Skip to main content

As, Cd, Cr, Cu, Hg: Physiological Implications and Toxicity in Plants

  • Chapter
  • First Online:
Plant Metallomics and Functional Omics

Abstract

Plant heavy metal toxicity is a problem of global relevance and potential endangerment for every ecosystem. Factors determining the excess of toxic metals in environment are natural (mineralogy, geology, natural fluxes) and anthropogenic (burning, smelting, mining, industrialization). Some metals are essential to plants, but toxic in high concentrations, while others have no known biological functions and enter the plant cell based on their electrochemical similarity to some other essential metals. Diverse ways in which plants react to certain metal in excess define its tolerance or sensitivity. There are various ways in which excess metal concentrations induce toxicity, some of the most common being the breakdown of photosynthesis, impairment of gene regulation, and induction of reactive oxygen species (ROS) production. The objective of this chapter was to review some of the most important findings in the ways that presence of toxic levels of As, Cd, Cr, Cu, and Hg induces toxicity in plants, and the ways the plants react to such toxicity. The environmental relevance of each element is also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahsan N, Lee DG, Kim KH et al (2010) Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere 78:224–231

    Article  CAS  PubMed  Google Scholar 

  • Alloway BJ, Steinnes E (1999) Anthropogenic additions of cadmium to soils. In: McLaughlin MJ, Singh BR (eds) Cadmium in soils and plants. Developments in plant and soil sciences, vol 85. Springer, Dordrecht

    Google Scholar 

  • Amin AS, Kassem MA (2012) Chromium speciation in environmental samples using a solid phase spectrophotometric method. Spectrochim Acta Part A Mol Biomol Spectrosc 96:541–547

    Article  CAS  Google Scholar 

  • Amin H, Arain BA, Amin F, Surhio MA (2013) Phytotoxicity of chromium on germination, growth and biochemical attributes of Hibiscus esculentus L. Am J Plant Sci 4:2431–2439

    Article  CAS  Google Scholar 

  • Anderson RA (1981) Nutritional role of chromium. Sci Total Environ 17:13–29

    Article  CAS  PubMed  Google Scholar 

  • Angelone M (2000) Influence of inheritance and pedogenesis on the metal distribution in soils of Sicily, influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy

    Google Scholar 

  • Anjum NA, Adam V, Kizek R et al (2015) Nanoscale copper in the soil–plant system—toxicity and underlying potential mechanisms. Environ Res 138:306–325. https://doi.org/10.1016/j.envres.2015.02.019

    Article  CAS  PubMed  Google Scholar 

  • Arao T, Ishikawa S, Murakami M et al (2010) Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy Water Environ 8:247–257. https://doi.org/10.1007/s10333-010-0205-7

    Article  Google Scholar 

  • Argos M, Kalra T, Rathouz PJ et al (2010) Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376:252–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armendariz AL, Talano MA, Travaglia C et al (2016) Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol Biochem 98:119–127. https://doi.org/10.1016/j.plaphy.2015.11.021

    Article  CAS  PubMed  Google Scholar 

  • Ashraf A, Bibi I, Niazi NK et al (2017) Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. Int J Phytoremediat 19:605–613. https://doi.org/10.1080/15226514.2016.1256372

    Article  CAS  Google Scholar 

  • Astolfi S, Zuchi S, Passera C (2004) Role of sulphur availability on cadmium-induced changes of nitrogen and sulphur metabolism in maize (Zea mays L.) leaves. J Plant Physiol 161:795–802

    Article  CAS  PubMed  Google Scholar 

  • Ayari F, Hamdi H, Jedidi N et al (2010) Heavy metal distribution in soil and plant in municipal solid waste compost amended plots. Int J Environ Sci Technol 7(3):465–472

    Article  CAS  Google Scholar 

  • Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6:189–213

    Article  CAS  Google Scholar 

  • Bah AM, Sun H, Chen F, Zhou J et al (2010) Comparative proteomic analysis of Typha angustifolia leaf under chromium, cadmium and lead stress. J Hazard Mater 184:191–203

    Article  CAS  PubMed  Google Scholar 

  • Bai J, Xun P, Morris S, Jacobs DR Jr et al (2015) Chromium exposure and incidence of metabolic syndrome among American young adults over a 23-year follow-up: the CARDIA Trace Element Study. Sci Rep 5:15606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker A (1981) Accumulators and excluders—strategies in the response of plants to heavy-metals. J Plant Nutr 3:643–654. https://doi.org/10.1080/01904168109362867

    Article  CAS  Google Scholar 

  • Barbosa RMT, de Almeida AAF, Marcelo S et al (2007) A physiological analysis of Genipa americana L.: a potential phytoremediator tree for chromium polluted watersheds. Environ Exp Bot 61:264–271

    Article  CAS  Google Scholar 

  • Bazihizina N, Colzi I, Giorni E et al (2015) Photosynthesizing on metal excess: Copper differently induced changes in various photosynthetic parameters in copper tolerant and sensitive Silene paradoxa L. populations. Plant Sci 232:67–76. https://doi.org/10.1016/j.plantsci.2014.12.015

    Article  CAS  PubMed  Google Scholar 

  • Beauvais-Flück R, Slaveykova VI, Cosio C (2017) Cellular toxicity pathways of inorganic and methyl mercury in the green microalga Chlamydomonas reinhardtii. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-08515-8

    Article  CAS  Google Scholar 

  • Bechaieb R, Ben Akacha A, Gérard H (2016) Quantum chemistry insight into Mg-substitution in chlorophyll by toxic heavy metals: Cd, Hg and Pb. Chem Phys Lett 663:27–32. https://doi.org/10.1016/j.cplett.2016.09.053

    Article  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Berkelaar E, Hale BA (2000) The relationship between root morphology and cadmium accumulation in seedlings of two durum wheat cultivars. Can J Bot 78:381–387

    CAS  Google Scholar 

  • Bernal M, Ramiro MV, Cases R et al (2006) Excess copper effect on growth, chloroplast ultrastructure, oxygen-evolution activity and chlorophyll fluorescence in Glycine max cell suspensions. Physiol Plant 127:312–325. https://doi.org/10.1111/j.1399-3054.2006.00641.x

    Article  CAS  Google Scholar 

  • Bernal M, Casero D, Singh V et al (2012) Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. Plant Cell Online 24:738–761. https://doi.org/10.1105/tpc.111.090431

    Article  CAS  Google Scholar 

  • Bian R, Chen D, Liu X, Cui L, Li L, Pan G, Xie D, Zheng J, Zhang X, Zheng J (2013) Biochar soil amendment as a solution to prevent Cd-tainted rice from China: results from a cross-site field experiment. Ecol Eng 58:378–383

    Article  Google Scholar 

  • Bian ZW, Chen J, Li H et al (2016) The phytotoxic effects of selenium–mercury interactions on root growth in Brassica rapa (LvLing). Hortic Environ Biotechnol 57:232–240. https://doi.org/10.1007/s13580-016-0034-8

    Article  CAS  Google Scholar 

  • Biddappa C, Bopaiah M (2007) Effect of heavy metals on the distribution of P, K, Ca, Mg and micronutrients in the cellular constituents of coconut leaf. J Plant Crop 17:1–9

    Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD, Nilsson HR et al (2008) A subgroup of plant aquaporins facilitate the bidirectional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boszke L, Kowalski A, Astel A et al (2008) Mercury mobility and bioavailability in soil from contaminated area. Environ Geol 55:1075–1087. https://doi.org/10.1007/s00254-007-1056-4

    Article  CAS  Google Scholar 

  • Boussama N, Ouariti O, Suzuki A, Ghorbel MH (1999) Cd-stress on nitrogen assimilation. J Plant Physiol 155:310–317

    Article  CAS  Google Scholar 

  • Brun LA, Maillet J, Hinsinger P, Pépin M (2001) Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environ Pollut 111:293–302. https://doi.org/10.1016/S0269-7491(00)00067-1

    Article  CAS  PubMed  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE et al (2009) Copper homeostasis. New Phytol 182:799–816. https://doi.org/10.1111/j.1469-8137.2009.02846.x

    Article  CAS  PubMed  Google Scholar 

  • Butera S, Trapp S, Astrup TF, Christensen TH (2015) Soil retention of hexavalent chromium released from construction and demolition waste in a road-base application scenario. J Hazard Mater 298:361–367

    Article  CAS  PubMed  Google Scholar 

  • Bartlett RJ, James BR (1988) Mobility and bioavailability of chromium in soils. In:Nriagu, J.O., Nieboer, E. (eds) Chromium in Natural and Human Environments. Wiley, New York, p 276.

