29

    Google Scholar 

  • Gottschalk W (1978b) Prospects and limits of mutation breeding. Indian Agric 22:65–69

    Google Scholar 

  • Gottschalk W (1986) Experimental mutagenesis in plant breeding. In: Prasad AB (ed) Mutagenesis: basic and applied. Print House, Lucknow, pp 81–96

    Google Scholar 

  • Gottschalk W, Wolff G (1983) Induced mutations in plant breeding. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Goyal S, Khan S (2010a) Induced mutageneis in urdbean (Vigna mungo L. Hepper): a review. Int J Bot 6(3):194–206

    Article  Google Scholar 

  • Goyal S, Khan S (2010b) Differential response of single and combined treatment in moist seeds of urdbean. Indian J Bot Res 6(1/2):183–188

    Google Scholar 

  • Goyal S, Khan S, Alka PR (2009) A comparison of mutagenic effectiveness and efficiency of EMS, SA and gamma rays in mungbean. Indian J Appl Pure Biol 24(1):125–128

    Google Scholar 

  • Greene EA, Codomo CA, Taylor NE et al (2003) Spectrum of chemically induced mutations from a large scale reverse - genetic screen in Arabidopsis. Genetics 164:731–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grover IS, Tejpaul SK (1982) Cytogenetical effects of gamma rays and maleic hydrazide in mung bean. Acta Bot Ind 10:210–216

    Google Scholar 

  • Gulati A, Schryer P, McHughen A (2002) Production of fertile transgenic lentil (Lens culinaris Medik.) plants using particle bombardment. In Vitro Cell Dev Biol Plant 38:316–324. https://doi.org/10.1079/ivp2002303

    Article  CAS  Google Scholar 

  • Gupta PK, Bahl JR (1983) Cytogenetics and origin of some pulse crops. In: Swaminathan MS, Gupta PK, Sinha U (eds) Cytogenetics of crop plants. Macmillan India, New Delhi, pp 405–440

    Google Scholar 

  • Gupta PK, Singh J (1981) Standard karyotype in lentil var. Pant L-639. LENS (Lentil Experimental News Service) 8:23

    Google Scholar 

  • Gupta D, Taylor PWJ, etal IP (2012) IntegrationofEST-SSRmarkersofMedicago truncatula intointraspecificlinkage mapoflentilandidentificationofQTLconferringresistancetoascochytablightatseedlingandpod stages. Mol Breed 30:429–439

    Article  CAS  Google Scholar 

  • Gustafsson A (1947) Mutations in agricultural plants. Hereditas 33:1–99

    Article  Google Scholar 

  • Hamwieh A, Udupa SM, Choumane W et al (2005a) A genetic linkage map of Lens sp based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor Appl Genet 110:669–677

    Article  CAS  PubMed  Google Scholar 

  • Hamwieh A, Udupa S, Choumane W et al (2005b) A genetic linkage map of Lens sp. Based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor Appl Genet 110:669–677. https://doi.org/10.1007/s00122-004-1892-5

    Article  CAS  PubMed  Google Scholar 

  • Hamwieh A, Udupa SM, Sarker A et al (2009) Development of new microsatellite markers and their application in the analysis of genetic diversity in lentils. Breed Sci 59:77–86. https://doi.org/10.1270/jsbbs.59.77

    Article  CAS  Google Scholar 

  • Han W, Yu KN (2010) Ionizing radiation, DNA double strand break and mutation. In: Urbano KV (ed) Advances in genetics research, vol 4. Nova Science Publishers Inc, Hauppauge, pp 1–13

    Google Scholar 

  • Handro W (1981) Mutagenesis and in vitro selection. In: Thorpe TA (ed) Plant tissue culture. Academic Press Inc, New York, pp 155–179

    Chapter  Google Scholar 

  • Harlan J (1992) Crops and man. American Society of Agronomy, Madison

    Google Scholar 

  • Harlan JR, De Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Havey MJ, Muehlbauer FJ (1989) Linkages between restrictions fragment length, isozyme and morphological markers in lentil. Theor Appl Genet 77:395–401. https://doi.org/10.1007/bf00305835

    Article  CAS  PubMed  Google Scholar 

  • Helbeck H (1963) Late Cypriote vegetable diet in Apliki. Act Instit Athen Reg Sueciae Ser 4(8):171–186

    Google Scholar 

  • Helbeck H (1970) The plant industry in Hacilar. In: Mellart J (ed) Excavations at Hacilar. Occas. Pub Brit Inst Archael, Ankara Edinburgh Univ Press 1(9):189–244

    Google Scholar 

  • Hopf M (1962) Bericht Uber die Untersuchung von Samen und Holzkohlenresten von der Argissa- Magula aus den prakermischen bis mittelbronzezeitlichen Schichten. In: Milojcic V, Boessneck J, Hopf M (eds) Die Deutschen Ausgrabungen auf der Argissa-Magula in Thessalien. I. Rudolf Habelt Verlag, Bonn, pp 101–119

    Google Scholar 

  • Ilbas AI, Eroglu Y, Eroglu HE (2005) Effect of the application of different concentrations of SA for different times on the morphological and cytogenetic characteristics of barley (Hordeum vulgare L.) seedling. Acta Bot Sin 47:1101–1106

    CAS  Google Scholar 

  • Jain SM (2002) Feeding the world with induced mutations and biotechnology. In: Proceedings of the international nuclear conference on global trends and perspectives seminar 1: agriculture and bioscience. MINT, Bangi, pp 1–14

    Google Scholar 

  • Jankowicz-Cieslak J, Tai TH, Kumlehn J, Till BJ (2017) Biotechnologies for plant mutation breeding: protocol. International Atomic Energy Agency, Vienna

    Book  Google Scholar 

  • Javed MA, Khatri A, Khan IA et al (2000) Utilization of gamma irradiation for the genetics improvement of oriental mustard (Brassica juncea Coss). Pak J Bot 32:77–83

    Google Scholar 

  • Kahraman A, Kusmenoglu I, Aydin N, Aydogan A, Erskine W, Muehlbauer FJ (2004) QTL mapping of winter hardness genes in lentil. Crop Sci 44:13–22

