Skip to main content

Induced Mutation in Plant Breeding: Current Status and Future Outlook

  • Chapter
Somaclonal Variation and Induced Mutations in Crop Improvement

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 32))

Abstract

Variability is highly essential to allow a breeder to select cultivars of plants which are: (a) more adapted to environmental changes, (b) more efficient in utilizing nutrients, (c) more tolerant to diseases and pests, and (d) improved in yield and quality. There is a continuous change with time, in natural and man-made envir-onments and human population needs. Therefore, our continuous efforts should be directed towards tailoring the new cultivars, that are capable of withstanding continuous changes and fulfilling human food demand. Selection is the driving force of plant breeders to identify within a variable population the best genotypes which respond to the demands of agricultural producers, the agro-industry and consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahloowalia, B.S. 1986. Limitation to the use of somaclonal variation in crop improvement. In: Somaclonal Variation and Crop Improvement, pp. 14–27 (ed. J. Semal). Dordrecht: Martinus Nijhoff

    Chapter  Google Scholar 

  • Ancora, G. and A. Sonnino. 1987. In vitro induction of mutation in potato. In: Biotechnology in Agriculture and Forestry, vol. 3: Potato, pp. 408–424 (ed. Y.P.S. Bajaj). Berlin. Springer-Verlag.

    Google Scholar 

  • Ashri, A., 1989. Major gene mutations and domestication of plants. In: Plant Domestication by Induced Mutation. Proceedings of an Advisory Group Meeting. Vienna: IAEA. STI/PUB/793, pp. 3–9.

    Google Scholar 

  • Auld, D.L., M.K. Heikkinen, D.A. Ericson, J.L. Sernyk and J.E. Romero. 1992. Rapeseed mutants with reduced levels of polyunsaturated fatty acids and increased level of oleic acid. Crop Sci 32: 657–662.

    Article  CAS  Google Scholar 

  • Baenziger, G.S. 1985. Biotechnology and mutation breeding. In: Semi-dwarf Cereals Mutants and Their Use in Cross Breeding. III. IAEA-TECDOC-455, 9–13.

    Google Scholar 

  • Barabas, Z. and Z. Ketesz. 1985. Examination of dwarf wheats produced by mutation, crossing and physiological procedures. In: Semi-dwarf Cereal Mutants and Their Use in Cross Breeding. III. IAEA-TECDOC-455: 33–41.

    Google Scholar 

  • Baur, E. 1924. Untersuchungen über das Wesen, die Entstehung und die Vererbung von Rassenunterschieden bei Anthirrinum majus. Bibl Genet. 4: 1–170.

    Google Scholar 

  • Beard, B.H. 1970. Estimating the number of meristem initials after seed irradiation: a method applied to flax stems. Radiat. Bot. 10: 47.

    Article  Google Scholar 

  • Bhatia, CR. 1990. Economic impact of mutant varieties in India. In: Plant Mutation Breeding for Crop Improvement. Proceedings of Symposium, vol. I, pp. 33–45. Vienna: IAEA.

    Google Scholar 

  • Bozzini, A. 1961. Mutanti cromosomici indotti da radiazioni ionizzanti in grano duro ‘Cappelli’. Atti Ass Gen It. 6: 365–70.

    Google Scholar 

  • Brock, R.D. 1971. The role of induced mutations in plant improvement. Radiat Bot. 11: 181.

    Article  CAS  Google Scholar 

  • Brock, R.D. and A. Micke. 1979. Economic aspects of using induced mutations in plant breeding. In: Induced Mutations For Crop Improvement in Africa, IAEA-TECDOC-222: 19–32.

    Google Scholar 

  • Broertjies, C. and A.M. van Harten. 1978. Application of Mutation Breeding Methods in the Improvement of Vegetatively Propagated Crops. Amsterdam: Elsevier.

    Google Scholar 

  • Brown, P.T.H. 1991. The spectrum of molecular changes associated with somaclonal variation. Newsletter, IAPTC. 66: 14–25.

    Google Scholar 

  • Bruhin, A. 1951. Auslosung von mutationen in uhenden samen durch hohe Temperaturen, Naturwissenschaften. 38: 365–366.

    Article  Google Scholar 

  • Ceoloni, C. and P. Donini. 1993. Combining mutations for the two homoeologous pairing suppressor genes Phl and Ph2 in common wheat and in hybrids with alien Triticeae. Genome. 36: 377–386.