    Google Scholar 

  • Cargnelutti D, Tabaldi LA, Spanevello RM et al (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1006. https://doi.org/10.1016/j.chemosphere.2006.03.037

    Article  CAS  PubMed  Google Scholar 

  • Carrasco JA, Armario P, Pajuelo E et al (2005) solation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcóllar pyrite mine. Soil Biol Biochem 37:1131–1140

    Article  CAS  Google Scholar 

  • Carrasco-Gil S, Álvarez-Fernández A, Sobrino-Plata J et al (2011) Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant Cell Environ 34:778–791. https://doi.org/10.1111/j.1365-3040.2011.02281.x

    Article  CAS  PubMed  Google Scholar 

  • Casagrande GCR, dos Reis C, Arruda R et al (2018) Bioaccumulation and biosorption of mercury by Salvinia biloba Raddi (Salviniaceae). Water Air Soil Pollut 229:166. https://doi.org/10.1007/s11270-018-3819-9

    Article  CAS  Google Scholar 

  • Castrillo G, Sánchez-Bermejo E, de Lorenzo L et al (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25:2944–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM et al (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cervantes C, Garcia JC, Devars S, Corona FG et al (2001) Interactions of chromium with micro-organisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  PubMed  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel HM, Mascalaux-Daubresse C (2004) Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45:1681–1693

    Article  CAS  PubMed  Google Scholar 

  • Chaignon V, Sanchez-Neira I, Herrmann P et al (2003) Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area. Environ Pollut 123:229–238. https://doi.org/10.1016/S0269-7491(02)00374-3

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty D, Trivedi PK, Misra P et al (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL, Reeves PG, Ryan JA, Simmons RW, Welch RM, Angle JS (2004) An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. Biometals 17(5):549–553

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Xu Z, Ding X et al (2012) Spatial trend and pollution assessment of total mercury and methylmercury pollution in the Pearl River Delta soil, South China. Chemosphere 88:612–619. https://doi.org/10.1016/j.chemosphere.2012.03.041

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Song Y, Zhuang K et al (2015) Proteomic analysis of copper-binding proteins in excess copper-stressed roots of two rice (Oryza sativa L.) varieties with different Cu tolerances. PLoS One 10:1–19. https://doi.org/10.1371/journal.pone.0125367

    Article  CAS  Google Scholar 

  • Chen T, Chang Q, Liu J, Clevers J, Kooistra L (2016) Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: a case study in northwest China. Sci Total Environ 565:155–164

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Sun SK, Tang Z et al (2017) The nodulin26-like intrinsic membrane protein OsNIP3;1 is involved in arsenite uptake by lateral roots in rice. J Exp Bot 68:3007–3016. https://doi.org/10.1093/jxb/erx165

    Article  CAS  PubMed  Google Scholar 

  • Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9. https://doi.org/10.1016/S0168-9452(00)00227-2

    Article  CAS  PubMed  Google Scholar 

  • Choppala G, Kunhikrishnan A, Seshadri B et al (2016) Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. J Geochem Explor 184:255–260. https://doi.org/10.1016/j.gexplo.2016.07.012

    Article  CAS  Google Scholar 

  • Ciscato M, Vangronsveld J, Valcke R (1999) Effects of heavy metals on the fast chlorphyll fluorescence induction kinetics of photosystem II: a comparative study. Z Naturforsch 54:735–739

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719. https://doi.org/10.1016/j.biochi.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512. https://doi.org/10.1146/annurev-arplant-043015-112301

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Antosiewicz DM, Ward JM, Schachtman DP, Schroeder JI (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci U S A 95:12043–12048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett CS, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Physiol Plant Mol Biol 53:159–182

    Article  CAS  Google Scholar 

  • Conn S, Gilliham M (2010) Comparative physiology of elemental distributions in plants. Ann Bot 105:1081–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui XM, Zhang YK, Wu XB, Liu CS (2010) The investigation of the alleviated effect of copper toxicity by exogenous nitric oxide in tomato plants. Plant Soil Environ 56:274–281

    Article  CAS  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    Article  CAS  PubMed  Google Scholar 

  • Cary EE (1982) Chromium in air, soils and natural waters. In: Langard, S. (ed) Biologicaland Environmental Aspects of Chromium. Elsevier, Amsterdam, pp 49–64

    Chapter  Google Scholar 

  • di Toppi LS, Fossati F, Musetti R et al (2002) Effects of hexavalent chromium on maize, tomato, and cauliflower plants. J Plant Nutr 25:701–717

    Article  Google Scholar 

  • DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50(pg):1268–1280

    Article  CAS  PubMed  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M et al (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Deng C, Zhang D, Pan X et al (2013a) Toxic effects of mercury on PSI and PSII activities, membrane potential and transthylakoid proton gradient in Microsorium pteropus. J Photochem Photobiol B Biol 127:1–7. https://doi.org/10.1016/j.jphotobiol.2013.07.012

    Article  CAS  Google Scholar 

  • Deng F, Yamaji N, Xia J, Ma JF (2013b) A member of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice. Plant Physiol 163:1353–1362. https://doi.org/10.1104/pp.113.226225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Metal-contaminated soils: remediation practices and treatment technologies. Pract Period Hazard Toxic Radioact Waste Manag 12:188–209

    Article  CAS  Google Scholar 

  • Dhir B, Sharmila P, Pardha Saradhi P, Nasim SA (2009) Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater. Ecotoxicol Environ Saf 72:1790–1797

    Article  CAS  PubMed  Google Scholar 

  • DiTusa SF, Fontenot EB, Wallace RW et al (2016) A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. New Phytol 209:762–772

    Article  CAS  PubMed  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant Cell Environ 25:687–693

    Article  CAS  Google Scholar 

  • Dragović S, Mihailović N, Gajić B (2008) Heavy metals in soils: distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere 72:491–495. https://doi.org/10.1016/j.chemosphere.2008.02.063

    Article  CAS  PubMed  Google Scholar 

  • Drewniak L, Sklodowska A (2013) Arsenic-transforming microbes and their role in biomining processes. Environ Sci Pollut Res Int 20:7728–7739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dube B, Tewari K, Chatterjee J, Chatterjee C (2003) Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 53:1147–1153

    Article  CAS  PubMed  Google Scholar 

  • Duman F, Ozturk F, Aydin Z (2010) Biological responses of duckweed (Lemna minor L.) exposed to the inorganic arsenic species As(III) and As(V): effects of concentration and duration of exposure. Ecotoxicology 19:983–993

    Article  CAS  PubMed  Google Scholar 

  • Du W, Li Z, Zou B, Peng S (2005) Pteris multifida Poir., a new arsenic hyperaccumulator: characteristics and potential. International Journal of Environment and Pollution, 23, 388–396