    Article  CAS  Google Scholar 

  • Kamble GC, Patil AS (2014) Comparative mutagenicity of EMS and gamma radiation in wild chickpea. Int J Sci Technol 3:166–180

    Google Scholar 

  • Kaul MLH (1989) Mutation research in dilemma. In: Bir SS, Saggo MIS (eds) Perspectives in plant sciences in India. Today and TomorrowPub, New Delhi, pp 93–108

    Google Scholar 

  • Kaul MLH, Nirmala C (1999) Biotechnology Miracle or Mirage IV. In vivo and in vitro mutagenesis. In: Siddiqui BA, Khan S (eds) Breeding in crop plants mutations and in vitro mutation breeding. Kalyani Publishers, Ludhiana, pp 80–88

    Google Scholar 

  • Kay D (1979) Food legumes tropical development and research institute (TPI). In: TPI Crop and Product Digest, vol 3. Tropical Products Institute, London, pp 48–71

    Google Scholar 

  • Kebeish R, Deef HE, El-Bialy N (2015) Effect of gamma radiation on growth, oxidative stress, antioxidant system, and Alliin producing gene transcripts in Allium sativum. Int J Res Stud Biosci 3(3):161–174

    Google Scholar 

  • Khan S (1990) Studies on chemical mutagenesis in mungbean (Vigna radiata (L.) Wilczek). Ph.D. Thesis, Aligarh Muslim University, Aligarh

    Google Scholar 

  • Khan S (1997) Concepts in mutagenesis. In: Siddiqui BA, Khan S (eds) Plant breeding advances and in vitro culture. CBS Pub, New Delhi, pp 98–107

    Google Scholar 

  • Khan S, Siddiqui BA (1992a) Effect of selection for improvement of quantitative characters in mutated population of mungbean (Vigna radiata (L.) Wilczek). J Indian Bot Soc 71:69–71

    Google Scholar 

  • Khan S, Siddiqui BA (1992b) Mutagenic effectiveness and efficiency of chemical mutagens in Vigna radiata (L.) Wilczek. Thai J Agric Sci 25:291–297

    CAS  Google Scholar 

  • Khan MH, Tyagi SD (2010) Studies on effectiveness and efficiency of gamma rays, EMS and their combination in soybean (Glycine max (L.) Merrill). J Plant Breed Crop Sci 2(3):55–58

    CAS  Google Scholar 

  • Khan S, Wani MR, Parveen K (2006) Sodium azide induced high yielding early mutant in lentil. Agric Sci Dig 26(1):65–66

    Google Scholar 

  • Khan S, Parveen K, Goyal S (2011) Induced mutations in chickpea-morphological mutants. Front Agric China 5(1):35–39

    Article  Google Scholar 

  • Kharkwal MC (1996) Accomplishments of mutation breeding in crop improvement in India. In: Sachdev MS, Sachdev P, Deb DL (eds) Isotopes and radiations in agriculture and environment research. Indian Society for Nuclear Techniques in Agriculture and Biology. Nuclear Research Laboratory, IARI, New Delhi, pp 196–218

    Google Scholar 

  • Kharkwal MC (1998) Induced mutations in chickpea (Cicer arietinum L.) I. Comparative mutagenic effectiveness and efficiency of physical and chemical mutagens. Indian J Genet 58(2):159–167

    CAS  Google Scholar 

  • Khatib F, Makris A, Yamaguchi-Shinozaki K et al (2011) Expression of the DREB1A gene in lentil (Lens culinaris Medik. subsp culinaris) transformed with the Agrobacterium system. Crop Past Sci 62:488–495. https://doi.org/10.1071/cp10351

    Article  CAS  Google Scholar 

  • Khazaei H, Caron CT, Fedoruk M, Diapari M, Vandenberg A, Coyne CJ, McGee R, Bett KE (2016) Genetic diversity of cultivated lentil (Lens culinaris Medik.) and its relation to the World’s agro-ecological zones. Front Plant Sci 7:1093. https://doi.org/10.3389/fpls.2016.01093

    Article  PubMed  PubMed Central  Google Scholar 

  • Khentry Y, Wang SH, Ford R (2014) In vitro propagation of six parental lentil (Lens culinaris ssp. culinaris) genotypes. US Open Agric J 1:1–8. http://arepub.com/Journals.php

    Google Scholar 

  • Khorramdelazad M, Bar I, Whatmore P et al (2018) Transcriptome profiling of lentil (Lens culinaris) through the first 24 hours of Ascochyta lentis infection reveals key defence response genes. BMC Genomics 19:108. https://doi.org/10.1186/s12864-018-4488-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khosh-Khui M, Niknejad M (1972) Plant height and width inheritance and their correlation with some of the yield components in chickpea. J Agric Sci 78:37–38

    Article  Google Scholar 

  • Kodym A, Afza R (2003) Physical and chemical mutagenesis. Methods Mol Biol 236:189–203

    CAS  PubMed  Google Scholar 

  • Konzak CF, Nilan RA, Wagner J, Foster RJ (1965) Efficient chemical mutagenesis. Radiat Bot 5:49–70

    Google Scholar 

  • Kozgar MI, Wani MR, Tomlekova NB, Khan S (2014) Induced mutagenesis in edible crop plants and its impact on human beings. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis-exploring novel genes and pathways. Wageningen Academic Publishers, Netherlands, pp 167–182

    Chapter  Google Scholar 

  • Kumar S, Bejiga G, Ahmed S et al (2010) Genetic improvement of grass pea for low neurotoxin (b-ODAP) content. Food Chem Toxicol 49:589–600

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Hamweih A, Manickavelu A et al (2014) Advances in lentil genomics. In: Gupta S, Nadarajan N, Gupta DS (eds) Legumes in omics era. Springer Science Business Media, New York, pp 111–130

    Chapter  Google Scholar 

  • Kumar S, Rajendran K, Kumar J et al (2015) Current knowledge in lentil genomics and its application for crop improvement. Front Plant Sci 6:1–13. https://doi.org/10.3389/fpls.2015.00078

    Article  Google Scholar 

  • Ladizinsky G (1979) The origin of lentil and its wild genepool. Euphytica 28:179–187