    Article  CAS  Google Scholar 

  • Ceoloni, C, L. Ercoli, G. Del Signore and P. Donini. 1990. Wheat mutations affecting meiotic chromosome pairing: exploiting their potential for controlled interspecific gene introgression. In: Proceedings, Italian-Israeli Binational Symposium on Molecular, Genetic and Physiological Aspects of Crop Improvement, Rehovot, Israel, pp. 10–11.

    Google Scholar 

  • Chauhan, S.V.S., K.P. Singh and B.K. Saxena. 1992. Gamma-ray induced female mutation in castor. Indian J Genet. 52: 26–28.

    Google Scholar 

  • Coen, E.S., J.M. Romero, S. Doyle, R. Elliot, G. Murphy and C. Carpenter. 1990. ’Floricaula’ a homeotic gene required for flower development in Antirrhinum majus. Cell. 63: 1311–1322.

    Google Scholar 

  • Crinó, P., A. Lai, R. Penuela, L. Martino, V. Papacchioli and A. Sonnino. 1990. In vitro mutation breeding for resistance to Phytophthora infestons. Abstracts of the 11th Triennial Conference of the European Association for Potato Research, Edinburgh, 8–13 July, pp. 8–9.

    Google Scholar 

  • D’Amato, F. 1964a. Cytological and Genetic Aspects of Aging. Genetics Today. Oxford: Pergamon Press, pp. 285–292.

    Google Scholar 

  • D’Amato, F. 1964b. Chimera formation in mutagen-treated seed and diplontic selection. In: The use of Induced Mutation in Plant Breeding. Symposium/Report FAO/IAEA Technical Meeting, Rome. Suppl Rad Bot. 5: 303–331.

    Google Scholar 

  • D’Amato, F. and Hoffmann-Ostenhofo. 1956. Metabolism and spontaneous mutations in plants. Adv. Genet. 8: 1–28.

    Article  Google Scholar 

  • D’Amato, F., G.T. Scarascia Mugnozza, L.M. Monti, and A. Bozzini. 1962. Types and frequencies of chorophyll mutations in durum wheat induced by radiations and chemicals. Radiat Bot. 2: 217–239.

    Article  Google Scholar 

  • Darlington, C.D. and A.P. Wylie. 1953. A dicentric cycle in Narcissum. Heredity. 6 (Suppl.): 197–214.

    Google Scholar 

  • Datta, S.K. 1994. Induction and analysis of short thick fruit mutant in Thrichosanthes anguina L. Indian J Genet. 54: 13–17.

    Google Scholar 

  • Davies, C.S. and N.C Nielsen. 1986. Genetic analysis of a null allele for lipoxygenase-2 in soybean. Crop Sci. 26: 460–463.

    Article  Google Scholar 

  • Doll, H. 1975. Genetic studies at high lysine barley mutants. Proceedings, 3rd International. Barley Genetics Symposium.

    Google Scholar 

  • Donini, B., T. Kawai and A. Micke. 1984. Spectrum of mutant characters utilised in developing improved cultivars. In ‘Selection in Mutation Breeding.’ Vienna: IAEA, pp. 7–31.

    Google Scholar 

  • Donini, B., P. Mannino, G. Ancora, A. Sonnino, C. Fideghelli, G. Delia Strada, F. Monastra, Quarta, R. Faede, W. Albertini, A. Rivalta, L. Pennone, F. Rosati, P. Cala, A. Costacurta, A. Cersosimo, A. Cancellieri, S. Petruccioli, G. Filippucci, G. Panelli, G. Russo, F. Starrantino, A. Roselli G. Romisondo, P. Me, G. and L. Radicati. 1990. Mutation breeding programmes for the geneticimprovement of vegetatively propagated plants in Italy. Proceeding of Symposium, IAEA, Vienna (18–22 June, 1990). In: Plant Mutation Breeding for Crop Improvement, vol. 1, pp. 237–261.

    Google Scholar 

  • Donini, P., M.L. Elias, S.M. Bougourd and R.M.D. Koebner. 1997. AFLP fingerprinting reveals pattern differences between template DNA extracted from different plant organs. Genome. (In press).

    Google Scholar 

  • East, E.M. 1935. Genetic reaction in Nicotiana, III. Dominance. Genetics. 20: 443–451.