    Article  CAS  Google Scholar 

  • Eleftheriou EP, Adamakis IDS, Panteris E, Fatsiou M (2015) Chromium-induced ultrastructural changes and oxidative stress in roots of Arabidopsis thaliana. Int J Mol Sci 16:15852–15,871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekmekçi Y, Tanyolaç D, & Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology, 165:600–611

    Google Scholar 

  • Farnese FS, Oliveira JA, Paiva EAS et al (2017) The involvement of nitric oxide in integration of plant physiological and ultrastructural adjustments in response to arsenic. Front Plant Sci 8:516. https://doi.org/10.3389/fpls.2017.00516

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq MA, Gill RA, Islam F et al (2016) Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L. Front Plant Sci 7:468. https://doi.org/10.3389/fpls.2016.00468

    Article  PubMed  PubMed Central  Google Scholar 

  • Faucon MP, Shutcha MN, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36. https://doi.org/10.1007/s11104-007-9405-3

    Article  CAS  Google Scholar 

  • Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon Press, Oxford

    Google Scholar 

  • Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio MI (2005) Distribution and mobility of mercury in soils from an old mining area in Mieres, Asturias (Spain). Sci Total Environ 346:200–212. https://doi.org/10.1016/j.scitotenv.2004.12.010

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio I (2014) Mercury availability by operationally defined fractionation in granulometric distributions of soils and mine wastes from an abandoned cinnabar mine. Environ Sci Process Impacts 16:1069–1075. https://doi.org/10.1039/c3em00710c

    Article  CAS  PubMed  Google Scholar 

  • Flora SJS (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Med Cell Longev 2:191–206

    Article  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a reevaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Fu L, Chen C, Wang B et al (2015) Differences in copper absorption and accumulation between copper-exclusion and copper-enrichment plants: a comparison of structure and physiological responses. PLoS One 10:1–18. https://doi.org/10.1371/journal.pone.0133424

    Article  CAS  Google Scholar 

  • Fu X, Zhu W, Zhang H et al (2016) Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China. Atmos Chem Phys 16:12861–12873. https://doi.org/10.5194/acp-16-12861-2016

    Article  CAS  Google Scholar 

  • Gao S, Ou-yang C, Tang L et al (2010) Growth and antioxidant responses in Jatropha curcas seedling exposed to mercury toxicity. J Hazard Mater 182:591–597. https://doi.org/10.1016/j.jhazmat.2010.06.073

    Article  CAS  PubMed  Google Scholar 

  • García JS, Gratão PL, Azevedo RA, Arruda MAZ (2006) Metal contamination effects on sunflower (Helianthus annuus L.) growth and protein expression in leaves during development. J Agric Food Chem 54:8623–8630

    Article  PubMed  CAS  Google Scholar 

  • García-Sánchez A, Murciego A, Álvarez-Ayuso E et al (2009) Mercury in soils and plants in an abandoned cinnabar mining area (SW Spain). J Hazard Mater 168:1319–1324. https://doi.org/10.1016/j.jhazmat.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill RA, Ali B, Islam F, Farooq MA et al (2015) Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress. Plant Physiol Biochem 94:130–143

    Article  CAS  PubMed  Google Scholar 

  • Gimeno-García E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollut 92(1):19–25

    Article  PubMed  Google Scholar 

  • Gong Y, Zhao D (2013) In situ immobilization of mercury in water, soil, and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles. ACS Symp Ser 1123:61–77. https://doi.org/10.1021/bk-2013-1123.ch005

    Article  CAS  Google Scholar 

  • Gopal R, Rizvi AH, Nautiyal N (2009) Chromium alters iron nutrition and water relations of spinach. J Plant Nutr 32:1551–1559

    Article  CAS  Google Scholar 

  • Grant CA, Clarke JM, Duguid S, Chaney RL (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390(2):301–310

    Article  CAS  PubMed  Google Scholar 

  • Greger M, Löfstedt M (2004) Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Sci 44:501–507. https://doi.org/10.2135/cropsci2004.5010

    Article  CAS  Google Scholar 

  • Grimaldi M, Guedron S, Grimaldi C (2015) Impact of gold mining on mercury contamination and soil degradation in Amazonian ecosystems of French Guiana. In: Brearley FQ, Thomas AD (eds) Land-use change impacts on soil processes: tropical and Savannah ecosystems. CABI, Wallingford, pp 95–107

    Chapter  Google Scholar 

  • Guan TX, He HB, Zhang XD, Bai Z (2011) Cu fractions, mobility and bioavailability in soil-wheat system after Cu-enriched livestock manure applications. Chemosphere 82:215–222. https://doi.org/10.1016/j.chemosphere.2010.10.018

    Article  CAS  PubMed  Google Scholar 

  • Gonzaga MIS, Santos JAG, Ma LQ (2008) Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution. Environ Pollut, 154:212–218

    Article  CAS  PubMed  Google Scholar 

  • Gusman GS, Oliveira JA, Farnese FS, Cambraia J (2013) Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants. Acta Phys Plant, 2013:1201–1209

    Article  CAS  Google Scholar 

  • Habuer, Zhou Y, Takaoka M (2018) Time-series analysis of excess mercury in China. J Mater Cycles Waste Manag 20:1483–1498. https://doi.org/10.1007/s10163-018-0712-y

    Article  CAS  Google Scholar 

  • Han Y, Kingston HM, Boylan HM et al (2003) Speciation of mercury in soil and sediment by selective solvent and acid extraction. Anal Bioanal Chem 375:428–436. https://doi.org/10.1007/s00216-002-1701-4

    Article  CAS  PubMed  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266. https://doi.org/10.1016/j.pbi.2009.05.006

    Article  CAS  PubMed  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg AA (2001a) Copper and arsenate induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Vooijs R, Ten Bookum WM et al (2001b) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus L. Plant Phys 126:299–306

    Article  CAS  Google Scholar 

  • He Z, Yan H, Chen Y, Shen H et al (2016) An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. New Phytol 209:746–761

    Article  CAS  PubMed  Google Scholar 

  • Heijerick DG, Van Sprang PA, Van Hyfte AD (2006) Ambient copper concentrations in agricultural and natural European soils: an overview. Environ Toxicol Chem 25:858–864. https://doi.org/10.1897/04-671R.1

    Article  CAS  PubMed  Google Scholar 

  • Henriques FS (2010) Changes in biomass and photosynthetic parameters of tomato plants exposed to trivalent and hexavalent chromium. Biol Plant 54:583–586

    Article  CAS  Google Scholar 

  • Hernandez L, Probst A, Probst JL, Ulrich E (2003) Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Sci Total Environ 312(1–3):195–219

    Article  CAS  PubMed  Google Scholar 

  • Hippler FWR, Mattos-Jr D, Boaretto RM, Williams LE (2018) Copper excess reduces nitrate uptake by Arabidopsis roots with specific effects on gene expression. J Plant Physiol 228:158–165. https://doi.org/10.1016/j.jplph.2018.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong-Bo S, Li-Ye C, Cheng-Jiang R, Hua L, Dong-Gang G, Wei-Xiang L (2010) Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Crit Rev Biotechnol 30(1):23–30

    Article  PubMed  CAS  Google Scholar 

  • Hossner LR (1996) Phytoaccumulation of selected heavy metals, uranium, and plutonium in plant systems. Quarterly Progress Report, Texas A&M University, College Station, TX, Project UTA96–0043

    Google Scholar 

  • Huang YT, Hseu ZY, Hsi HC (2011) Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals. Chemosphere 84:1244–1249. https://doi.org/10.1016/j.chemosphere.2011.05.015

    Article  CAS  PubMed  Google Scholar 

  • Huffman EW Jr, Allaway HW (1973) Chromium in plants: distribution in tissues, organelles, and extracts and availability of bean leaf Cr to animals. J Agric Food Chem 2:982–986

    Article  Google Scholar 

  • IARC (1987) Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1 to 42. World Health Organization, International Agency for Research on Cancer