    Article  Google Scholar 

  • Ladizinsky G (1992) Crossability relations. Monogr Theor Appl Genet 16:15–31

    Article  Google Scholar 

  • Ladizinsky G (1997) A new species of Lens from south-east Turkey. Bot J Linn Soc 123:257–260

    Google Scholar 

  • Ladizinsky G (1999) Identification of the lentil wild genetic stock. Genet Resour Crop Evol 46:115–118

    Article  Google Scholar 

  • Ladizinsky G, Abbo S (1993) Cryptic speciation in Lens culinaris. Genet Resour Crop Evol 40:1–5

    Article  Google Scholar 

  • Ladizinsky G, Braun D, Goshen D, Muehlbauer FJ (1984) The biological species of the genus Lens. Bot Gaz 154:253–261

    Article  Google Scholar 

  • Laskar RA, Khan S (2014) Mutagenic effects of MH and MMS on induction of variability in broad bean (Vicia faba L.). Ann Res Rev Biol 4(7):1129–1140

    Article  Google Scholar 

  • Laskar RA, Khan S (2017) Assessment on induced genetic variability and divergence in the mutagenized lentil populations of microsperma and macrosperma cultivars developed using physical and chemical mutagenesis. PLoS One 12(9):e0184598. https://doi.org/10.1371/journal.pone.0184598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskar RA, Khan H, Khan S (2015a) Chemical mutagenesis: theory and practical application in Vicia faba L. Lap Lambert Academic Publishing, Germany

    Google Scholar 

  • Laskar RA, Khan S, al KS (2015b) Quantitative analysis of induced phenotypic diversity in chickpea using physical and chemical mutagenesis. J Agron 14(3):102–111

    Article  CAS  Google Scholar 

  • Laskar RA, Laskar AA, Raina A et al (2018a) Induced mutation analysis using biochemical and molecular characterization of high yielding lentil mutant lines. Int J Biol Macromol 109:167–179

    Article  CAS  PubMed  Google Scholar 

  • Laskar RA, Chaudhary C, Khan S, Chandra A (2018b) Induction of mutagenized tomato populations for investigation on agronomic traits and mutant phenotyping. J Saudi Soc Agric Sci 17:51–60

    Google Scholar 

  • Laskar RA, Wani MR, Raina A et al (2018c) Morphological characterization of gamma rays induced multipoddingmutant (mp) in lentil cultivar Pant L 406. Int J Radiat Biol. https://doi.org/10.1080/09553002.2018.1511927

  • Lavania UC, Lavania S (1983) Karyotype studies in Indian pulses. Genet Agrar 37:299–308

    Google Scholar 

  • Lombardi M, Materne M, Cogan NOI et al (2014) Assessment of genetic variation within a global collection of lentil (Lens culinaris Medik,) cultivars and landraces using SNP markers. BMC Genet 15:150. https://doi.org/10.1186/s12863-014-0150-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Lurquin PF, Cai Z, Stiff CM, Fuerst EP (1998) Half-embryo cocultivation technique for estimating the susceptibility of pea (Pisum sativum L.) and lentil (Lens culinaris Medik.) cultivars to Agrobacterium tumefaciens. Mol Biotechnol 9:175–179. https://doi.org/10.1007/BF02760819

    Article  CAS  PubMed  Google Scholar 

  • Mahandjiev A, Kosturkova G, Mihov M (2001) Enrichment of Pisum sativum gene resources through combine use of physical and chemical mutagens. Israel J Plant Sci 49(4):279–284

    Google Scholar 

  • Mahmoudian M, Yucel M, Oktem HA (2002) Transformation of lentil (Lens culinaris M) cotyledonary nodes by vacuum infiltration of Agrobacterium tumefaciens. Plant Mol Biol Report 20:251–257. https://doi.org/10.1007/bf02782460

    Article  Google Scholar 

  • Maluszynski M (2001) Officially released mutant varieties -the FAO/IAEA Database. Plant Cell Tissue Organ Cult 65:175–177

    Article  Google Scholar 

  • Maluszynski M, Ahloowalia BS, Sigurbijornsson B (1995) Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85:303–315

    Article  Google Scholar 

  • Maluszynski M, Szarejko I, Maluszynska J (2004) Mutation techniques. Encycl Appl Plant Sci 1–3:186–201

    Google Scholar 

  • Manju P, Gopimony R (2009) Anjitha – a new okra variety through induced mutation in interspecific hybrids of Abelmoschus spp. In: Shu QY (ed) Induced plant mutation in the genomic era. FAO, Rome, pp 87–90

    Google Scholar 

  • Materne M, McNeil D (2007) Breeding methods and achievements. In: Yadav SS, McNeil D, Stevenson PC (eds) Lentil: an ancient crop for modern times. Spinger, Dordrecht, pp 241–253

    Chapter  Google Scholar 

  • Materne M, Siddique KHM (2009) Agroecology and crop adaptation. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) The lentil – botany, production and uses. CABI, Wallingford, pp 47–63

    Chapter  Google Scholar 

  • Mba C (2013) Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy 3:200–231

    Article  Google Scholar 

  • Mba C, Guimaraes EP, Ghosh K (2012) Re-orienting crop improvement for the changing climatic conditions of the 21st century. Agric Food Secur 1:7

    Article  Google Scholar 

  • Mehandjiev A (2005) Role of experimental mutagenesis for genetic improvement of peas and soybean. In: Datta SK (ed) Role of classical mutation breeding in crop improvement. Daya Publishing House, Delhi, pp 73–98

    Google Scholar 

  • Micke A (1988) Genetic improvement of grain legumes using induced mutations. In: Improvement of grain legume production using induced mutations. IAEA, Vienna, pp 1–51

    Google Scholar 

  • Micke A (1995) Radiation mutagenesis for genetic improvement of plants. In: Sharma B, Kulshreshtha VP, Gupta N, Mishra SK (eds) Genetic research and education: current trends and the next fifty years. Indian Society of Genetics and Plant Breeding, New Delhi, pp 1129–1142

    Google Scholar 

  • Micke A (1999) Mutations in plant breeding. In: Siddiqui BA, Khan S (eds) Breeding in crop plants mutations and in vitro mutation breeding. Kalyani Publishers, Ludhiana, pp 1–19

