Skip to main content
Log in

The effect of water deficit and excess copper on proline metabolism in Nicotiana benthamiana

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Fluctuation in proline content is a widespread phenomenon among plants in response to heavy metal stress. To distinguish between the participation of water deficit and copper on changes in proline metabolism, potted plants and floating leaf discs of tobacco were subjected to CuSO4 treatments. The application of copper increased the proline content in the leaves concomitantly with decreased leaf relative water content and increased abscisic acid (ABA) content in the potted plant. Excess copper increased the expression of two proline synthesis genes, pyrroline-5-carboxylate synthetase (P5CS) and ornithine aminotransferase (OAT) and suppressed proline catabolism gene, proline dehydrogenase (PDH). However, in the experiment with tobacco leaf discs floating on CuSO4 solutions, the excess copper decreased proline content and suppressed the expression of the P5CS, OAT and PDH genes. Therefore, proline accumulation in the potted tobacco plants treated with excess Cu treatment might not be the consequence of the increased copper content in tobacco leaves but rather by the accompanied decrease in water content and/or increased ABA content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

OAT:

ornithine aminotransferase

P5CS:

pyrroline-5-carboxylate synthetase

PDH:

proline dehydrogenase

RWC:

relative water content

References

  • Armengaud, P., Thiery, L., Buhot, N., March, G.G., Savoure, A.: Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. — Physiol. Plant. 120: 442–450, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Bassi, R., Sharma, S.S.: Proline accumulation in wheat seedlings exposed to zinc and copper. — Phytochemistry 33: 1339–1342, 1993.

    Article  CAS  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities for protein utilizing the principles of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Charest, C., Phan, C.T.: Cold accumulation of wheat (Triticum aestvum): properities of enzymes involved in proline metabolism. — Physiol. Plant. 80: 159–168, 1990.

    Article  CAS  Google Scholar 

  • Canas, R.A., Villalobos, D.P., Diaz-Moreno, S.M., Canovas, F.M., Canton, F.R.: Molecular and functional analyses support a role of ornithine-δ-aminotransferase in the provision of glutamate for glutamine biosynthesis during pine germination. — Plant Physiol. 148: 77–88, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C.T., Chen, L.M., Lin, C.C., Kao, C.H.: Regulation of proline accumulation in detached rice leaves exposed to excess copper. — Plant Sci. 160: 283–290, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C.T., Chen, T.H., Lo, K.F., Chiu, C.Y.: Effects of proline on copper transport in rice seedlings under excess copper stress. — Plant Sci. 166: 103–111, 2004.

    Article  CAS  Google Scholar 

  • Chen, C.T., Kao, C.H.: Osmotic stress and water stress have opposite effects of putrescine and proline production in excised rice leaves. — Plant Growth Regul. 13: 197–202, 1993.

    Article  Google Scholar 

  • Chou, I.T., Chen, C.T., Kao, C.H.: Characteristics of the induction of the accumulation of proline by abscisic acid and isobutyric acid in detached rice leaves. — Plant Cell Physiol. 32: 269–272, 1991.

    CAS  Google Scholar 

  • Delauney, A.J., Verma, D.P.S.: Proline biosynthesis and osmoregulation in plants. — Plant J. 4: 215–223, 1993.

    Article  CAS  Google Scholar 

  • Feinberg, A.P., Vogelstein, B.: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. — Anal. Biochem. 132: 6–13, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, T., Maggio, A., Garcia-Rios, M., Bressan, R.A., Csonka, L.N.: Comparative analysis of regulation of expression and structures of two evolutionarily divergent genes for δ1-pyrroline-5-carboxylate synthetase from tomato. — Plant Physiol. 118: 661–674, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Funck, D., Stadelhofer, B., Koch, W.: Ornithine-δ-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. — BMC Plant Biol. 8: 40, 2008.

    Article  PubMed  Google Scholar 

  • Girousse, C., Bournocille, R., Bonnemain, J.L.: Water deficitinduced changes in concentrations in proline and some other amino acids in the phloem sap of alfalfa. — Plant Physiol. 111: 109–113, 1996.