    CAS  PubMed  Google Scholar 

  • Fambrini, M., P. Vernieri, M. Rocca, C Pugliesi and S. Baroncelli. 1995. ABA-deficient mutants in sunflower (Helianethus anuum L.). Helia. 18: 1–24. FAO/IAEA. 1977. Manual on Mutation Breeding, 2nd edn. Vienna: IAEA. FAO/IAEA. 1989. Plant domestication by induced mutation. Proceedings of Advisory Meeting (1986). Vienna: IAEA, STI/PUB 793, pp. 1–199.

    Google Scholar 

  • Favret, E.A. 1976. Breeding for disease resistance using induced mutation in cross-breeding. Proceedings of Advisory Meeting, Vienna (1975). Vienna: IAEA, pp. 95–111.

    Google Scholar 

  • Feldmann, K.A. 1992. Developmental mutations: a genetic molecular approach. In: FAO/IAEA seminar on the use of induced mutations and related biotechnologies for crop improvement for Middle East and Mediterranean regions, Zaragoza, Spain, pp. 7–9.

    Google Scholar 

  • Feldmann, K.A., M.D. Marks, M.L. Christianson and R.S. Quatrano. 1989. A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science. 243: 1351–1354.

    Article  CAS  PubMed  Google Scholar 

  • Gaul, H. 1963. Mutationen in der Pflanzenzüchtung. Z Pflanzenzuecht. 50: 194–307.

    Google Scholar 

  • Gierl, A. and H. Saedler. 1989. Maize transposable elements. Annu Rev Genet. 23, 121–139.

    Article  Google Scholar 

  • Giles, N.H. 1940. Spontaneous chromosome aberrations in Tradescantia. Genetics. 25: 69–87.

    CAS  Google Scholar 

  • Giles, N.H. 1941. Spontaneous chromosome aberrations in triploid Tradescantia hybrids. Genetics. 26: 632–649.

    CAS  PubMed  Google Scholar 

  • Giriraj, K., S.R. Hiremath and A. Seetharam. 1990. Induced variability for flowering, seed weight and oil content in parental lines of sunflower hybrid BSH-1. Indian J Genet. 50: 1–7.

    Google Scholar 

  • Green, A.G. 1986. A mutant genotype of flax (Linum usitatissimum L.) containing very low level of linolenic acid in its seed oil. Can J Plant Sci. 66: 499–503.

    Article  CAS  Google Scholar 

  • Green, A.G. and D.R. Marshall. 1984. Isolation of induced mutants in linseed (Linum usitatissimum L.) having reduced linolenic acid content. Euphytica. 33: 321–328.

    Article  CAS  Google Scholar 

  • Gustafsson, A., U. Lundqvist and I. Edberg. 1967. Yield reaction and rates of origin of chromosome in barley. Hereditas. 56: 20–206.

    Google Scholar 

  • Hair, J.B. 1953. The origin of new chromosome in Agropyron. Heredity. 6: 215–233.

    Google Scholar 

  • Hajita M., K. Igita and K. Kitamura. 1991. A line lacking all the seed lipoxygenase isozymes in soybean (Glycine max (L.) Merril) by induced gamma-irradiation. Jpn J Breed. 41: 507–509.

    Google Scholar 

  • Hildebrand, D.F. and T. Hymowitz. 1981. Two soybean genotypes lacking lypogenase-1. J Am Oil Chem Soc. 58: 583–586.

    Article  CAS  Google Scholar 

  • Hildebrand, D.F. and T. Hymowitz. 1982. Inheritance of lipoxygenase-1 in soybean seeds. Crop Sci. 22: 851–853.

    Article  CAS  Google Scholar 

  • Ichii, M., T. Katagiri, and H. Hasegawa. 1993. Mutants with low nitrate reductase activity selected from seedlings expressing nitrogen deficiency symptoms in rice (Oryza sativa L.). Jpn J Breed. 43: 123–127.

    CAS  Google Scholar 

  • Kanzaki, K. and K. Noda. 1988. Glutinous (‘waxy’) endosperm starch mutant of Triticum monococcum L. Jpn J Breed. 38: 423–427.

    Google Scholar 

  • Kawai, T. and E. Amano. 1991. Mutation breeding in Japan. Proceedings of Symposium, IAEA, Vienna (18–22 June 1990). In: Plant Mutation Breeding for Crop Improvement, vol. 1, pp. 47–66.