    Google Scholar 

  • Mishra SK, Sharma B, Sharma SK (2007) Genetics and cytogenetics of lentil. In: Yadav SS, McNeil DL, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Dordecht, pp 187–208

    Chapter  Google Scholar 

  • Mobini SH, Lulsdorf M, Warkentin TD, Vandenberg A (2014) Plant growth regulators improve in vitro flowering and rapid generation advancement in lentil and faba bean. In Vitro Cell Dev Biol Plant 51(1):71–79. https://doi.org/10.1007/s11627-014-9647-8

    Article  CAS  Google Scholar 

  • Mohamed MF, Read PE, Coyne DP (1992) Plant regeneration from in vitro culture of embryonic axis explants in common and tepary beans. J AmSoc Hort Sci 117:332–336

    Article  Google Scholar 

  • Mohan D, Mathur VL (2015) Efficiency and effectiveness of chemical mutagens in black gram [Vigna mungo (L) Hepper]. Ann Biol 31(1):58–63

    Google Scholar 

  • Momin KC, Gonge VS, Dalal SR, Bharad SG (2012) Radiation induced variability studies in chrysanthemum under net house. Asian J Hortic 7(2):524–527

    Google Scholar 

  • Mondal S, Petwal VC, Badigannavara AM et al (2017) Electron beam irradiation revealed genetic differences in radio-sensitivity and generated mutants in groundnut (Arachis hypogaea L.). Appl Rad Isotopes 122:78–83

    Article  CAS  Google Scholar 

  • Muehlbauer FJ (1992) Use of introduced germplasm in cool-season food legume cultivar development. In: Shands HL, Weisner LE (eds) Use of plant introductions in cultivar development. Part 2. Crop Science Society of America (CSSA) Special Publication, vol 20. CSSA, Madison, pp 49–73

    Google Scholar 

  • Muehlbauer FJ, McPhee KE (2005) Lentil (Lens culinaris Medik.). In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering and crop improvement. CRC Press, Taylor & Francis Group, Boca Raton, pp 219–230

    Google Scholar 

  • Muehlbauer FJ, Slinkard AE, Wilson VE (1980) Lentil. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. Amer Soc Agron, Madison, pp 417–426

    Google Scholar 

  • Muehlbauer FJ, Cubero JI, Summerfield RJ (1985) Lentil (Lens culinarisMedik.). In: Summerfield RJ, Roberts EH (eds) Grain legume crops. Collins, London, pp 266–311

    Google Scholar 

  • Muehlbauer FJ, Kaiser WJ, Clement SL, Summerfield RJ (1995) Production and breeding of lentil. Adv Agron 54:283–332

    Article  Google Scholar 

  • Muehlbauer FJ, Cho S, Sarker A et al (2006) Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147:149–165

    Article  Google Scholar 

  • Muehlbauer FJ, Mihov MA, Vandenberg A et al (2009) Improvement in developed countries. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) Lentil-botany, production and uses. CABI, Wallingford, pp 137–154

    Chapter  Google Scholar 

  • Muller HJ (1927) Artificial transmutation of genes. Science 66:84–144

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, Annai T, Okabe A et al (2011) Mutation breeding of soybean in Japan. In: Khan S, Kozgar MI (eds) Breeding of pulse crops. Kalyani Publishers, Ludhiana, pp 55–84

    Google Scholar 

  • Natarajan AT (2005) Chemical mutagenesis: from plants to humans. Curr Sci 89(2):312–317

    CAS  Google Scholar 

  • Nene YL (2006) Indian Pulses through the millennia. Asian Agric Hist 10:179–202

    Google Scholar 

  • Novak FJ, Brunner H (1992) Plant breeding induced mutation technology for crop improvement. IAEA Bull 4:25–33

    Google Scholar 

  • Oktem H, Mahmoudian M, Yucel M (1999) GUS gene delivery and expression in lentil cotyledonary nodes using particle bombardment. LENS Newsl 26:3–6

    Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N et al (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16

    Article  CAS  Google Scholar 

  • Omran VG, Bagheri A, Moshtaghi N (2008) Direct in vitro regeneration of lentil (Lens culinaris Medik). Pak J Biol Sci 11:2237–2242. https://doi.org/10.3923/pjbs.2008.2237.2242

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir S (2002) Grain legume crops. Hasad Publishing, Istanbul

    Google Scholar 

  • Özdemir FA, Türker M (2014) In vitro plant regeneration influence by BAP and IBA in lentils (Lens culinaris Medik). J Appl Biol Sci 8:22–27

    Google Scholar 

  • Parry MA, Madgwick PJ, Bayon C et al (2009) Mutation discovery for crop improvement. J Exp Bot 60(10):2817–2825

    Article  CAS  PubMed  Google Scholar 

  • Patil A, Taware SP, Raut VM (2004) Induced variation in quantitative traits due to physical (γ rays), chemical (EMS) and combined mutagen treatments in soybean [Glycine max (L.) Merrill]. Soybean Genet Newsl 31:1–6

    Google Scholar 

  • Perry JA, Wang TL, Welham TJ et al (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume (Lotus japonicas). Plant Physiol 131:866–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polanco MC, Pelaez MI, Ruiz ML (1988) Factors affecting callus and shoot formation from in vitro cultures of Lens culinaris Medik. Plant Cell Tissue Organ Cult 15(2):175–182

    Article  Google Scholar 

  • Pundir RP, Reddy KN (1984) Comparison of cross-pollination methods in chickpea. Int Chickpea Newslet 11:9–11

    Google Scholar 

  • Rahman MM, Sarker A, Kumar S et al (2009) Breeding for short season environments. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) Lentil – botany, production and uses. CABI, Wallingford, pp 121–136

    Chapter  Google Scholar 

  • Raina A, Laskar RA, Khursheed S et al (2017) Induce physical and chemical mutagenesis for improvement of yield attributing traits and their correlation analysis in chickpea. Int Let Nat Sci 61:14–22

    Google Scholar 

  • Rajput MA, Sarwar G, Siddiqui KA (2001) Development of high yielding mutants in lentil. Mut Breed Newsl 45:35