    Google Scholar 

  • Ingwersen J, Streck T (2005) A regional-scale study on the crop uptake of cadmium from sandy soils: measurement and modeling. J Environ Qual 34:1026–1035

    Article  CAS  PubMed  Google Scholar 

  • Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65:591–598. https://doi.org/10.1016/j.chemosphere.2006.02.016

    Article  CAS  PubMed  Google Scholar 

  • Ivezić V, Singh BR, Almås ÅR, Lončarić Z (2011) Water extractable concentrations of Fe, Mn, Ni, Co, Mo, Pb and Cd under different land uses of Danube basin in Croatia. Acta Agric Scand Sect B 61(8):747–759

    Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136:3276–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabala C, Singh BR (2001) Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30:485. https://doi.org/10.2134/jeq2001.302485x

    Article  CAS  PubMed  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kamiya T, Tanaka M, Mitani N, Ma JF et al (2009) NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 284:2114–2120

    Article  CAS  PubMed  Google Scholar 

  • Kamiya T, Islam Md R, Guan G et al (2013) Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Sci Plant Nutr 59:580–590

    Article  CAS  Google Scholar 

  • Katsuhara M, Sasano S, Horie T, Matsumoto T et al (2014) Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnol 31:213–219

    Article  CAS  Google Scholar 

  • Kerolli-mustafa M, Ćurković L, Fajković H, Rončević S (2015) Ecological risk assessment of jarosite waste disposal. Croat Chem Acta 88(2):189–196

    Article  CAS  Google Scholar 

  • Khan A (2001) Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environ Int 26:417–423

    Article  CAS  PubMed  Google Scholar 

  • Khatun S, Ali MB, Hahn EJ, Paek KY (2007) Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules 12:607–621. https://doi.org/10.3390/12030607

    Article  Google Scholar 

  • Kim YJ, Kim JH, Lee CE, Mok YG et al (2006) Expression of yeast transcriptional activator MSN1 promotes accumulation of chromium and sulfur by enhancing sulfate transporter level in plants. FEBS Lett 580:206–210

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-O, Bae H-J, Cho E, Kang H (2017) Exogenous glutathione enhances mercury tolerance by inhibiting mercury entry into plant cells. Front Plant Sci 8:1–10. https://doi.org/10.3389/fpls.2017.00683

    Article  Google Scholar 

  • Kimbrough DE, Cohen Y, Winer AM et al (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29:1–46. https://doi.org/10.1080/10643389991259164

    Article  CAS  Google Scholar 

  • Kocman D, Horvat M (2010) A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment. Atmos Chem Phys 10:1417–1426. https://doi.org/10.5194/acp-10-1417-2010

    Article  CAS  Google Scholar 

  • Kongshaug B, Böckman OC, Kaarstad O, Morka H (1992) Inputs of trace elements to soils and plants. In: Låg J (ed) Chemical climatology and geomedical problems. The Norwegian Academy of Science and Letters, Oslo, Norway, pp 185–216

    Google Scholar 

  • Korenkov V, Hirschi K, Crutchfield JD, Wagner GJ (2007) Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta 226:1379–1387

    Article  CAS  PubMed  Google Scholar 

  • Kremer BP, Markham JW (1982) Primary metabolic effect of cadmium in brown alga, Laminaria saccharina. Z Pflanzenphysiol 108:125–130

    Article  CAS  Google Scholar 

  • Krishna AK, Govil PK (2005) Heavy metal distribution and contamination in soils of Thane-Belapur industrial development area, Mumbai, Western India. Environ Geol 47(8):1054–1061

    Article  CAS  Google Scholar 

  • Krupa Z (1988) Cadmium-induced changes in the composition and structure of the light-harvesting chlorophyll a/b protein complex. Physiol Plant 73:518–524

    Article  CAS  Google Scholar 

  • Krysiak A, Karczewska A (2007) Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland. Sci Total Environ 379:190–200

    Article  CAS  PubMed  Google Scholar 

  • Ku HM, Tan CW, Su YS et al (2012) The effect of water deficit and excess copper on proline metabolism in Nicotiana benthamiana. Biol Plant 56:337–343. https://doi.org/10.1007/s10535-012-0095-1

    Article  CAS  Google Scholar 

  • Kumar P, Tewari RK, Sharma PN (2008) Modulation of copper toxicity-induced oxidative damage by excess supply of iron in maize plants. Plant Cell Rep 27:399–409. https://doi.org/10.1007/s00299-007-0453-1

    Article  CAS  PubMed  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28:215–225. https://doi.org/10.1016/j.wasman.2006.12.012

    Article  CAS  PubMed  Google Scholar 

  • Küpper H, Andresen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8:269–285. https://doi.org/10.1039/c5mt00244c

    Article  PubMed  Google Scholar 

  • Kurniati E, Arfarita N, Imai T et al (2014) Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. J Environ Sci (China) 26:1223–1231. https://doi.org/10.1016/S1001-0742(13)60592-6

    Article  CAS  Google Scholar 

  • Koller CE, Patrick JW, Rose RJ, Offler CE, MacFarlane GR (2007) Pteris umbrosa R. Br. as an arsenic hyperaccumulator: accumulation, partitioning and comparison with the established As hyperaccumulator Pteris vittata. Chemosphere, 66:1256–1263

    Article  CAS  PubMed  Google Scholar 

  • Lange B, van der Ent A, Baker AJM et al (2017) Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytol 213:537–551. https://doi.org/10.1111/nph.14175

    Article  CAS  PubMed  Google Scholar 

  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • LeBlanc MS, McKinney EC, Meagher RB et al (2013) Hijacking membrane transporters for arsenic phytoextraction. J Biotechnol 163:1–9

    Article  CAS  PubMed  Google Scholar 

  • Lee BD, Carter BJ, Basta NT, Weaver B (1997) Factors influencing heavy metal distribution in six Oklahoma benchmark soils. Soil Sci Soc Am J 61:218–223

    Article  CAS  Google Scholar 

  • Li Z, Feng X, Li G et al (2011) Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan province, China. Appl Geochem 26:160–166. https://doi.org/10.1016/j.apgeochem.2010.11.014

    Article  CAS  Google Scholar 

  • Li B, Zhang Y, Ma D et al (2014) Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution. Nat Commun 5:1–7. https://doi.org/10.1038/ncomms6537

    Article  CAS  Google Scholar 

  • Li Y, Zhao J, Li YF et al (2016) Comparative metalloproteomic approaches for the investigation proteins involved in the toxicity of inorganic and organic forms of mercury in rice (Oryza sativa L.) roots. Metallomics 8:663–671. https://doi.org/10.1039/c5mt00264h

    Article  CAS  PubMed  Google Scholar 

  • Liaghati T, Preda M, Cox M (2004) Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland, Australia. Environ Int 29(7):935–948

    Article  CAS  PubMed  Google Scholar 

  • Lin Y-F, Aarts MGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69(19):3187–3206. https://doi.org/10.1007/s00018-012-1089-z

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Zou J, Wang M, Jiang W (2008) Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresour Technol 99:2628–2636

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Li P, Zhang X et al (2014) Distribution and source of main contaminants in surface sediments of tidal flats in the Northern Shandong Province. J Ocean Univ China 13(5):842–850

    Article  CAS  Google Scholar 

  • Liu S, Zhang Y, Bi S et al (2015) Heavy metals distribution and environmental quality assessment for sediments off the southern coast of the Shandong Peninsula, China. Mar Pollut Bull. Elsevier Ltd 100(1):483–488

    Article  CAS  PubMed  Google Scholar 

  • Lombardi L, Sebastiani L (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci 168:797–802. https://doi.org/10.1016/j.plantsci.2004.10.012