    Google Scholar 

  • Kitamura, K. and A. Kikuchi. 1985. Inheritance of lipoxygenase-2 and genetic relationships among genes for lipoxygenase-1, -2 and -3 isozymes in soybean seeds. Jpn J Breed. 35: 413–420.

    CAS  Google Scholar 

  • Kitamura, K., C.S. Davies, N. Kaizuma and N.C. Nielsen. 1983. Genetic analysis of a null-allele for lipoxygenase-3 in soybean seeds. Crop Sci. 23: 924–927.

    Article  CAS  Google Scholar 

  • Kleinhofs, A., T. Kuo and R.L. Warner. 1980. Characterisation of nitrate reductase-deficient barley mutants. Mol Gen Genet. 177: 421–425.

    Article  CAS  Google Scholar 

  • Koorneef, M. and R.E. Kendrick. 1994. Photomorphogenic mutants of higher plants. In Photomorphogenesis in plants, pp. 601–628 (eds R.E. Kendrick and G.H.M. Kronenberg). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Kumamaru, T., H. Satoh, N. Iwata, T. Omura, M. Ogawa and K. Tanaka. 1988. Mutants for rice storage proteins bodies in the starchy endosperm. Theor Appl Genet. 76: 11–16.

    Article  CAS  Google Scholar 

  • Lai, A., P. Veronese, P. Crino and A. Sonnino. 1993. Response to artificial inoculation with Phytophthora infestons in clones insensitive to the culture filtrate of the fungus. Abstracts of the 12th Triennial Conference of the European Association for Potato Research, Paris, 18–23 July, p. 181–2.

    Google Scholar 

  • Li, S.L. and G.P. Redey. 1969. Estimation of the mutation rate in autogamous diploids. Radiat Bot. 9: 125.

    Article  Google Scholar 

  • Lin, Q.W. 1990. Induced mutation for crop Improvement in China. Proceedings of Symposium, IAEA, Vienna (18–22 June, 1990). In: Plant Mutation Breeding for Crop Improvement, vol. 1, pp. 9–32.

    Google Scholar 

  • Love, S.L., A. Thompson-Johns and T. Baker. 1993. Mutation breeding for resistance to blackspot bruise and low temperature sweetening in potato cultivar Lemhi Russet. Euphytica. 70: 69–74.

    Article  Google Scholar 

  • Lundqvist, U. and A. Lundqvist. 1991. Dominant resistance to barley mildew race D1, isolated after mutagenic treatments in four highbred barley varieties. Hereditas. 115: 241–253.

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist, U. and A. Lundqvist. 1994. Intermedium mutants of barley-diversity interactions and plant breeding value. FAO/IAEA Res. Rep. 4466/CF.

    Google Scholar 

  • Maluszynski, M. 1989. Current options for cereal improvement: double haploids, mutants and heterosis. Dordrecht: Kluwer. Maluszynski, M., B.S. Ahloowalia and B. Sigurbörnsson. 1995. Application of in vivo and in vitro mutation breeding techniques for crop improvement. Euphytica. 85: 303–315.

    Article  Google Scholar 

  • Marks, M.D. and K.A. Feldmann. 1989. Trichome development in Arabidopsis thaliana. I. T-DNA tagging of the glabrous 1 gene. Plant Cell. 1: 143–150.

    Google Scholar 

  • McClintock, B. 1938. The fusion of broken ends of sister half-chromatids following chromatid breakage at meiotic anaphases. Missouri Agric Exp Sta Res Bull. 390: 48.

    Google Scholar 

  • McClintock, B. 1941. Spontaneous alteration in chromosome size and form in Zea mays. Cold Spring Harbor Symp Quant Biol. 9: 72.

    Article  Google Scholar 

  • McClintock, B. 1987. The Discovery and Characterisation of Transposable Elements: the collected papers of Barbara McClintock. New York: Garland.

    Google Scholar 

  • Mericles, L.W. and R.P. Mericles. 1965. Biological discrimination of differences in natural background radiation level. Radiat Bot. 5: 475–492.

    Article  Google Scholar 

  • Micke, A. and B. Donini. 1982. Use of induced mutations in improvement of seed propagated crops. In: Induced variability in Plant Breeding. Proceeding of International Symposium, Wageningen, 1981. Wageningen Centre for Agricultural Publishing and Documentation, pp. 2–9.