    Google Scholar 

  • Ranalli P (2012) The role of induced plant mutations in the present era. In: Kozgar MI, Khan S (eds) Induced mutagenesis in crop plants: bioremediation, biodiversity and bioavailability.special issue 6(1):1–5

    Google Scholar 

  • Rapoport IA (1966) Peculiarities and mechanisms of action of supermutagens. Supermutagens Publishing House, Nawka, pp 9–23

    Google Scholar 

  • Redden B, Maxted N, Furman B, Coyne C (2007) Lens biodiversity. In: Yadav SS, McNeil DL, Stevenson PC (eds) Lentil: an ancient crop for modern times. Springer, Dordrecht, pp 11–22

    Chapter  Google Scholar 

  • Reddy VRK, Annadurai M (1992) Cytological effects of different mutagens in lentil (Lens culinaris Medik.). Cytologia 57:213–216

    Article  CAS  Google Scholar 

  • Reddy AA, Reddy GP (2010) Supply side constrains in production of pulses in India: a case study of lentil. Agric Econ Res Rev 23:129–136

    Google Scholar 

  • Renfrew JM (1969) The archaeological evidence for the domestication of plants: methods and problem. In: Ucko PJ, Dimbleby GW (eds) Domestication and exploitation of plants and animals. Aldine, Chicago

    Google Scholar 

  • Riaz A, Gul A (2015) Plant mutagenesis and crop improvement. In: Hakeem KR (ed) Crop production and global environmental issues. Springer International Publishing Switzerland, Cham, pp 181–210

    Chapter  Google Scholar 

  • Rizkalla SW, Bellisle F, Slama G (2002) Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and healthy individuals. Brit J Nutr 88:255–262

    Article  CAS  Google Scholar 

  • Rojo FP, Nyman RKM, Johnson AAT et al (2018) CRISPR-Cas systems: ushering in the new genome editing era. Bioengineered 9(1):214–221. https://doi.org/10.1080/21655979.2018.1470720

    Article  CAS  Google Scholar 

  • Rubeena FR, Taylor PWJ (2003) Construction of an intraspecific linkage map of lentil (Lens culinaris ssp. culinaris). Theor Appl Genet 107:910–916. https://doi.org/10.1007/s00122-003-1326-9

    Article  CAS  PubMed  Google Scholar 

  • Saha GB (2013) Radiation biology in physics and radiobiology of nuclear medicine. Springer Science + Business Media, New York. https://doi.org/10.1007/978-1-4614-4012-3

    Book  Google Scholar 

  • Saha GC, Sarker A, Chen W et al (2010a) Inheritance and linkage map positions of genes conferring resistance to stemphylium blight in lentil. Crop Sci 50:1831–1839

    Article  CAS  Google Scholar 

  • Saha GC, Sarker A, Chen W et al (2010b) Identification of markers associated with genes for rust resistance in Lens culinaris Medik. Euphytica 175:261–265

    Article  CAS  Google Scholar 

  • Saha S, Tullu A, Yuan HY et al (2015) Improvement of embryo rescue technique using 4-chloroindole- 3-acetic acid in combination with in vivo grafting to overcome barriers in lentil interspecific crosses. Plant Cell Tissue Organ Cult 120:109–116. https://doi.org/10.1007/s11240-014-0584-3

    Article  CAS  Google Scholar 

  • Saleem MY, Mukhtar Z, Cheema AA, Atta BM (2005) Induced mutation and in vitro techniques as a method to induce salt tolerance in Basmati rice (Oryza sativa L.). Int J Environ Sci Technol 2(2):141–145

    Article  CAS  Google Scholar 

  • Salnikova TV (1995) Achievements of chemical mutagenesis in the breeding of cultivated plants in the USSR. In: III. New Delhi (ed) Genetic research and education: current trends and the next fifty years, pp 1196–1209

    Google Scholar 

  • Sandhu JS, Singh S (2009) History and origin. In: Shyam S, Yadav DL, McNeil P, Stevenson C (eds) Lentil-an ancient crop for modern times. Springer, Dordrecht, pp 1–10

    Google Scholar 

  • Sari E, Bhadauria V, Ramsay L et al (2018) Defense responses of lentil (Lens culinaris) genotypes carrying non-allelic ascochyta blight resistance genes to Ascochyta lentis infection. PLoS One 13(9):e0204124. https://doi.org/10.1371/journal.pone.0204124.eCollection2018

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarker A, Erskine W (2006) Recent progress in the ancient lentil. J Agric Sci (Camb) 144:1–11

    Article  Google Scholar 

  • Sarker A, Sharma B (1989) Effect of mutagenesis on M1 parameters in lentil. LENS 16(2):8–10

    Google Scholar 

  • Sarker A, Aydin N, Aydogan A et al (2002) Winter lentils promise improved nutrition and income in West Asian Highlands. ICARDA Caravan 16:14–16

    Google Scholar 

  • Sarker RH, Mustafa BM, Biswas A et al (2003) In vitro regeneration in lentil (Lens culinaris Medik.). Plant Tissue Cult 13:155–163

    Google Scholar 

  • Sarker A, Aydogan A, Chandra S et al (2009) Genetic enhancement for yield and yield stability. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) Lentil-botany, production and uses. CABI, Wallingford, pp 102–120

    Chapter  Google Scholar 

  • Sarker RH, Subroto K, Hoque MI (2012) In vitro flowering and seed formation in lentil (Lens culinaris Medik.). In Vitro Cell Dev Biol Plant 48:446–452. https://doi.org/10.1007/s11627-012-9444-1

    Article  Google Scholar 

  • Sehirali S (1998) Grain legume crops. Ankara University, Faculty of Agricultural Engineering, Ankara 1089(314):435

    Google Scholar 

  • Sevimay CS, Khawar KM, Yuzbasioglu E (2005) Adventitious shoot regeneration from different explants of wild lentil (Lens culinaris subsp. orientalis). Biotechnol Biotechnol Equip 19(2):46–49. https://doi.org/10.1080/13102818.2005.10817189