    Article  CAS  Google Scholar 

  • Lopez-Luna J, Gonzalez-Chavez MC, Esparza-Garcia FJ, Rodriıguez-Vazquez R (2009) Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. J Hazard Mater 163:829–834

    Article  CAS  PubMed  Google Scholar 

  • Lukina A, Boutin C, Rowland O, Carpenter D (2016) Evaluating trivalent chromium toxicity on wild terrestrial and wetland plants. Chemosphere 162:355–364

    Article  CAS  PubMed  Google Scholar 

  • Lux A, Sottnıkova A, Opatrna J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plant 120:537–545

    Article  CAS  PubMed  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N et al (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY et al (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. In: Chrispeels MJ (ed) Proceedings of the National Academy of Sciences, USA, vol 105, pp 9931–9935

    Google Scholar 

  • Mahar A, Wang P, Ali A et al (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023

    Article  CAS  PubMed  Google Scholar 

  • Mahbub KR, Kader M, Krishnan K et al (2017) Toxicity of inorganic mercury to native Australian grass grown in three different soils. Bull Environ Contam Toxicol 98:850–855. https://doi.org/10.1007/s00128-017-2096-4

    Article  CAS  PubMed  Google Scholar 

  • Malar S, Sahi SV, Favas PJC, Venkatachalam P (2014) Assessment of mercury heavy metal toxicity-induced physiochemical and molecular changes in Sesbania grandiflora L. Int J Environ Sci Technol 12:3273–3282. https://doi.org/10.1007/s13762-014-0699-4

    Article  CAS  Google Scholar 

  • Malm O (1998) Gold mining as a source of mercury exposure in the Brazilian Amazon. Environ Res 77:73–78. https://doi.org/10.1006/enrs.1998.3828

    Article  CAS  PubMed  Google Scholar 

  • Manceau A, Wang J, Rovezzi M et al (2018) Biogenesis of mercury-sulfur nanoparticles in plant leaves from atmospheric gaseous mercury. Environ Sci Technol 52:3935–3948. https://doi.org/10.1021/acs.est.7b05452

    Article  CAS  PubMed  Google Scholar 

  • Marques IA, Anderson LE (1986) Effects of arsenite, sulfite, and sulfate on photosynthetic carbon metabolism in isolated pea (Pisum sativum L., cv Little Marvel) chloroplasts. Plant Physiol 82:488–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J et al (2016) Mercury uptake and effects on growth in Jatropha curcas. J Environ Sci (China) 48:120–125. https://doi.org/10.1016/j.jes.2015.10.036

    Article  Google Scholar 

  • Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Norton G, Deacon C, Williams P, Adomako EE, Price A, Zhu Y, Li G, Zhao F, McGrath S (2013) Variation in rice cadmium related to human exposure. Environ Sci Technol 47(11):5613–5618

    Article  CAS  PubMed  Google Scholar 

  • Mei B, Puryear JD, Newton RJ (2002) Assessment of Cr tolerance and accumulation in selected plant species. Plant Soil 247:223–231

    Article  CAS  Google Scholar 

  • Meng B, Feng X, Qiu G et al (2011) The process of methylmercury accumulation in rice (Oryza sativa L) plant. Environ Sci Technol 45(7):2711–2717

    Article  CAS  PubMed  Google Scholar 

  • Mills RF, Francini A, Ferreira da Rocha PS, Baccarini PJ, Aylett M, Krijger GC, Williams LE (2005) The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett 579:783–791

    Article  CAS  PubMed  Google Scholar 

  • Miotto A, Ceretta CA, Girotto E et al (2017) Copper accumulation and availability in sandy, acid, vineyard soils. Commun Soil Sci Plant Anal 48:1167–1183. https://doi.org/10.1080/00103624.2017.1341908

    Article  CAS  Google Scholar 

  • Mishra S, Singh V, Srivastava S et al (1995) Studies on uptake of trivalent and hexavalent chromium by maize (Zea mays). Food Chem Toxicol 33:393–397

    Article  CAS  PubMed  Google Scholar 

  • Mithöfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Moore CA, Bowen HC, Scrase-Field S, Knight MR, White PJ (2002) The deposition of suberin lamellae determines the magnitude of cytosolic Ca2+ elevations in root endodermal cells subjected to cooling. Plant J 30:457–466

    Article  CAS  PubMed  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortvedt JJ, Giordano PM (1975) Response of corn to zinc and chromium in municipal wastes applied to soil. J Environ Qual 4:170–174

    Article  CAS  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S et al (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277

    Article  CAS  PubMed  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic: a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan VK, Jain A, Poling MD et al (2011) Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiol 156:1149–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naharro R, Esbrí JM, Amorós JÁ et al (2018) Geochemistry: exploration, environment, analysis. Geochem Explor Environ Anal. https://doi.org/10.1144/geochem2018-019

    Google Scholar 

  • Neculita C, Zagury GJ, Desche L (2005) Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical. J Environ Qual 34(1):255–262

    CAS  PubMed  Google Scholar 

  • Niu Z, Zhang X, Wang S et al (2014) Field controlled experiments on the physiological responses of maize (Zea mays L.) leaves to low-level air and soil mercury exposures. Environ Sci Pollut Res 21:1541–1547. https://doi.org/10.1007/s11356-013-2047-5

    Article  CAS  Google Scholar 

  • Nogawa K, Kido T (1993) Biological monitoring of cadmium exposure in itai-itai disease epidemiology. Int Arch Occup Environ Health 65((1):S43–S46

    Article  CAS  PubMed  Google Scholar 

  • Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:2143–2145. https://doi.org/10.1126/science.1072375

    Article  CAS  PubMed  Google Scholar 

  • Nouri J, Khorasani N, Lorestani B et al (2009) Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ Earth Sci 59:315–323. https://doi.org/10.1007/s12665-009-0028-2

    Article  CAS  Google Scholar 

  • Nriagu JO (1988) Production and uses of chromium. chromium in the natural and human environments. Wiley, New York, pp 81–104

    Google Scholar 

  • Obrist D, Pokharel AK, Moore C (2014) Vertical profile measurements of soil air suggest immobilization of gaseous elemental mercury in mineral soil. Environ Sci Technol 48:2242–2252. https://doi.org/10.1021/es4048297

    Article  CAS  PubMed  Google Scholar 

  • Olmos E, Martínez-Solano JR, Piqueras A, Hellín E (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54:291–301

    Article  CAS  PubMed  Google Scholar 

  • Ottesen RT, Birke M, Finne TE et al (2013) Mercury in European agricultural and grazing land soils. Appl Geochem 33:1–12. https://doi.org/10.1016/j.apgeochem.2012.12.013

    Article  CAS  Google Scholar 

  • Paiva LB, de Oliveira JG, Azevedo RA et al (2009) Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environ Exp Bot 65:403–409

    Article  CAS  Google Scholar 

  • Pajuelo E, Rodríguez-Llorente ID, Dary M, Palomares AJ (2008) Toxic effects of arsenic on Sinorhizobium-Medicago sativa symbiotic interaction. Environ Pollut 154:203–211

    Article  CAS  PubMed  Google Scholar 

  • Panagiotaras D, Nikolopoulos D (2015) Arsenic occurrence and fate in the environment: a geochemical perspective. J Earth Sci Clim Change 6:4. https://doi.org/10.4172/2157-7617.1000269

    Article  CAS  Google Scholar 

  • Panda SK (2007) Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J Plant Physiol 164:1419–1428

    Article  CAS  PubMed  Google Scholar 

  • Panda S, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102

    Article  CAS  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2009) Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma 236:85–95

    Article  CAS  PubMed  Google Scholar 

  • Park J, Song WY, Ko D et al (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288. https://doi.org/10.1111/j.1365-313X.2011.04789.x