    Google Scholar 

  • Micke A. and Donini, B. 1993. Induced mutations. In: Plant Breeding. Principles and Prospects, pp. 56–62. (eds M.D. Hayward, N.O. Bosemark and I. Ramagosa), London: Chapman & Hall.

    Google Scholar 

  • Micke, A., B. Donini and M. Maluszynski. 1987. Induced mutations for crop improvement a review. Trop Agric Trinidad. 64: 259–278.

    Google Scholar 

  • Monti, L.M. and F. Saccardo. 1969. Mutations induced in pea by X-irradiation of pollen and their significance of induced unstable chromosomes in mutation experiments. Caryologia. 22: 81–96.

    Google Scholar 

  • Narasimha Chary, S. and J. Bhalla. 1988. EMS induced male sterility in pigeonpea (Cajanus cajan (L.) Millsp.). Indian J Genet. 48: 303–304.

    Google Scholar 

  • Navaschin, M. 1933. Unbalanced somatic chromosomal variation in Crepis. Univ Cal Pub Agr Sci. 6: 95–106.

    Google Scholar 

  • Nishio, T. and S. Iida. 1992. Mutants having a low content of 16-kDa allergenic protein in rice (Oryza sativa L.). Theor Appl Genet. 86: 317–321.

    Google Scholar 

  • Ntiamoah, C.C. 1993. Inheritance and characterisation of EMS-induced fatty acid mutations in McGregor flax. MSc thesis, University of Saskatchewan.

    Google Scholar 

  • Oda, S., C. Kiribuchi and H. Seko. 1992. A bread wheat mutant with low amy lose content induced by ethyl methanesulphonate. Jpn J Breed. 42: 151–154.

    CAS  Google Scholar 

  • Palmer, R.G. and T.C. Kilen. 1987. Qualitative genetics and cytogenetics. In: Soybeans: Improvement, Production and Uses, 2nd edn, pp. 135–209 (No. 16 in the series: Agronomy). American Society of Agronomy, Crop Science Society of America, Soil Science Society of America,

    Google Scholar 

  • Madison, WI. Pathirana, R. 1992. Gamma ray-induced field tolerance to Phytophthora blight in sesame. Plant Breed. 108: 314–319.

    Article  Google Scholar 

  • Pirovano, A. 1922. Elettrogenetica. Esperimenti su vegetali. Istituto di Frutticoltura e di Elettro-genetica. Ed 1st Frutt XXX Ann. (1957), pp. 1–147.

    Google Scholar 

  • Rahaman, S.M., Y. Takagi, K. Kubota, K. Miyamoto and K. Kawakita. 1994. High oleic acid mutant in soybean induced by X-ray irradiation. Biosci Biotech Biochem. 58: 1070–1072.

    Article  Google Scholar 

  • Ravat, R.S. and D.V. Tyagi. 1989. Mutant heterosis in pearl millet. Indian J Genet. 49: 19–24.

    Google Scholar 

  • Rheenen, van H.A., R.P.S. Pundir and J.H. Miranda. 1994. Induction and inheritance of determinate growth habit in chickpea (Cicer arietinum L.). Euphytica. 78: 137–141.

    Google Scholar 

  • Rhoades, M.M. 1941. The genetic control of mutability in maize. Cold Spring Harbour Symp Quant Biol. 9: 138–144.

    Article  Google Scholar 

  • Rhoades, M.M. 1945. On the genetic control of mutability in maize. Proc Natl Acad Sci USA. 31:91–95.

    Article  CAS  PubMed  Google Scholar 

  • Röbbelen, G. and S. von Witzke. 1989. Mutagenesis for the domestication of Cuphea. In: Plant domestication by induced mutation. Proceedings of Advisory Meeting, Vienna (1986). IAEA, STI/PUB 793, pp. 101–119.

    Google Scholar 

  • Rowland, G.G. 1991. An EMS-induced low-linolenic-acid mutant in Mcgregor flax (Linum usitatissimum L.). Can J Plant Sci. 71: 393–396.

    Article  CAS  Google Scholar 

  • Rowland, G.G., A. Mchughen, L.V. Gusta, R.S. Bhatty, S.R. Mackenzie, and D.C. Taylor. 1995. The application of chemical mutagenesis and biotechnology to the modification of linseed (Linum usitatissimum). Euphytica. 85: 317–321.