    Article  Google Scholar 

  • SGSV (2017) Svalbardv Global Seed Vault 10 year technical and financial report 2007–2016. https://www.seedvault.no/documentsreports/

  • Shah TM, Mirza JI, Haq MA, Atta BM (2008) Induced genetic variability in chickpea (Cicer arietinumL.) II. Comparative mutagenic effectiveness and efficiency of physical and chemical mutagens. Pak J Bot 40(2):605–613

    CAS  Google Scholar 

  • Shams H, Tahbaz F, Entezari M, Abadi A (2008) Effects of cooked lentils on glycemic control and blood lipids of patients with type 2 diabetes. ARYA Athero J 3:215–218

    Google Scholar 

  • Sharma B (1985) Chemical mutagens. In: Advances in chromosome and cell genetics. Oxford and IBH Pub Co, New Delhi, pp 255–283

    Google Scholar 

  • Sharma B (2009) Genetics of economic traits. In: Erskine W, Muehlbauer FJ, Sarker A, Sharma B (eds) Lentil: botany, production and uses. CABI, Wallingford, pp 76–101

    Chapter  Google Scholar 

  • Sharpe AG, Ramsay L, Sanderson LA et al (2013) Ancient orphan crop joins modern era: gene based SNP discovery and mapping in lentil. BMC Genomics 14:192. https://doi.org/10.1186/1471-2164-14-192

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012) Plant mutation breeding and biotechnology. CABI, Wallingford

    Book  Google Scholar 

  • Siddiqui BA (1999) Mutagenesis- tools and techniques: a practical view. In: Siddiqui BA, Khan S (eds) Breeding in crop plants mutations and in vitro mutation breeding. Kalyani Publishers, Ludhiana, pp 20–34

    Google Scholar 

  • Siddiqui KA, Yousufzai MN (1988) Natural and induced variation for endomorphic traits in the tribe Triticeae. In: Proceeding of 7th Wheat Genet Symp. Cambridge, UK, pp 139–143

    Google Scholar 

  • Sikora P, Chawade A, Larsson M et al (2011) Mutagenesis as a tool in plant genetics, functional genomics and breeding. Int J Plant Genom 2011:314829

    Google Scholar 

  • Silim SN, Saxana MC, Singh KB (1993a) Adaptation of spring-sown chickpea to the Mediterranean basin II. Factors influencing yield under drought. Field Crop Res 34:137–141

    Article  Google Scholar 

  • Silim SN, Saxana MC, Erskine W (1993b) Adaptation of lentil to the Mediterranean environment II. Response to moisture supply. Exp Agric 29:112–118

    Google Scholar 

  • Sinclair TR, Vadez V (2012) The future of grain legumes in cropping systems. Crop Past 63:501–512

    Google Scholar 

  • Sindhu JS, Lal SB, Singh RP (1981) Studies on the factors determining crossing success in chickpea (Cicer arietinum). Pulse Crops Newsl 1:21–22

    Google Scholar 

  • Sindhu JS, Slinkard AE, Scoles GJ (1983) Studies on variation in Lens I. Karyotype. LENS 10(1):14

    Google Scholar 

  • Singh AK (2007) Mutagenic effectiveness and efficiency of gamma rays and ethylmethane sulphonate in mungbean. Madras Agric J 94(1–6):7–13

    Google Scholar 

  • Solanki IS, Sharma B (1994) Mutagenic effectiveness and efficiency of gamma rays, ethyl imine and N-nitroso-N-ethyl urea in macrosperma lentil (Lens culinaris Medik.). Indian J Genet 54:72–76

    CAS  Google Scholar 

  • Solanki IS, Sharma B (1999) Induction and isolation of morphological mutations in different damage groups in lentil (Lens culinaris Medik.). Indian J Genet 59(4):479–485

    Google Scholar 

  • Srinivasachar D, Mohandas TK (1971) Effect of the mutagens hydroxylamine, ethyl methane sulphonate and gamma rays separately and in combination on meiotic chromosomes. Caryologia 24(1):1–11

    Article  CAS  Google Scholar 

  • Stadler LJ (1928) Mutations in barley induced by X-rays and radium. Science 68:186–187

    Article  CAS  PubMed  Google Scholar 

  • Subroto KD, Kishwar JS, Hoque MI, Sarker RH (2012) Agrobacterium- mediated genetic transformation in lentil (Lens culinaris Medik.) followed by in vitro flowering and seed formation. Plant Tissue Cult Biotechnol 22(1):13–26. https://doi.org/10.3329/ptcb.v22i1.11243

    Article  Google Scholar 

  • Sultana T, Ghafoor A (2008) Genetic diversity in ex- situ conserved Lens culinaris for botanical descriptors, biochemical and molecular markers and identification of landraces from indigenous genet resource. Pak J Integr Plant Biol 50:484–490

    Article  CAS  Google Scholar 

  • Takruri HR, Issa AY (2013) Role of lentils (Lens culinaris L.) in human health and nutrition: a review. Mediterr J Nutr Metab 6(1):3–16

    Article  Google Scholar 

  • Taku K, Umegaki K, Sato Y et al (2007) Soy isoflavones lower serum total and LDL cholesterol in humans: A meta-analysis of 11 randomized controlled trials. Am J Clin Nutr 85:1148–1156

    Article  CAS  PubMed  Google Scholar 

  • Talame V, Bovina R, Sanguineti MC et al (2008) Till more, a resource for the discovery of chemically induced mutants in barley. J Plant Biotechnol 6:477–485

    Google Scholar 

  • Tanyolac B, Ozatay S, Kahraman A, Muehlbauer F (2010) Linkage mapping of lentil (Lens culinaris L.) genome using recombinant inbred lines revealed by AFLP, ISSR, RAPD and some morphologic markers. J Agric Biotech Sust Dev 2(1):1–6

    Google Scholar 

  • Tavallaie F, Ghareyazie B, Bagheri A, Sharma K (2011) Lentil regeneration from cotyledon explant bearing a small part of the embryo axis. Plant Tissue Cult and Biotechnol 21:169–180. https://doi.org/10.3329/ptcb.v21i2.10240