    Article  CAS  PubMed  Google Scholar 

  • Pavlík M, Pavlíková D, Staszková L et al (2010) The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotoxicol Environ Saf 73:1309–1313

    Article  PubMed  CAS  Google Scholar 

  • Peralta J, Gardea-Torresdey J, Tiemann K, Gomez E et al (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull Environ Contam Toxicol 66:727–734

    CAS  PubMed  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  CAS  PubMed  Google Scholar 

  • Pham AN, Xing G, Miller CJ, Waite TD (2013) Fenton-like copper redox chemistry revisited: hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J Catal 301:54–64. https://doi.org/10.1016/j.jcat.2013.01.025

    Article  CAS  Google Scholar 

  • Piñeros MA, Shaff JE, Kochian V (1998) Development, characterization, and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat. Plant Physiol 116:1393–1401

    Article  PubMed  PubMed Central  Google Scholar 

  • Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 58:1717–1728

    Article  CAS  PubMed  Google Scholar 

  • Prado FE, Hilal M, Chocobar-Ponce S, Pagano E et al (2016) Chapter 6-chromium and the plant: a dangerous affair? In: Parvaiz A (ed) Plant metal interaction. Elsevier, Amsterdam, pp 149–177

    Chapter  Google Scholar 

  • Printz B, Lutts S, Hausman J-F, Sergeant K (2016) Copper trafficking in plants and its implication on cell wall dynamics. Front Plant Sci 7:1–16. https://doi.org/10.3389/fpls.2016.00601

    Article  Google Scholar 

  • Pulford I, Watson C, McGregor S (2001) Uptake of chromium by trees: prospects for phytoremediation. Environ Geochem Health 23:307–311

    Article  CAS  Google Scholar 

  • Qian H, Li J, Pan X, Jiang H, Sun L, Fu Z (2010) Photoperiod and temperature influence cadmium’s effects on photosynthesis-related gene transcription in Chlorella vulgaris. Ecotoxicol Environ Saf 73:1202–1206

    Article  CAS  PubMed  Google Scholar 

  • Qing X, Zhao X, Hu C et al (2015) Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves. Ecotoxicol Environ Saf 114:179–189

    Article  CAS  PubMed  Google Scholar 

  • Quantin C, Ettler V, Garnier J, Sebek O (2008) Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites. Compt Rendus Geosci 340:872–882

    Article  CAS  Google Scholar 

  • Ramachandran V, Souza TJD, Mistry KB (1980) Uptake and transport of chromium in plants. J Nucl Agric Biol 9:126–128

    CAS  Google Scholar 

  • Rao KP, Vani G, Kumar K, Wankhede DP et al (2011) Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys 506:73–82. https://doi.org/10.1016/j.abb.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  • Ravet K, Pilon M (2013) Copper and iron homeostasis in plants: the challenges of oxidative stress. Antioxid Redox Signal 19:919–932. https://doi.org/10.1089/ars.2012.5084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reale L, Ferranti F, Mantilacci S, Corboli M et al (2016) Cyto-histological and morpho-physiological responses of common duckweed (Lemna minor L.) to chromium. Chemosphere 145:98–105

    Article  CAS  PubMed  Google Scholar 

  • Regier N, Larras F, Bravo AG et al (2013) Mercury bioaccumulation in the aquatic plant Elodea nuttallii in the field and in microcosm: accumulation in shoots from the water might involve copper transporters. Chemosphere 90:595–602. https://doi.org/10.1016/j.chemosphere.2012.08.043

    Article  CAS  PubMed  Google Scholar 

  • Reis AT, Rodrigues SM, Davidson CM et al (2010) Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere 81:1369–1377. https://doi.org/10.1016/j.chemosphere.2010.09.030

    Article  CAS  PubMed  Google Scholar 

  • Remy E, Cabrito TR, Batista RA et al (2012) The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol 195:356–371

    Article  CAS  PubMed  Google Scholar 

  • Richard FC, Bourg ACM (1991) Aqueous geochemistry of chromium: a review. Water Res 25:807–816

    Article  CAS  Google Scholar 

  • Roberts TL (2014) Cadmium and phosphorous fertilizers: the issues and the science. Procedia Eng 83:52–59

    Article  CAS  Google Scholar 

  • Rodriguez E, Santos C, Azevedo R et al (2012) Chromium (VI) induces toxicity at different photosynthetic levels in pea. Plant Physiol Biochem 53:94–100

    Article  CAS  PubMed  Google Scholar 

  • Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci U S A 97:4956–4960

    Article  Google Scholar 

  • Romic M, Romic D, Romic M, Romic AD (2003) Heavy metals distribution in agricultural topsoils in urban area. Environ Geol 43(7):795–805

    Article  CAS  Google Scholar 

  • Rooney CP, Zhao FJ, McGrath SP (2006) Soil factors controlling the expression of copper toxicity to plants in a wide range of European soils. Environ Toxicol Chem 25:726–732. https://doi.org/10.1897/04-602R.1

    Article  CAS  PubMed  Google Scholar 

  • Root RA, Miller RJ, Koeppe DE (1975) Uptake of cadmium—its toxicity and effect on the iron-to-zinc ratio in hydroponically grown corn. J Environ Qual 4:473–476

    Article  CAS  Google Scholar 

  • Roth U, Von Roepenack-Lahaye E, Clemens S (2006) Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot 57:4003–4013

    Article  CAS  PubMed  Google Scholar 

  • Ryan BM, Kirby JK, Degryse F et al (2013) Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms. New Phytol 199:367–378. https://doi.org/10.1111/nph.12276

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangwan P, Kumar V, Joshi U (2014) Effect of chromium (VI) toxicity on enzymes of nitrogen metabolism in clusterbean (Cyamopsis tetragonoloba L.). Enzyme Res 2014. Article ID 784036, 9 pages. https://doi.org/10.1155/2014/784036

    Article  CAS  Google Scholar 

  • Santa di Toppi L, Gabrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Santana KB, de Almeida AAF, Souza VL, Mangabeira PAO et al (2012) Physiological analyses of Genipa americana L. reveals a tree with ability as phytostabilizer and rhizofilterer of chromium ions for phytoremediation of polluted watersheds. Environ Exp Bot 80:35–42. https://doi.org/10.1016/j.envexpbot.2012.02.004

    Article  CAS  Google Scholar 

  • Santos-Francés F, García-Sánchez A, Alonso-Rojo P et al (2011) Distribution and mobility of mercury in soils of a gold mining region, Cuyuni river basin, Venezuela. J Environ Manag 92:1268–1276. https://doi.org/10.1016/j.jenvman.2010.12.003

    Article  CAS  Google Scholar 

  • Sasmaz M, Akgül B, Yıldırım D, Sasmaz A (2016) Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Kutahya) mining area, Turkey. Int J Phytoremediation 18:69–76. https://doi.org/10.1080/15226514.2015.1058334

    Article  CAS  PubMed  Google Scholar 

  • Sävenstrand H, Strid Å (2004) Six genes strongly regulated by mercury in Pisum sativum roots. Plant Physiol Biochem 42:135–142. https://doi.org/10.1016/j.plaphy.2003.11.005

    Article  CAS  PubMed  Google Scholar 

  • Scoccianti V, Crinelli R, Tirillini B et al (2006) Uptake and toxicity of Cr(III) in celery seedlings. Chemosphere 64:1695–1703

    Article  CAS  PubMed  Google Scholar 

  • Shahbaz M, Ravet K, Peers G, Pilon M (2015) Prioritization of copper for the use in photosynthetic electron transport in developing leaves of hybrid poplar. Front Plant Sci 6:1–12. https://doi.org/10.3389/fpls.2015.00407

    Article  Google Scholar 

  • Shahid M, Dumat C, Khalid S et al (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58. https://doi.org/10.1016/j.jhazmat.2016.11.063

    Article  CAS  PubMed  Google Scholar 

  • Shanker A, Sudhagar R, Pathmanabhan G (2003) Growth, phytochelatin SH and antioxidative response of sunflower as affected by chromium speciation. In: 2nd International Congress of Plant Physiology on sustainable plant productivity under changing environment, New Delhi

    Google Scholar 

  • Shanker A, Djanaguiraman M, Sudhagar R, Jayaram K, Pathmanabhan G (2004) Expression of metallothionein 3-like protein mRNA in sorghum cultivars under chromium (VI) stress. Curr Sci 86:901–902

    CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Kumar A, Bhardwaj R (2016) Plant steroidal hormone epibrassinolide regulate—heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 122:1–9

    Article  CAS  Google Scholar 

  • Shi D, Zhuang K, Xia Y et al (2017) Hydrilla verticillata employs two different ways to affect DNA methylation under excess copper stress. Aquat Toxicol 193:97–104. https://doi.org/10.1016/j.aquatox.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Shin HS, Dewbre GR et al (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  CAS  PubMed  Google Scholar 

  • Shukla O, Dubey S, Rai U (2007) Preferential accumulation of cadmium and chromium: toxicity in Bacopa monnieri L. under mixed metal treatments. Bull Environ Contam Toxicol 78:252–257

    Article  CAS  PubMed  Google Scholar 

  • Siedlecka A, Baszynski T (1993) Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiol Plant 87:199–202

    Article  CAS  Google Scholar 

  • Singh P (2015) Toxic effect of chromium on genotoxicity and cytotoxicity by use of Allium cepa L. Int J Res Eng Appl Sci 5:1–10

    Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254

    Article  CAS  Google Scholar 

  • Singh A, Prasad SM, Singh RP (2016) Plant responses to xenobiotics. Springer, Singapore, pp 1–346. https://doi.org/10.1007/978-981-10-2860-1

    Book  Google Scholar 

  • Sinha S, Saxena R, Singh S (2005) Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere 58:595–604

    Article  CAS  PubMed  Google Scholar 

  • Sinha V, Pakshirajan K, Chaturvedi R (2018) Chromium tolerance, bioaccumulation and localization in plants: an overview. J Environ Manag 206:715–730. https://doi.org/10.1016/j.jenvman.2017.10.033

    Article  CAS  Google Scholar 

  • Skeffington RA, Shewry PR, Petersen PJ (1976) Chromium uptake and transport in barley seedlings Hordeum vulgare. Planta 132:209–214

    Article  CAS  PubMed  Google Scholar 

  • Skorzyriska E, Baszynski T (1993) The changes in PSII complex polypeptides under cadmium treatment—are they of direct or indirect nature? Acta Physiol Plant 15:263–269

    Google Scholar 

  • Smith S, Peterson PJ, Kwan KHM (1989) Chromium accumulation, transport and toxicity in plants. Toxicol Environ Chem 24:241–251

    Article  CAS  Google Scholar 

  • Smolinska B (2015) Green waste compost as an amendment during induced phytoextraction of mercury-contaminated soil. Environ Sci Pollut Res 22:3528–3537. https://doi.org/10.1007/s11356-014-3601-5

    Article  CAS  Google Scholar 

  • Sneller FEC, Van Heerwaarden LM, Kraaijeveld-Smit FJL et al (1999) Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatins. New Phytol 144:223–232

    Article  CAS  Google Scholar 

  • Sobrino-Plata J, Herrero J, Carrasco-Gil S et al (2013) Specific stress responses to cadmium, arsenic and mercury appear in the metallophyte Silene vulgaris when grown hydroponically. RSC Adv 3:4736–4744. https://doi.org/10.1039/c3ra40357b

    Article  CAS  Google Scholar 

  • Sobrino-Plata J, Meyssen D, Cuypers A et al (2014) Glutathione is a key antioxidant metabolite to cope with mercury and cadmium stress. Plant Soil 377:369–381. https://doi.org/10.1007/s11104-013-2006-4

    Article  CAS  Google Scholar 

  • Song Y, Zhang H, Chen C et al (2014) Proteomic analysis of copper-binding proteins in excess copper-stressed rice roots by immobilized metal affinity chromatography and two-dimensional electrophoresis. Biometals 27:265–276. https://doi.org/10.1007/s10534-014-9707-x

    Article  CAS  PubMed  Google Scholar 

  • Souza VL, de Almeida AA, Lima SG, de M Cascardo JC, da C Silva D, Mangabeira PA, Gomes FP (2011) Morphophysiological responses and programmed cell death induced by cadmium in Genipa americana L. (Rubiaceae). Biometals 24:59–71

    Article  CAS  PubMed  Google Scholar 

  • Stafilov T, Aliu M, Sajn R (2010) Arsenic in surface soils affected by mining and metallurgical processing in K. Mitrovica region, Kosovo. Int J Environ Res Public Health 7:4050–4061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiborova M (1988) Cd2+ ions affect the quaternary structure of ribulose-l,5 bisphosphate carboxylase from barley leaves. Biochem Physiol Pflanz 183:371–378

    Article  CAS  Google Scholar 

  • Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29:87–95

    Google Scholar 

  • Strickman RJ, Mitchell CPJ (2017) Accumulation and translocation of methylmercury and inorganic mercury in Oryza sativa: an enriched isotope tracer study. Sci Total Environ 574:1415–1423. https://doi.org/10.1016/j.scitotenv.2016.08.068

    Article  CAS  PubMed  Google Scholar 

  • Subrahmanyam D (2008) Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica 46:339–345

    Article  CAS  Google Scholar 

  • Sun SB, Gu M, Cao Y, Huang XP et al (2012) A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol 159:1571–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaramoorthy P, Chidambaram A, Ganesh KS et al (2010) Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol 333:597–607

    Article  CAS  PubMed  Google Scholar 

  • Sung DY, Kim KH, Komives EA et al (2009) ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. Plant J 59:802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sungur A, Soylak M, Ozcan H (2014) Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability. Chem Speciat Bioavailab 26:219–230. https://doi.org/10.3184/095422914X14147781158674

    Article  CAS  Google Scholar 

  • Taghipour M, Jalali M (2016) Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents. Chemosphere 155:395–404

    Article  CAS  PubMed  Google Scholar 

  • Temminghoff EJM, Van der Zee SEATM, Keizer MG (1994) The influence of pH on the desorption and speciation of copper in a sandy soil. Soil Sci 158:398–408

    Article  CAS  Google Scholar 

  • Temminghoff EJM, Van Der Zee SEATM, De Haan FAM (1997) Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environ Sci Technol 31:1109–1115. https://doi.org/10.1021/es9606236

    Article  CAS  Google Scholar 

  • Terzano R, Santoro A, Spagnuolo M et al (2010) Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques. Environ Pollut 158:2702–2709. https://doi.org/10.1016/j.envpol.2010.04.016

    Article  CAS  PubMed  Google Scholar 

  • Thounaojam TC, Panda P, Mazumdar P et al (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39. https://doi.org/10.1016/j.plaphy.2012.01.006

    Article  CAS  PubMed  Google Scholar 

  • Tiwari KK, Dwivedi S, Singh NK, Rai UN, Tripathi RD (2009) Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients. J Environ Biol 30:389–394

    CAS  PubMed  Google Scholar 

  • Tjerngren I, Meili M, Bjorn E, Skyllberg U (2012) Eight boreal wetlands as sources and sinks for methyl mercury in relation to soil acidity, C/N ratio, and small-scale flooding. Environ Sci Technol 46:8052–8060. https://doi.org/10.1021/es300845x

    Article  CAS  PubMed  Google Scholar 

  • Tóth G, Hermann T, Da Silva MR, Montanarella L (2016a) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–309