    Article  CAS  Google Scholar 

  • Rutger, J.N. 1990. Mutation breeding of rice in California and United States of America. Proceedings of Symposium. IAEA, Vienna (18–22 June, 1990). In: Plant Mutation Breeding for Crop Improvement, vol. 1, pp. 155–165.

    Google Scholar 

  • Salnikova, T.V. 1993. Chemical mutagenesis for crop breeding. Achievements in the former USSR. Mutat Breed Newsl, IAEA, Vienna. 40: 11–12.

    Google Scholar 

  • Scarascia-Mugnozza, G.T. and A. Bozzini. 1966. Inheritance studies in durum wheat. Acta Agricolt Scand. 16: 55–59.

    Google Scholar 

  • Scarascia-Mugnozza, G.T., D. Bagnara and A. Bozzini. 1972. Mutagenesis applied to durum wheat: results and perspectives. Proceedings of FAO/IAEA Meeting on Induced Mutation and Plant Improvement, Buenos Aires, 1970. IAEA (1972), pp. 183–198.

    Google Scholar 

  • Scarascia-Mugnozza, G.T., F. D’Amato, S. Avanzi, D. Bagnara, M.L. Belli, A. Bozzini, A. Brunori, T. Cervigni, M. Devreux, B. Donini, B. Giorgi, G. Martini, L.M. Monti, E. Moschini, C. Mosconi, G. Porreca, and L. Rossi. 1990. Mutation breeding programme for durum wheat (Triticum turgidum spp. durum Desf.) improvement in Italy. Proceedings of Symposium IAEA, Vienna (18–22 June, 1990). In: Plant Mutation Breeding for Crop Improvement, vol. 1, pp. 95–109.

    Google Scholar 

  • Scarascia-Mugnozza, G.T., F. D’Amato, S. Avanzi, D. Bagnara, M.L. Belli, A. Bozzini, A. Brunori, T. Cervigni, M. Devreux, B. Donini, B. Giorgi, G. Martini, L.M. Monti, E. Moschini, C. Mosconi, G. Porreca, and L. Rossi. 1993. Mutation breeding for durum wheat (Triticum turgidum ssp. Durum Desf) improvement in Italy. Mutation Breeding Review No. 10. FAO/IAEA Division, Vienna: IAEA, pp. 1–28.

    Google Scholar 

  • Schuier, J.F. and G.F. Sprague. 1956. Natural mutations in inbred lines of maize and their heterotic effect. II. Comparison of mother lines versus mutant when outcrossed to unrelated hybrids. Genetics. 41:370–395.

    Google Scholar 

  • Schwarz-Sommer, Z., P. Huijser, W. Nacken, H. Saedler and H. Sommer. 1990. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science. 250: 931–936.

    Article  CAS  PubMed  Google Scholar 

  • Sears, E.R. 1956. The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol. 9: 1–22.

    Google Scholar 

  • Sears, E.R. and A. Camara. 1952. A transmissible dicentric chromosome. Genetics. 37: 125–135. Sigurbjornsson, B. and A. Micke. 1969. Progress in mutation breeding. In: Induced Mutation in Plants, pp. 673–698. Vienna: IAEA.

    Google Scholar 

  • Sinha, R.P. and S.K. Chowdhury. 1991. Induced codominant mutation for dwarfism in lentil (Lens culinaris Med.). Indian J Genet. 51: 370–371.

    Google Scholar 

  • Sonnino, A. 1991. Induced variation for potato improvement. In: Molecular Methods for Potato Improvements. Report of the Planning Conference on Application of Molecular Techniques to Potato Germplasm Enhancement, Lima, Peru, 5–9 March 1990. Lima: CIP, pp. 141–148.

    Google Scholar 

  • Sonnino, A., C. Locardi and G. Ancora. 1986. In vitro mutation breeding of potato: use of propagation by microcuttings. In: Nuclear Techniques and in vitro Culture for Plant Improvement. Proceedings of an International Symposium held in Vienna, 19–23 August 1985, Vienna: IAEA, STI/PUB/698, pp. 385–394.