    Article  Google Scholar 

  • Temel HY, Gol D, Kahriman A, Tanyolac MB (2014) Single nucleotide polymorphism discovery through Illumina-based transcriptome sequencing and mapping in lentil. Turk J Agric For 38:1–19. https://doi.org/10.3906/tar-1409-70

    Article  CAS  Google Scholar 

  • Tivoli B, Baranger A, Avila CM et al (2006) Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica 147:223–253

    Article  Google Scholar 

  • Toker C (2009) A note on the evolution of kabuli chickpeas as shown by induced mutations in (Cicer reticulatum Ladizinsky). Genet Resour Crop Evol 56:7–12

    Article  Google Scholar 

  • Toker C, Yadav SS, Solanki IS (2007) Mutation breeding. In: Yadav SS, McNeil DL, Stevenson PC (eds) Lentil-an ancient crop for modern times. Springer, Dordrecht, pp 209–224

    Google Scholar 

  • Tomlekova NB (1998) The mechanism of resistance to (A. obtectus) in beans (P. vulguris L.). Agric Sci 5:19–21

    Google Scholar 

  • Tomlekova NB (2010) Induced mutagenesis for crop improvement in Bulgaria. Plant Mut Rep 2(2):1–32

    Google Scholar 

  • Tomlekova NB, Todorova V, Petkova V et al (2009) Creation and evaluation of induced mutants for pepper breeding programmes. In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, Rome, pp 187–190

    Google Scholar 

  • Tomlekova NB, Kozgar MI, Wani MR (2014) Mutagenesis-exploring novel genes and pathways. Wageningen Academic Publishers, Wageningen

    Book  Google Scholar 

  • Tullu A, Buchwaldt L, Warkentin T et al (2003) Genetics of resistance to anthracnose and identification of AFLP and RAPD markers linked to the resistance gene in PI 320937 germplasm of lentil (Lens culinaris Medikus). Theor Appl Genet 106:428–434

    Article  CAS  PubMed  Google Scholar 

  • Tullu A, Bett K, Banniza S et al (2013) Widening the genetic base of cultivated lentil through hybridization of Lens culinaris “Eston” and L. ervoides accession IG 72815. Can J Plant Sci 93:1037–1047. https://doi.org/10.4141/cjps2013-072

    Article  Google Scholar 

  • USDA (2010) Database for the oxygen radical absorbance capacity (ORAC) of selected foods, release 2. http://www.orac-info-portal.de/download/ORAC_R2.pdf

  • USDA (2017) Plants database. https://plants.usda.gov

  • Usharani KS, Kumar CRA (2015) Induced polygenic variability using combination treatment of gamma rays and ethyl methane sulphonate in blackgram (Vigna mungo (L.) Hepper). Afr J Biotechnol 14(20):1702–1709

    Article  CAS  Google Scholar 

  • van Harten AM (1998) Mutation breeding: theory and practical applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Van Zeist W, Bottema S (1971) Plant husbandry in early neolithic Nea Nikomedeia, Greece. Acta Bot Neerl 20:521–538

    Google Scholar 

  • Verma RP, Srivastava GK, Kumar G (1999) Comparative radiocytological studies in three varieties of Lens culinaris. J Cytol Genet 34(1):49–56

    Google Scholar 

  • Verma P, Sharma TR, Srivastava PS et al (2014) Exploring genetic variability within lentil (Lens culinaris Medik.) and a cross related legumes using a newly developed set of microsatellite markers. Mol Biol Rep 41:5607–5625. https://doi.org/10.1007/s11033-014-3431-z

    Article  CAS  PubMed  Google Scholar 

  • Vishnumittrre A (1974) The beginning of agriculture paleobotanical evidences in India. In: Hutchinson JB (ed) Evolutionary studies in world crop diversity and change in Indian Sub-continent. Cambridge University Press, Cambridge, pp 3–30

    Google Scholar 

  • Waghmare VN, Mehra RB (2000) Induced genetic variability for quantitative characters in grasspea (Lathyrus sativus L.). Indian J Genet 60(1):81–87

    Google Scholar 

  • Wani MR, Khan S (2006) Estimates of genetic variability in mutated populations and the scope of selection for yield attributes in (Vigna radiata (L.) Wilczek ). Egypt J Biol 8:1–6

    Google Scholar 

  • Wani MR, Kozgar MI, Tomlekova NB, Khan S (2014) Selection for polygenic variability in early mutant generations of mungbean (Vigna radiata (L.) Wilczek). In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis: exploring genetic diversity of crops. Academic Publishers, Wageningen, pp 213–232

    Chapter  Google Scholar 

  • Wardman P (2009) The importance of radiation chemistry to radiation and free radical biology. (The 2008 Silvanus Thompson memorial lecture). Brit J Radiol 82(974):89–104

    Article  CAS  PubMed  Google Scholar 

  • Wery J, Silim SN, Knights EJ et al (1994) Screening techniques and sources and tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica 73:73–83

    Article  Google Scholar 

  • Williams DJ, McHughen A (1986) Plant regeneration of the legume Lens culinaris Medik. (lentil) in vitro. Plant Cell Tissue Organ Cult 7:149–153

    Article  Google Scholar 

  • Xiong H, Guo H, Xie Y et al (2016) Enhancement of dwarf wheat germplasm with high-yield potential derived from induced mutagenesis. Plant Genet Resour 16:1–8

    Google Scholar 

  • Yankova V, Sovkova-Bobcheva S (2009) Studying of bean varieties (Phaseolus vulgaris L.) reaction to bean weevil infestation (Acanthoscelides obtectus Say). Ann RepBean Improv Coop 52:144–145

    Google Scholar 

  • Zamir D, Ladizinsky G (1984) Genetics of allozyme variants and linkage groups in lentil. Euphytica 33:329–336. https://doi.org/10.1007/bf00021129

    Article  CAS  Google Scholar 

  • Zhang J, Guo D, Chang Y et al (2007) Non-random distribution of TDNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J 49:947–959

    Article  CAS  PubMed  Google Scholar 

  • Zohary D (1972) The wild progenitor and the place of origin of the cultivated lentil Lens culinaris. Econ Bot 26:326–332

    Article  Google Scholar 

  • Zohary D (1976) Lentil. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 163–164

    Google Scholar 

  • Zohary D (1996) The mode of domestication of the founder crops of the Southwest Asian agriculture and pastoralism in Eurasia. University College London Press, London, pp 142–158

    Google Scholar 

Download references

Acknowledgement

The authors are thankful to the Aligarh Muslim University, Aligarh, India for providing research facilitates and University Grants Commission (UGC), India for providing financial assistance.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendices

9.1.1 Appendix I: Research Institutes relevant to Lentils

Institution

Specialization and research activities

Contact information and website

University of Saskatchewan, Canada

Teaching and research institute, pulse crop genomics, genetics of domestication and adaptation in lentil, lentil genome sequencing,molecular marker development

Prof. Kirstin E. Bett, College of Agriculture and Bioresources, Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada.

https://agbio.usask.ca

Email: k.bett@usask.ca

The University of

Western Australia, Australia

Teaching and research institute, lentil breeding, germplasm evaluation and genetics, cultivar development

Prof. William Erskine, Director, Centre for Plant Genetics and Breeding, School of Agriculture and Environment, Faculty of Science, The University ofWestern Australia, Australia.

http://www.pgb.plants.uwa.edu.au/

Email: william.erskine@uwa.edu.au

Washington State University, USA

Teaching and research institute, development of improved varieties of peas, lentils, and chickpeas and research on productivity and quality issues

Prof. Fred J. Muehlbauer,

Grain Legume Genetics and Physiology Research Unit, USDA-ARS, 303 Johnson Hall, Washington State University, USA

https://www.ars.usda.gov

Email: muehlbau@wsu.edu

International Center for Agricultural Research in the Dry Areas (ICARDA), Lebanon

CGIAR non-profit agricultural research institue, lentil genetic resources collection, conservation and introduction, genebank, climate change adaptation,

Dr. Shiv Kumar Agrawal,

Lentil Breeder, Food Legumes Coordinator, ICARDA, Temporary HQs, Dalia Building 2nd Floor, Bashir El Kassar Street, Verdun, Beirut, Lebanon 1108-2010

https://www.icarda.org

Email: sk.agrawal@cgiar.org

Indian Institute of Pulses Research, India

Research institutes, research on genetics, plant breeding and seed science technology, cyto-genetics and molecular breeding, plant genetic resource management and quality seed production.

Dr. Jitendra Kumar, Principal Scientist, Lentil Breeder, Crop Improvement Division, Indian Institute of Pulses Research, Kalyanpur-Kanpur-208024, India

http://iipr.res.in/cimprovment.html

Email: jitendra73@gmail.com

National Bureau of Plant Genetic Resources (NBPGR), India

Research institutes, national genebank, policy making, germplasm registration, conservation and distribution, crop improvement and cultivar development

Dr. Mohar Singh, Senior Scientist (Plant Breeding)ICAR-NBPGR Regional Station - Shimla Phagli, Shimla - 171004, Himachal Pradesh Pradesh, India

http://www.nbpgr.ernet.in

Email: mohar.singh2@icar.gov.in

Akdeniz, The

University, Turkey

Teaching and research institute, genetics and plant breeding, mutation breeding of pulses, crop improvement

Prof. Cengiz Toker,

Department of Field Crops, Faculty of Agriculture, Akdeniz, The

University, Antalya, Turkey.

http://ziraat.akdeniz.edu.tr/

Email: toker akdeniz.edu.tr

University of Birmingham, UK

Teaching and research institute, genetic conservation, in situ and ex situ conservation, global agrobiodiversity conservation, taxonomy and classification

Dr. Nigel Maxted, Senior Lecturer, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

https://www.birmingham.ac.uk

Email: n.maxted@bham.ac.uk

University of Córdoba (UCO) and Instituto de Agricultura Sostenible (CSIC), Spain

Teaching and research institute, plant genetic improvement, crop biodiversity, molecular genetic markers, crop protection, sustainable agriculture

Prof. José Ignacio Cubero, Professor Emeritus of the University of Córdoba, Researcher, Departamento de Mejora Genética Vegetal, Instituto de Agricultura Sostenible (CSIC),Apartado, Córdoba, Spain.

http://www.ias.csic.es; www.uco.es

Email: ge1cusaj@uco.es

9.1.2 Appendix II: Genetic Resources of Lentils

Cultivar

Important traits

Cultivation location

Noori,KLS 218,HUL 57,IPL 406,Masoor 93, DPL 62,L4076

Short duration, higher yields, rust resistance, high efficiency of zinc accumulation, bold size

India

Shiraz 96,NIAB Masoor 02,Masoor 04,NIAB Masoor 06,Manserha

89

Higher yields, rust resistance, high efficiency of zinc accumulation, short duration

Pakistan

Barimasur-1, Barimasur-2; Barimasur-3; Barimasur-4

High-yielding, resistance to rust

Bangladesh

Sikhar, Khajura Masuro 1, Khajura Masuro 2, Shital

Higher yields, rust resistance, high efficiency of zinc accumulation, short duration

Nepal

Sazak 91, Kayi 91, Pul 11, Yesil 21, Yeril Kirmizi, Kirmizi 51, Sakar

High yield, good weed resistance, seed size

Turkey

Bakria, Bichette, Hamira

Rust resistant, high yields

Morocco

Adaa, Alemaya, Alemtena, Teshale

Higher yields, rust resistance, wilt root rot resistance, high efficiency of zinc accumulation

Ethiopia

Nipper, Boomer

Resistance to botrytisgray mold and Ascochyta blight

Australia

Eston; Pardina, Morton

Small red types, medium-sized, yellow,

small brown types, yellow cotyledons,

very high yield

USA

Idlib 5

High yielding, fusarium wilt resistant

Syria

CDC Milestone, Glamis, Grandora, Sovereign, Vantage, Robin

Ascochyta blight resistant, high yield

Canada

Rajah

Red lentil, Ascochyta blight resistant

New Zealand

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laskar, R.A. et al. (2019). Lentil (Lens culinaris Medik.) Diversity, Cytogenetics and Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Legumes. Springer, Cham. https://doi.org/10.1007/978-3-030-23400-3_9

Download citation

Publish with us

Policies and ethics