    Article  PubMed  CAS  Google Scholar 

  • Tóth G, Hermann T, Szatmári G, Pásztor L (2016b) Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci Total Environ 565:1054–1062. https://doi.org/10.1016/j.scitotenv.2016.05.115

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM et al (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  PubMed  Google Scholar 

  • Tudoreanu L, Phillips CJC (2004) Modelling cadmium uptake and accumulation in plants. Adv Agron 84:121–157

    Article  CAS  Google Scholar 

  • Tyler LD, McBride MB (1982) Mobility and extractability of cadmium, copper, nickel and zinc in organic and mineral soil columns. Soil Sci 134:198–205

    Article  CAS  Google Scholar 

  • Ullrich-Eberius CI, Sanz A, Novacky AJ (1989) Evaluation of arsenate- and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1. J Exp Bot 40:119–128

    Article  CAS  Google Scholar 

  • Upadhyay RK, Panda SK (2010) Zinc reduces copper toxicity induced oxidative stress by promoting antioxidant defense in freshly grown aquatic duckweed Spirodela polyrhiza L. J Hazard Mater 175:1081–1084. https://doi.org/10.1016/j.jhazmat.2009.10.016

    Article  CAS  PubMed  Google Scholar 

  • Van Der Ent A, Reeves RD (2015) Foliar metal accumulation in plants from copper-rich ultramafic outcrops: case studies from Malaysia and Brazil. Plant Soil 389:401–418. https://doi.org/10.1007/s11104-015-2385-9

    Article  CAS  Google Scholar 

  • Van Der Ent A, Baker AJM, Reeves RD et al (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334. https://doi.org/10.1007/s11104-012-1287-3

    Article  CAS  Google Scholar 

  • Vázquez S, Goldsbrough P, Carpena RO (2006) Assessing the relative contributions of phytochelatins and the cell wall to cadmium resistance in white lupin. Physiol Plant 128:487–495

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009a) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:1–9

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009b) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Juraniec M, Baliardini C, Meyer C-L (2013) Tolerance to cadmium in plants: the special case of hyperaccumulators. Biometals 26(4):633–638. https://doi.org/10.1007/s10534-013-9659-6

    Article  CAS  PubMed  Google Scholar 

  • Vernay P, Gauthier-Moussard G, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68:1563–1575

    Article  CAS  PubMed  Google Scholar 

  • Vogel C, Radtke M, Reinholz U et al (2015) Chemical state of chromium, sulfur, and iron in sewage sludge ash based phosphorus fertilizers. ACS Sustain Chem Eng 3:2376–2380

    Article  CAS  Google Scholar 

  • Wallace A, Soufi SM, Cha JW, Romney EM (1976) Some effects of chromium toxicity on bush bean plants grown in soil. Plant Soil 44:471–473

    Article  CAS  Google Scholar 

  • Wang YP, Shi JY, Lin Q et al (2007) Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient. J Environ Sci 19:848–853. https://doi.org/10.1016/S1001-0742(07)60141-7

    Article  CAS  Google Scholar 

  • Wang P, Zhang W, Mao C et al (2016) The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. J ExpBot 67:6051–6059

    CAS  Google Scholar 

  • Wang X, Zhang D, Pan X et al (2017) Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere 170:266–273. https://doi.org/10.1016/j.chemosphere.2016.12.020

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Wu G, Su R et al (2011) Mobility and contamination assessment of mercury in coal fly ash, atmospheric deposition, and soil collected from Tianjin, China. Environ Toxicol Chem 30:1997–2003. https://doi.org/10.1002/etc.605

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Zhang G (2002) Genotypic variation in kernel heavy metal concentrations in barley and as affected by soil factors. J Plant Nutr 25:1163–1173. https://doi.org/10.1081/PLN-120004380

    Article  CAS  Google Scholar 

  • Wu Z, Ren H, McGrath SP et al (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, McGrouther K, Chen D et al (2013) Subcellular distribution of metals within Brassica chinensis L. in response to elevated lead and chromium stress. J Agric Food Chem 61:4715–4722

    Article  CAS  PubMed  Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium by plant root. New Phytol 176:590–599

    Article  CAS  PubMed  Google Scholar 

  • Xu XY, McGrath SP, Meharg A, Zhao FJ (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42:5574–5579

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zhao Y, Zhao X et al (2014) Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China. Ecotoxicol Environ Saf 108:161–167. Elsevier

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Bravo AG, Lagerkvist A et al (2015a) Sources and remediation techniques for mercury contaminated soil. Environ Int 74:42–53. https://doi.org/10.1016/j.envint.2014.09.007

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Dai W, Li S et al (2015b) Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8:722–733

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Allen HE, Li Y et al (1996) Adsorption of mercury (II) by soil: effects of pH, chloride, and organic matter. J Environ Qual 25:837–844

    Article  CAS  Google Scholar 

  • Yin Y, Allen HE, Huang CP et al (1997) Kinetics of mercury (II) adsorption and desorption on soil. Environ Sci Technol 31:496–503. https://doi.org/10.1021/es9603214

    Article  CAS  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36:409–430. https://doi.org/10.1071/FP08288

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  Google Scholar 

  • Zhang J, Zhu Y-G, Zeng D-L, Cheng W-D, Qian Q, Duan G-L (2008) Mapping quantitative trait loci associated with arsenic accumulation in rice (Oryza sativa). New Phytol. 177:350–355

    Google Scholar 

  • Zdunić Z, Grljušić S, Ledenčan T et al (2014) Quantitative trait loci mapping of metal concentrations in leaves of the maize IBM population. Hereditas 151:55–60. https://doi.org/10.1111/hrd2.00048

    Article  PubMed  Google Scholar 

  • Zebec V, Kerovec D (2013) Liming effect on soil heavy metals availability. Udk 2013:59–64

    Google Scholar 

  • Zeng F, Mao Y, Cheng W et al (2008) Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Environ Pollut 153:309–314. https://doi.org/10.1016/j.envpol.2007.08.022

    Article  CAS  PubMed  Google Scholar 

  • Zeng F, Qiu B, Wu X, Niu S et al (2012) Glutathione-mediated alleviation of chromium toxicity in rice plants. Biol Trace Elem Res 148:255–263

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Feng X, Zhu J et al (2012) Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.). Environ Sci Technol 46:10040–10,046. https://doi.org/10.1021/es302245r

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172:646–654

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559. https://doi.org/10.1146/annurev-arplant-042809-112152

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Fu Z, Lin Y et al (2017) Genome-wide association analysis identifies loci governing mercury accumulation in maize. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-00189-6

    Article  CAS  Google Scholar 

  • Zheng YM, Liu YR, Hu HQ, He JZ (2008) Mercury in soils of three agricultural experimental stations with long-term fertilization in China. Chemosphere 72:1274–1278. https://doi.org/10.1016/j.chemosphere.2008.04.052

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509. https://doi.org/10.1016/j.chemosphere.2007.08.028

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Schwab AP, Banks MK (1999) Heavy metal leaching frommine tailings as affected by plants. J Environ Qual 28:1727–1732

    Article  CAS  Google Scholar 

  • Zhu YG, Williams PN, Meharg AA (2008) Exposure to inorganic arsenic from rice: a global health issue? Environ Pollut 154:169–171

    Article  CAS  PubMed  Google Scholar 

  • Zied I (2001) Response of Phaseolus vulgaris to chromium and cobalt treatment. Biol Plant 44:111–115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Franić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Franić, M., Galić, V. (2019). As, Cd, Cr, Cu, Hg: Physiological Implications and Toxicity in Plants. In: Sablok, G. (eds) Plant Metallomics and Functional Omics. Springer, Cham. https://doi.org/10.1007/978-3-030-19103-0_9

Download citation

Publish with us

Policies and ethics