    PubMed  CAS  Google Scholar 

  • Haag-Kerwer, A., Schafer, H.J., Heiss, S., Walter, C., Rausch, T.: Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. — J. exp. Bot. 341: 1827–1835, 1999.

    Article  Google Scholar 

  • Hervieu, F., Le Dily, F., Huault, C., Billard, J.P.: Contribution of ornithine aminotransferase to proline accumulation in NaCl-treated radish cotyledons. — Plant Cell Environ. 18: 205–210, 1995.

    Article  CAS  Google Scholar 

  • Hsu, Y.T., Kao, C.H.: Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. — Plant Cell Environ. 26: 867–874, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Hu, C.A.A., Delauney, A.J., Verma, D.P.S.: A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. — Proc. nat. Acad. Sci. USA 89: 9354–9358, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Jan, F.J., Pang, S.Z., Fagoaga, F., Gonsalves, D.: Turnip mosaic potyvirus resistance in Nicotiana benthamiana derived by post-transcriptional gene silencing — Transgen. Res. 8: 203–213, 1999.

    Article  CAS  Google Scholar 

  • Jan, F.J., Pang, S.Z., Tricoli, D.M., Gonsalves, D.: Evidences that plant developmental stage and combining transgene from different lines enhance resistance in squash mosaic comovirus coat protein transgenic plants — J. gen. Virol. 81: 2299–2306, 2000.

    PubMed  CAS  Google Scholar 

  • Kandpal, R.P., Rao, N.A.: Water stress induced alterations in the properties of ornithine aminotransferase from ragi (Eleusine coracana) leaf enzymes — Biochem. Internat. 5: 297–302, 1982.

    CAS  Google Scholar 

  • Kastori, R., Petrovic, M., Petrovic, N.: Effects of excess lead, cadmium, copper, and zinc on water relations in sunflower — J. Plant Nutr. 15: 2427–2439, 1992.

    Article  CAS  Google Scholar 

  • Kiyosue, T., Yoshiba, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis — Plant Cell 8: 1323–1335, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Mehta, S.K., Gaur, J.P.: Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris — New Phytol. 143: 253–259, 1999.

    Article  CAS  Google Scholar 

  • Nagoor, S.A., Vyas, A.V.: Physiological and biochemical responses of cereal seedlings to graded levels of heavy metals. III. Effects of copper on protein metabolism in wheat seedlings — J. environ. Biol. 20: 125–129, 1999.

    CAS  Google Scholar 

  • Napoli, C., Lemieux, C., Jorgensen, R.: Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. — Plant Cell 2: 279–289, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Oncel, I., Keles, Y., Ustum, A.S.: Interactive effects of temperature and heavy metals stress on the growth and some biochemical compounds in wheat seedlings — Environ. Pollut. 107: 315–320, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Pang, S.Z., Jan, F.J., Gonsalves, D.: Non-target DNA sequences reduce the transgene length necessary for RNA-mediated topovirus resistance in transgenic plants — Proc. nat. Acad. Sci USA 94: 8261–8266, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Peng, Z., Lu, Q., Verma, D.P.S.: Reciprocal regulation of Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants — Mol. gen. Genet. 253: 334–341, 1996.

    PubMed  CAS  Google Scholar 

  • Pesic, P., Reggiani, R.: The process of abscisic acid-induced proline accumulation and the levels of polyamines and quaternary ammonium compounds in hydrated barley leaves — Physiol. Plant. 84: 134–139, 1992.

    Article  Google Scholar 

  • Roosens, N.H., Thu, T.T., Iskandar, H.M., Jacobs, M.: Isolation of the ornithine-δ-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana — Plant Physiol. 117: 263–271, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., Russell, D (ed.): Molecular Cloning: a Laboratory Manual. — Cold Spring Harbor Laboratory Press, Cold Spring Harbor — New York 2001.

    Google Scholar 

  • Saradhi, A., Saradhi, P.P.: Proline accumulation under metal stress — J. Plant Physiol. 138: 554–558, 1991.

    Article  Google Scholar 

  • Savoure, A., Hua, X.J., Bertauche, N., Montagu, M., Verbruggen, N.: Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana — Mol. gen. Genet. 254: 104–109, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Savoure, A., Jaoua, S., Hua, X.J., Ardiles, W., Van Montagu, M., Verbruggen, N.: Isolation, characterization, and chromosomal location of a gene encoding the Δ1-pyrroline -5-carboxylate synthetase in Arabidopsis thaliana — Feder. Eur. Biochem. Soc. Lett. 372: 13–19, 1995.

    Article  CAS  Google Scholar 

  • Schat, H., Sharma, S.S., Vooijs, R.: Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris — Physiol. Plant. 101: 477–482, 1997.

    Article  CAS  Google Scholar 

  • Sharma, S.S., Dietz, K.J.: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress — J. exp. Bot. 57: 711–726, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Siripornadulsil, S., Traina, S., Verma, D.P.S., Sayre, R.T.: Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae — Plant Cell 14: 2837–2847, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Talanova, V.V., Totov, A.F., Boeva, N.P.: Effect of increasing concentrations of lead and cadmium on cucumber seedlings — Biol. Plant. 43: 441–444, 2000.

    Article  CAS  Google Scholar 

  • Thippeswamy, M., Chandraobulreddy, P., Sinilal, B., Shiva Kumar, M., Chinta Sudhakar: Proline accumulation and the expression of Δ1-pyrroline-5-carboxylate synthetase in two safflower cultivars — Biol. Plant. 54: 386–390, 2010.

    Article  CAS  Google Scholar 

  • Thomas, J.C., Malick, F.K., Endreszl, C., Davies, E.C., Murray, K.S.: Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum — Physiol. Plant. 102: 360–368, 1998.

    Article  CAS  Google Scholar 

  • Tripathi, A.K., Tripathi, S.: Changes in some physiological and biochemical characters in Albizia lebbek as bio-indicators of heavy metal toxicity — J. environ. Biol. 20: 93–98, 1999.

    CAS  Google Scholar 

  • Trotel-Aziz, P., Niogret, M.F., Larher, F.: Proline level is partly under the control of abscisic acid in canola leaf discs during recovery from hyper-osmotic stress — Physiol. Plant. 110: 376–383, 2000.

    Article  CAS  Google Scholar 

  • Turchetto-Zolet, A.C., Margis-Pinheiro, M., Margis, R.: The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis — Mol. gen. Genet. 281: 87–97, 2009.

    CAS  Google Scholar 

  • Verbruggen, N., Hua, X., May, M., Montagu, M.V.: Environmental and developmental signals modulated proline homeostasis: evidence for a negative transcriptional regulator — Proc. nat. Acad. Sci. USA 93: 8787–8791, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Voetberg, G.S., Sharp, R.E.: Growth of the maize primary root at low water potentials. III. Role of increased proline deposition in osmotic adjustment. — Plant Physiol. 96: 1125–1130, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Walker, D.J., Romero, P., Correal, E.: Cold tolerance, water relations and accumulation of osmolytes in Bituminaria bituminosa. — Biol. Plant. 54: 293–298, 2010.

    Article  Google Scholar 

  • Wu, L., Fan, Z., Guo, L., Li, Y., Chen, Z.L., Qu, L.J.: Overexpression of the bacterial nhaA gene in rice enhances salt and drought tolerance. — Plant Sci. 168: 297–302, 2005.

    Article  CAS  Google Scholar 

  • Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K., Shinozaki, K.: Regulation of levels of proline as an osmolyte in plants under water stress. — Plant Cell Physiol. 38: 1095–1102, 1997.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. C.-J. Chang, A. Frary and V. Panwar for critically reviewing and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. -T. Chen or F. -J. Jan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ku, H.M., Tan, C.W., Su, Y.S. et al. The effect of water deficit and excess copper on proline metabolism in Nicotiana benthamiana . Biol Plant 56, 337–343 (2012). https://doi.org/10.1007/s10535-012-0095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0095-1

Additional key words

Navigation