    Google Scholar 

  • Sonnino, A., R. Penuela, P. Criná, L. Martino and G. Ancora. 1991. In vitro induction of genetic variability and selection of disease resistant plants in the potato. In: Solanaceae. III: Taxonomy, Chemistry, Evolution, pp. 421–427 (eds J.G. Hawkes, R.N. Lester, M. Nee and N. Estrada). Royal Botanic Gardens at Kew, Richmond.

    Google Scholar 

  • Stadler, L.J. 1930. Some genetic effects of X-rays in plants. J. Hered. 21: 3–19.

    Google Scholar 

  • Steffensen, D. 1953. Induction of chromosome breakage at meiosis by a magnesium deficiency in Tradescantia. Proc Natl Acad Sci USA. 39: 613–620.

    Article  CAS  PubMed  Google Scholar 

  • Steffensen, D. 1955. Breakage of chromosome in Tradescantia with a calcium deficiency. Proc Natl Acad Sci USA. 41: 155–160.

    Article  CAS  PubMed  Google Scholar 

  • Straus, D. and F.M. Ausubel. 1990. Genomic subtraction for cloning DNA corresponding to deletion mutations. Proc Natl Acad Sci USA. 87: 1889–1993.

    Article  CAS  PubMed  Google Scholar 

  • Stubbe, H. 1934. Einige Kleinmutationen won Antirrhinum majus L. Züchter. 6: 299–303.

    Google Scholar 

  • Sun, T.P., F. Goldman, and M. Ausubel. 1992. Cloning the Arabidopsis GAI locus by genomic subtraction. Plant Cell. 4: 119–128.

    CAS  PubMed  Google Scholar 

  • Takagi, Y., A.B.M. Mamun Hossain, T. Yanagita and S. Kusaba. 1989. High linolenic acid mutant in soybean induced by X-ray irradiation. Jpn J Breed. 39: 403–409.

    CAS  Google Scholar 

  • Taura, S., A. Yoshimura, H. Satoh, Y. Hidaka and T. Omura. 1986. Induction of mutation for resistance to bacterial leaf blight by treatment of fertilised egg cells with MNU in rice. Jpn J Breed. 36: 190–191.

    Google Scholar 

  • Thakur, H.L. and G.S. Sethi. 1993. Characterization and segregation pattern of some macromutations induced in black gram (Vigna mungo L. Hepper). Indian J Genet. 53: 168–173.

    Google Scholar 

  • Thurging, N. and V. Depittayanan. 1992. EMS induction of early flowering mutants in spring rape (Brassica napus). Plant Breed. 108: 177–184.

    Article  Google Scholar 

  • Tulmann Neto, A. and J. Alberini. 1989. Release to farmers of Carioca Arbustivo precoce 1070 (CAP-1070), a bushy bean mutant induced by gamma rays in Brazil. Mutant Breed Newsl. 34: 12–13.

    Google Scholar 

  • Vries, H., de, 1901. Die mutations-Theorie. 1. Leipzig: Von Velt.

    Google Scholar 

  • Villalobos, M.J., G. Röbbelen, and E. Correal. 1994. Production and evaluation of indehiscent mutant genotypes in Euphorbia lagascae. Industrial Crops and Products.3(3): 129–143.

    Article  Google Scholar 

  • William, W., J.E.M. Harrison and S. Jayasekera. 1984. Genetical control of alkaloid production in Lupinus mutabilis and the effect of a mutant allele mutual isolated following chemical mutagenesis. Euphytica. 33: 811–817.

    Article  Google Scholar 

  • Yanofsky, M.F., H. Ma, J.L. Bowman, J.N. Drews, K.A. Feldmann and E.M. Meyerowitz. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 346: 35–39.

    Article  CAS  PubMed  Google Scholar 

  • Yokoo, M. and K. Okuno. 1993. Genetic analysis of earliness mutations induced in rice cultivar Norm 8. Jpn J Breed. 43: 1–11.

    Google Scholar 

  • Zabeau, M. and P. Vos. 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application 92402629. 7; publication number 0 534 858 A1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Donini, P., Sonnino, A. (1998). Induced Mutation in Plant Breeding: Current Status and Future Outlook. In: Jain, S.M., Brar, D.S., Ahloowalia, B.S. (eds) Somaclonal Variation and Induced Mutations in Crop Improvement. Current Plant Science and Biotechnology in Agriculture, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9125-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9125-6_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4956-8

  • Online ISBN: 978-94-015-9125-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics