Skip to main content

Genetic, Epigenetic, and Transcriptomic Studies of NeuroAIDS

  • Chapter
  • First Online:
Global Virology II - HIV and NeuroAIDS

Abstract

HIV-associated neurocognitive disorders (HAND) continue to affect a large proportion of HIV-1-infected individuals. The results of over two decades of research into delineating the neuropathogenesis of HAND underscore the role of inflammation, oxidative stress, excitotoxicity, and other pathogenic processes driven largely by host immune responses to viral presence. Host genotype, which largely determines host immune response, has proven an important factor in HIV infectivity and disease progression but has proven less useful for understanding HAND neuropathogenesis. Dynamic molecular genetic processes, including gene expression and epigenetics, may be even more applicable to HAND, in which symptoms wax and wane over time. In this chapter we summarize the current state of understanding of host genomic, transcriptomic, and epigenomic factors associated with HAND. We also discuss challenges and suggest some priorities for future research, including the need for (1) longitudinal studies using consistent phenotypic definitions of HAND; (2) focus on understudied populations such as children; (3) studies that correlate neuropathological or neurophysiological changes in multiple brain regions with genomic markers in affected individuals and with changes at the RNA, epigenomic, and/or protein levels; and (4) movement toward development of more reliable and valid phenotypes of HAND.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S et al (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17(1):3–16

    Article  CAS  PubMed  Google Scholar 

  2. Gelman BB, Lisinicchia JG, Morgello S, Masliah E, Commins D, Achim CL et al (2013) Neurovirological correlation with HIV-associated neurocognitive disorders and encephalitis in a HAART-era cohort. J Acquir Immune Defic Syndr 62(5):487–495

    Article  PubMed  PubMed Central  Google Scholar 

  3. Valcour V, Sithinamsuwan P, Letendre S, Ances B (2011) Pathogenesis of HIV in the central nervous system. Curr HIV/AIDS Rep 8(1):54–61

    Article  PubMed  Google Scholar 

  4. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Group MEW (2013) Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: a consensus report of the mind exchange program. Clin Infect Dis 56(7):1004–1017

    Article  Google Scholar 

  6. Clifford DB, Ances BM (2013) HIV-associated neurocognitive disorder. Lancet Infect Dis 13(11):976–986

    Article  PubMed  PubMed Central  Google Scholar 

  7. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75(23):2087–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marra CM, Zhao Y, Clifford DB, Letendre S, Evans S, Henry K et al (2009) Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS 23(11):1359–1366

    Article  PubMed  PubMed Central  Google Scholar 

  9. Robertson K, Liner J, Meeker RB (2012) Antiretroviral neurotoxicity. J Neurovirol 18(5):388–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rodriguez-Penney AT, Iudicello JE, Riggs PK, Doyle K, Ellis RJ, Letendre SL et al (2013) Co-morbidities in persons infected with HIV: increased burden with older age and negative effects on health-related quality of life. AIDS Patient Care STDs 27(1):5–16

    Article  PubMed  PubMed Central  Google Scholar 

  11. McArthur JC, Brew BJ (2010) HIV-associated neurocognitive disorders: is there a hidden epidemic? AIDS 24(9):1367–1370

    Article  PubMed  Google Scholar 

  12. Hinkin CH, Hardy DJ, Mason KI, Castellon SA, Durvasula RS, Lam MN et al (2004) Medication adherence in HIV+ adults: effect of patient age, cognitive status, and substance abuse. AIDS 18(Suppl 1):S19–S25

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cattie JE, Doyle K, Weber E, Grant I, Woods SP, Group HIVNRP (2012) Planning deficits in HIV-associated neurocognitive disorders: component processes, cognitive correlates, and implications for everyday functioning. J Clin Exp Neuropsychol 34(9):906–918

    Article  PubMed  PubMed Central  Google Scholar 

  14. Checkoway H, Lundin JI, Kelada SN (2011) Neurodegenerative diseases. IARC Sci Publ 163:407–419

    Google Scholar 

  15. Borjabad A, Volsky DJ (2012) Common transcriptional signatures in brain tissue from patients with HIV-associated neurocognitive disorders, Alzheimer’s disease, and multiple sclerosis. J Neuroimmune Pharmacol 7(4):914–926

    Google Scholar 

  16. Zhou L, Saksena NK (2013) HIV associated neurocognitive disorders. Infectious disease reports 5(Suppl 1):e8

    Article  PubMed  PubMed Central  Google Scholar 

  17. Levine AJ, Singer EJ, Shapshak P (2009) The role of host genetics in the susceptibility for HIV-associated neurocognitive disorders. AIDS Behav 13(1):118–132

    Article  PubMed  Google Scholar 

  18. Pozniak A, Rackstraw S, Deayton J, Barber T, Taylor S, Manji H et al (2014) HIV-associated neurocognitive disease: case studies and suggestions for diagnosis and management in different patient subgroups. Antivir Ther 19(1):1–13

    Article  PubMed  Google Scholar 

  19. Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C et al (1998) Induction of monocyte chemoattractant protein-1 in HIV Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A 95(6):3117–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kelder W, McArthur JC, Nance-Sproson T, McClernon D, Griffin DE (1998) Beta-chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia. Ann Neurol 44(5):831–835

    Article  CAS  PubMed  Google Scholar 

  21. Wesselingh SL, Takahashi K, Glass JD, McArthur JC, Griffin JW, Griffin DE (1997) Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV+ patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry. J Neuroimmunol 74(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  22. Burdo TH, Lackner A, Williams KC (2013) Monocyte/macrophages and their role in HIV neuropathogenesis. Immunol Rev 254(1):102–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kusao I, Shiramizu B, Liang CY, Grove J, Agsalda M, Troelstrup D et al (2012) Cognitive performance related to HIV+ monocytes. J Neuropsychiatry Clin Neurosci 24(1):71–80

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kumar AM, Fernandez JB, Singer EJ, Commins D, Waldrop-Valverde D, Ownby RL et al (2009) Human immunodeficiency virus type 1 in the central nervous system leads to decreased dopamine in different regions of postmortem human brains. J Neurovirol 15(3):257–274

    Article  CAS  PubMed  Google Scholar 

  25. Kieburtz KD, Epstein LG, Gelbard HA, Greenamyre JT (1991) Excitotoxicity and dopaminergic dysfunction in the acquired immunodeficiency syndrome dementia complex. Therapeutic implications. Arch Neurol 48(12):1281–1284

    Article  CAS  PubMed  Google Scholar 

  26. Dunlop GAK, Liestol K, Myrvang B, Rootwelt H, Christophersen B et al (1997) HIV dementia and apolipoprotein E. Acta Neurol Scand 95:315–318

    Article  CAS  PubMed  Google Scholar 

  27. Maehlen J, Dunlop O, Liestol K, Dobloug JH, Goplen AK, Torvik A (1995) Changing incidence of HIV-induced brain lesions in Oslo, 1983-1994: effects of zidovudine treatment. AIDS 9(10):1165–1169

    Article  CAS  PubMed  Google Scholar 

  28. Corder EH, Robertson KR, Lannfelt L, Bogdanovic N, Eggertsen G, Wilkins J et al (1998) HIV+ subjects with E4 allele for APOE have excess demential and peripheral neuropathy. Nat Med 4(10):1182–1184

    Article  CAS  PubMed  Google Scholar 

  29. Sato-Matsumura KC, Berger J, Hainfellner JA, Mazal P, Budka H (1998) Development of HIV encephalitis in AIDS and TNF-alpha regulatory elements. J Neuroimmunol 91(1–2):89–92

    Article  CAS  PubMed  Google Scholar 

  30. Boven LA, van der Bruggen T, van Asbeck BS, Marx JJ, Nottet HS (1999) Potential role of CCR5 polymorphism in the development of AIDS dementia complex. FEMS Immunol Med Microbiol 26(3–4):243–247

    Article  CAS  PubMed  Google Scholar 

  31. van Rij RP, Portegies P, Hallaby T, Lange JM, Visser J, de Roda Husman AM et al (1999) Reduced prevalence of the CCR5 delta32 heterozygous genotype in human immunodeficiency virus-infected individuals with AIDS dementia complex. J Infect Dis 180(3):854–857

    Article  PubMed  Google Scholar 

  32. Quasney MW, Zhang Q, Sargent S, Mynatt M, Glass J, McArthur J (2001) Increased frequency of the tumor necrosis factor-alpha-308 a allele in adults with human immunodeficiency virus dementia. Ann Neurol 50(2):157–162

    Article  CAS  PubMed  Google Scholar 

  33. Price RW, Brew B, Sidtis J, Rosenblum M, Scheck AC, Cleary P (1988) The brain in AIDS: central nervous system HIV infection and AIDS dementia complex. Science 239(4840):586–592

    Article  CAS  PubMed  Google Scholar 

  34. Gonzalez E, Rovin BH, Sen L, Cooke G, Dhanda R, Mummidi S et al (2002) HIV infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci U S A 99(21):13795–13800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome. Council of State and Territorial Epidemiologists; AIDS Program, Center for Infectious Diseases (1987) MMWR Morb Mortal Wkly Rep 36 Suppl 1:1S–15S

    Google Scholar 

  36. Singh KK, Barroga CF, Hughes MD, Chen J, Raskino C, McKinney RE et al (2003) Genetic influence of CCR5, CCR2, and SDF1 variants on human immunodeficiency virus 1 (HIV)-related disease progression and neurological impairment, in children with symptomatic HIV infection. J Infect Dis 188(10):1461–1472

    Article  CAS  PubMed  Google Scholar 

  37. Cutler RG, Haughey NJ, Tammara A, McArthur JC, Nath A, Reid R et al (2004) Dysregulation of sphingolipid and sterol metabolism by ApoE4 in HIV dementia. Neurology 63:626–630

    Article  CAS  PubMed  Google Scholar 

  38. Diaz-Arrastia R, Gong Y, Kelly CJ, Gelman BB (2004) Host genetic polymorphisms in human immunodeficiency virus-related neurologic disease. J Neurovirol 10(Suppl 1):67–73

    Article  CAS  PubMed  Google Scholar 

  39. Singh KK, Ellis RJ, Marquie-Beck J, Letendre S, Heaton RK, Grant I et al (2004) CCR2 polymorphisms affect neuropsychological impairment in HIV+ adults. J Neuroimmunol 157(1–2):185–192

    Article  CAS  PubMed  Google Scholar 

  40. Heaton RK, Grant I, Butters N, White DA, Kirson D, Atkinson JH et al (1995) The HNRC 500 – neuropsychology of HIV infection at different disease stages. HIV Neurobehavioral Research Center. J Int Neuropsychol Soc 1(3):231–251

    Article  CAS  PubMed  Google Scholar 

  41. Valcour VG, Shikuma C, Shiramizu B, Watters M, Poff P, Selnes OA et al (2004) Age, apolipoprotein E4, and the risk of HIV dementia: the Hawaii Aging with HIV Cohort. J Neuroimmunol 157(1–2):197–202

    Article  CAS  PubMed  Google Scholar 

  42. Shiramizu B, Lau E, Tamamoto A, Uniatowski J, Troelstrup D (2006) Feasibility assessment of cerebrospinal fluid from HIV+ children for HIV proviral DNA and monocyte chemoattractant protein 1 alleles. J Investig Med 54(8):468–472

    Article  CAS  PubMed  Google Scholar 

  43. Burt TD, Agan BK, Marconi VC, He W, Kulkarni H, Mold JE et al (2008) Apolipoprotein (apo) E4 enhances HIV cell entry in vitro, and the APOE epsilon4/epsilon4 genotype accelerates HIV disease progression. Proc Natl Acad Sci U S A 105(25):8718–8723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pomara N, Belzer KD, Silva R, Cooper TB, Sidtis JJ (2008) The apolipoprotein E epsilon4 allele and memory performance in HIV seropositive subjects: differences at baseline but not after acute oral lorazepam challenge. Psychopharmacology 201(1):125–135

    Article  CAS  PubMed  Google Scholar 

  45. Pemberton LA, Stone E, Price P, van Bockxmeer F, Brew BJ (2008) The relationship between ApoE, TNFA, IL1a, IL1b and IL12b genes and HIV-associated dementia. HIV Med 9(8):677–680

    Article  CAS  PubMed  Google Scholar 

  46. Price RW, Sidtis J, Rosenblum M (1988) The AIDS dementia complex: some current questions. Ann Neurol 23(Suppl):S27–S33

    Article  PubMed  Google Scholar 

  47. Levine AJ, Singer EJ, Sinsheimer JS, Hinkin CH, Papp J, Dandekar S, Giovanelli A, Shapshak P (2009) CCL3 genotype and current depression increase risk of HIV-associated dementia. Neurobehav HIV Med 1:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bousman CA, Cherner M, Atkinson JH, Heaton RK, Grant I, Everall IP et al (2010) COMT Val158Met polymorphism, executive dysfunction, and sexual risk behavior in the context of HIV infection and methamphetamine dependence. Interdiscip Perspect Infect Dis 2010:678648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Joska JA, Combrinck M, Valcour VG, Hoare J, Leisegang F, Mahne AC et al (2010) Association between apolipoprotein E4 genotype and human immunodeficiency virus-associated dementia in younger adults starting antiretroviral therapy in South Africa. J Neurovirol 16(5):377–383

    Article  CAS  PubMed  Google Scholar 

  50. Spector SA, Singh KK, Gupta S, Cystique LA, Jin H, Letendre S et al (2010) APOE epsilon4 and MBL-2 O/O genotypes are associated with neurocognitive impairment in HIV+ plasma donors. AIDS 24(10):1471–1479

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sun B, Abadjian L, Rempel H, Calosing C, Rothlind J, Pulliam L (2010) Peripheral biomarkers do not correlate with cognitive impairment in highly active antiretroviral therapy-treated subjects with human immunodeficiency virus type 1 infection. J Neurovirol 16(2):115–124

    Article  CAS  PubMed  Google Scholar 

  52. Andres MA, Feger U, Nath A, Munsaka S, Jiang CS, Chang LAPOE (2011) Epsilon 4 allele and CSF APOE on cognition in HIV+ subjects. J Neuroimmune Pharmacol 6(3):389–398

    Article  PubMed  Google Scholar 

  53. Power C, Selnes OA, Grim JA, McArthur JC (1995) HIV dementia scale: a rapid screening test. J Acquir Immune Defic Syndr Hum Retrovirol 8(3):273–278

    Article  CAS  PubMed  Google Scholar 

  54. Chang L, Andres M, Sadino J, Jiang CS, Nakama H, Miller E et al (2011) Impact of apolipoprotein E epsilon4 and HIV on cognition and brain atrophy: antagonistic pleiotropy and premature brain aging. NeuroImage 58(4):1017–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gupta S, Bousman CA, Chana G, Cherner M, Heaton RK, Deutsch R et al (2011) Dopamine receptor D3 genetic polymorphism (rs6280TC) is associated with rates of cognitive impairment in methamphetamine-dependent men with HIV: preliminary findings. J Neurovirol 17(3):239–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Singh KK, Gray PK, Wang Y, Fenton T, Trout RN, Spector SA (2011) HLA alleles are associated with altered risk for disease progression and central nervous system impairment of HIV+ children. J Acquir Immune Defic Syndr 57(1):32–39

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bol SM, Booiman T, van Manen D, Bunnik EM, van Sighem AI, Sieberer M et al (2012) Single nucleotide polymorphism in gene encoding transcription factor Prep1 is associated with HIV-associated dementia. PLoS One 7(2):e30990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schrier RD, Gupta S, Riggs P, Cysique LA, Letendre S, Jin H et al (2012) The influence of HLA on HIV-associated neurocognitive impairment in Anhui, China. PLoS One 7(5):e32303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brown A, Sacktor N, Marder K, Cohen B, Schifitto G, Skolasky RL, Creighton J, Guo L, McArthur JC (2012) CCL3L1 gene copy number in individuals with and without HIV-associated neurocognitive disorder. Curr Biomarker Findings 2:1–6

    Article  CAS  Google Scholar 

  60. Levine AJ, Sinsheimer JS, Bilder R, Shapshak P, Singer EJ (2012) Functional polymorphisms in dopamine-related genes: effect on neurocognitive functioning in HIV+ adults. J Clin Exp Neuropsychol 34(1):78–91

    Article  PubMed  Google Scholar 

  61. Morgan EE, Woods SP, Letendre SL, Franklin DR, Bloss C, Goate A et al (2013) Apolipoprotein E4 genotype does not increase risk of HIV-associated neurocognitive disorders. J Neurovirol

    Google Scholar 

  62. Panos SE, Hinkin CH, Singer EJ, Thames AD, Patel S, Sinsheimer JS et al Apolipoprotein-E genotype and human immunodeficiency virus-associated neurocognitive disorder: the modulating effects of older age and disease severity. Neurobehav HIV Med (in press)

    Google Scholar 

  63. Singh KK, Wang Y, Gray KP, Farhad M, Brummel S, Fenton T et al (2013) Genetic variants in the host restriction factor APOBEC3G are associated with HIV-related disease progression and central nervous system impairment in children. J Acquir Immune Defic Syndr 62(2):197–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hoare J, Westgarth-Taylor J, Fouche JP, Combrinck M, Spottiswoode B, Stein DJ et al (2013) Relationship between apolipoprotein E4 genotype and white matter integrity in HIV-positive young adults in South Africa. Eur Arch Psychiatry Clin Neurosci 263(3):189–195

    Article  PubMed  Google Scholar 

  65. Morales D, Hechavarria R, Wojna V, Acevedo SF (2013) YWHAE/14-3-3epsilon: a potential novel genetic risk factor and CSF biomarker for HIV neurocognitive impairment. J Neurovirol 19(5):471–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Levine AJ, Reynolds S, Cox C, Miller EN, Sinsheimer JS, Becker JT et al (2014) The longitudinal and interactive effects of HIV status, stimulant use, and host genotype upon neurocognitive functioning. J Neurovirol 20(3):243–257

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chang L, Jiang C, Cunningham E, Buchthal S, Douet V, Andres M et al (2014) Effects of APOE epsilon4, age, and HIV on glial metabolites and cognitive deficits. Neurology 82(24):2213–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sundermann EE, Bishop JR, Rubin LH, Little DM, Meyer VJ, Martin E et al (2015) Genetic predictor of working memory and prefrontal function in women with HIV. J Neurovirol 21(1):81–91

    Article  PubMed  Google Scholar 

  69. Becker JT, Martinson JJ, Penugonda S, Kingsley L, Molsberry S, Reynolds S et al (2015) No association between Apoepsilon4 alleles, HIV infection, age, neuropsychological outcome, or death. J Neurovirol 21(1):24–31

    Article  CAS  PubMed  Google Scholar 

  70. Villalba K, Devieux JG, Rosenberg R, Cadet JL (2015) DRD2 and DRD4 genes related to cognitive deficits in HIV+ adults who abuse alcohol. Behav Brain Funct 11:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Letendre SL, Zheng JC, Kaul M, Yiannoutsos CT, Ellis RJ, Taylor MJ et al (2011) Chemokines in cerebrospinal fluid correlate with cerebral metabolite patterns in HIV+ individuals. J Neurovirol 17(1):63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Marcotte TD, Deutsch R, Michael BD, Franklin D, Cookson DR, Bharti AR et al (2013) A concise panel of biomarkers identifies neurocognitive functioning changes in HIV+ individuals. J Neuroimmune Pharmacol 8(5):1123–1135

    Article  PubMed  Google Scholar 

  73. Cassol E, Misra V, Morgello S, Gabuzda D (2013) Applications and limitations of inflammatory biomarkers for studies on neurocognitive impairment in HIV infection. J Neuroimmune Pharmacol 8(5):1087–1097

    Article  PubMed  PubMed Central  Google Scholar 

  74. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM et al (1996) CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV. Science 272(5270):1955–1958

    Article  CAS  PubMed  Google Scholar 

  75. Alkhatib G, Broder CC, Berger EA (1996) Cell type-specific fusion cofactors determine human immunodeficiency virus type 1 tropism for T-cell lines versus primary macrophages. J Virol 70(8):5487–5494

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lane BR, King SR, Bock PJ, Strieter RM, Coffey MJ, Markovitz DM (2003) The C-X-C chemokine IP-10 stimulates HIV replication. Virology 307(1):122–134

    Article  CAS  PubMed  Google Scholar 

  77. Gonzalez E, Dhanda R, Bamshad M, Mummidi S, Geevarghese R, Catano G et al (2001) Global survey of genetic variation in CCR5, RANTES, and MIP-1alpha: impact on the epidemiology of the HIV pandemic. Proc Natl Acad Sci U S A 98(9):5199–5204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G et al (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV/AIDS susceptibility. Science 307(5714):1434–1440

    Article  CAS  PubMed  Google Scholar 

  79. Kaul M, Lipton SA (2005) Experimental and potential future therapeutic approaches for HIV associated dementia targeting receptors for chemokines, glutamate and erythropoietin. Neurotox Res 8(1–2):167–186

    Article  CAS  PubMed  Google Scholar 

  80. Weiss JM, Nath A, Major EO, Berman JW (1999) HIV Tat induces monocyte chemoattractant protein-1-mediated monocyte transmigration across a model of the human blood-brain barrier and up-regulates CCR5 expression on human monocytes. J Immunol 163(5):2953–2959

    CAS  PubMed  Google Scholar 

  81. Zheng J, Thylin MR, Cotter RL, Lopez AL, Ghorpade A, Persidsky Y et al (2001) HIV infected and immune competent mononuclear phagocytes induce quantitative alterations in neuronal dendritic arbor: relevance for HIV-associated dementia. Neurotox Res 3(5):443–459

    Article  CAS  PubMed  Google Scholar 

  82. Zheng J, Thylin MR, Persidsky Y, Williams CE, Cotter RL, Zink W et al (2001) HIV infected immune competent mononuclear phagocytes influence the pathways to neuronal demise. Neurotox Res 3(5):461–484

    Article  CAS  PubMed  Google Scholar 

  83. Kaul M, Ma Q, Medders KE, Desai MK, Lipton SA (2007) HIV coreceptors CCR5 and CXCR4 both mediate neuronal cell death but CCR5 paradoxically can also contribute to protection. Cell Death Differ 14(2):296–305

    Article  CAS  PubMed  Google Scholar 

  84. Liu H, Chao D, Nakayama EE, Taguchi H, Goto M, Xin X et al (1999) Polymorphism in RANTES chemokine promoter affects HIV disease progression. Proc Natl Acad Sci U S A 96(8):4581–4585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM et al (1996) Resistance to HIV infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593):722–725

    Article  CAS  PubMed  Google Scholar 

  86. Ndhlovu LC, Umaki T, Chew GM, Chow DC, Agsalda M, Kallianpur KJ et al (2014) Treatment intensification with maraviroc (CCR5 antagonist) leads to declines in CD16-expressing monocytes in cART-suppressed chronic HIV+ subjects and is associated with improvements in neurocognitive test performance: implications for HIV-associated neurocognitive disease (HAND). J Neurovirol 20(6):571–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW (2006) CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 26(4):1098–1106

    Article  CAS  PubMed  Google Scholar 

  88. Lehmann MH, Masanetz S, Kramer S, Erfle V (2006) HIV Nef upregulates CCL2/MCP-1 expression in astrocytes in a myristoylation- and calmodulin-dependent manner. J Cell Sci 119(Pt 21):4520–4530

    Article  CAS  PubMed  Google Scholar 

  89. McDermott DH, Yang Q, Kathiresan S, Cupples LA, Massaro JM, Keaney JF Jr et al (2005) CCL2 polymorphisms are associated with serum monocyte chemoattractant protein-1 levels and myocardial infarction in the Framingham Heart Study. Circulation 112(8):1113–1120

    Article  CAS  PubMed  Google Scholar 

  90. Letendre S, Marquie-Beck J, Singh KK, de Almeida S, Zimmerman J, Spector SA et al (2004) The monocyte chemotactic protein-1 -2578G allele is associated with elevated MCP-1 concentrations in cerebrospinal fluid. J Neuroimmunol 157(1–2):193–196

    Article  CAS  PubMed  Google Scholar 

  91. Thames AD, Briones MS, Magpantay LI, Martinez-Maza O, Singer EJ, Hinkin CH et al (2015) The role of chemokine C-C motif ligand 2 genotype and cerebrospinal fluid chemokine C-C motif ligand 2 in neurocognition among HIV+ patients. AIDS 29(12):1483–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Smith MW, Dean M, Carrington M, Winkler C, Huttley GA, Lomb DA et al (1997) Contrasting genetic influence of CCR2 and CCR5 variants on HIV infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science 277(5328):959–965

    Article  CAS  PubMed  Google Scholar 

  93. Schmidtmayerova H, Nottet HS, Nuovo G, Raabe T, Flanagan CR, Dubrovsky L et al (1996) Human immunodeficiency virus type 1 infection alters chemokine beta peptide expression in human monocytes: implications for recruitment of leukocytes into brain and lymph nodes. Proc Natl Acad Sci U S A 93(2):700–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Modi WS, Lautenberger J, An P, Scott K, Goedert JJ, Kirk GD et al (2006) Genetic variation in the CCL18-CCL3-CCL4 chemokine gene cluster influences HIV type 1 transmission and AIDS disease progression. Am J Hum Genet 79(1):120–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lachman HM, Papolos DF, Saito T, YM Y, Szumlanski CL, Weinshilboum RM (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6(3):243–250

    Article  CAS  PubMed  Google Scholar 

  96. Bilder RM, Volavka J, Lachman HM, Grace AA (2004) The catechol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 29(11):1943–1961

    Article  CAS  PubMed  Google Scholar 

  97. Bilder RM, Volavka J, Czobor P, Malhotra AK, Kennedy JL, Ni X et al (2002) Neurocognitive correlates of the COMT Val(158)met polymorphism in chronic schizophrenia. Biol Psychiatry 52(7):701–707

    Article  CAS  PubMed  Google Scholar 

  98. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al (2001) Effect of COMT Val108/158 met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 98(12):6917–6922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nolan KA, Bilder RM, Lachman HM, Volavka J (2004) Catechol O-methyltransferase Val158Met polymorphism in schizophrenia: differential effects of Val and met alleles on cognitive stability and flexibility. Am J Psychiatry 161(2):359–361

    Article  PubMed  Google Scholar 

  100. Rosa A, Peralta V, Cuesta MJ, Zarzuela A, Serrano F, Martinez-Larrea A et al (2004) New evidence of association between COMT gene and prefrontal neurocognitive function in healthy individuals from sibling pairs discordant for psychosis. Am J Psychiatry 161(6):1110–1112

    Article  PubMed  Google Scholar 

  101. Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D (2002) A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 159(4):652–654

    Article  PubMed  Google Scholar 

  102. Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T, Kolachana BS et al (2003) Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 60(9):889–896

    Article  CAS  PubMed  Google Scholar 

  103. Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF et al (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A 100(10):6186–6191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hsieh PC, Yeh TL, Lee IH, Huang HC, Chen PS, Yang YK et al (2010) Correlation between errors on the Wisconsin Card Sorting Test and the availability of striatal dopamine transporters in healthy volunteers. J Psychiatry Neurosci 35(2):90–94

    Article  PubMed  PubMed Central  Google Scholar 

  105. Mozley LH, Gur RC, Mozley PD, Gur RE (2001) Striatal dopamine transporters and cognitive functioning in healthy men and women. Am J Psychiatry 158(9):1492–1499

    Article  CAS  PubMed  Google Scholar 

  106. Wang GJ, Chang L, Volkow ND, Telang F, Logan J, Ernst T et al (2004) Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain 127(Pt 11):2452–2458

    Article  PubMed  Google Scholar 

  107. Chang L, Wang GJ, Volkow ND, Ernst T, Telang F, Logan J et al (2008) Decreased brain dopamine transporters are related to cognitive deficits in HIV patients with or without cocaine abuse. NeuroImage 42(2):869–878

    Article  PubMed  PubMed Central  Google Scholar 

  108. Prata DP, Mechelli A, CH F, Picchioni M, Toulopoulou T, Bramon E et al (2009) Epistasis between the DAT 3′ UTR VNTR and the COMT Val158Met SNP on cortical function in healthy subjects and patients with schizophrenia. Proc Natl Acad Sci U S A 106(32):13600–13605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bertolino A, Blasi G, Latorre V, Rubino V, Rampino A, Sinibaldi L et al (2006) Additive effects of genetic variation in dopamine regulating genes on working memory cortical activity in human brain. J Neurosci 26(15):3918–3922

    Article  CAS  PubMed  Google Scholar 

  110. VanNess SH, Owens MJ, Kilts CD (2005) The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet 6:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 411(6833):86–89

    Article  CAS  PubMed  Google Scholar 

  112. Mossner R, Daniel S, Albert D, Heils A, Okladnova O, Schmitt A et al (2000) Serotonin transporter function is modulated by brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF). Neurochem Int 36(3):197–202

    Article  CAS  PubMed  Google Scholar 

  113. Nosheny RL, Mocchetti I, Bachis A (2005) Brain-derived neurotrophic factor as a prototype neuroprotective factor against HIV-associated neuronal degeneration. Neurotox Res 8(1–2):187–198

    Article  CAS  PubMed  Google Scholar 

  114. Nosheny RL, Ahmed F, Yakovlev A, Meyer EM, Ren K, Tessarollo L et al (2007) Brain-derived neurotrophic factor prevents the nigrostriatal degeneration induced by human immunodeficiency virus-1 glycoprotein 120 in vivo. Eur J Neurosci 25(8):2275–2284

    Article  PubMed  Google Scholar 

  115. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112(2):257–269

    Article  CAS  PubMed  Google Scholar 

  116. Pezawas L, Verchinski BA, Mattay VS, Callicott JH, Kolachana BS, Straub RE et al (2004) The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J Neurosci 24(45):10099–10102

    Article  CAS  PubMed  Google Scholar 

  117. Mocchetti I, Nosheny RL, Tanda G, Ren K, Meyer EM (2007) Brain-derived neurotrophic factor prevents human immunodeficiency virus type 1 protein gp120 neurotoxicity in the rat nigrostriatal system. Ann N Y Acad Sci 1122:144–154

    Article  CAS  PubMed  Google Scholar 

  118. Kumar AM, Ownby RL, Waldrop-Valverde D, Fernandez B, Kumar M (2011) Human immunodeficiency virus infection in the CNS and decreased dopamine availability: relationship with neuropsychological performance. J Neurovirol 17(1):26–40

    Article  CAS  PubMed  Google Scholar 

  119. Kumar AM, Fernandez J, Singer EJ, Commins D, Waldrop-Valverde D, Ownby RL et al (2009) Human immunodeficiency virus type 1 in the central nervous system leads to decreased dopamine in different regions of postmortem human brains. J Neurovirol:1–18

    Google Scholar 

  120. Gelman BB, Lisinicchia JG, Chen T, Johnson KM, Jennings K, Freeman DH Jr et al (2012) Prefrontal dopaminergic and enkephalinergic synaptic accommodation in HIV-associated neurocognitive disorders and encephalitis. J Neuroimmune Pharmacol 7(3):686–700

    Article  PubMed  PubMed Central  Google Scholar 

  121. Gelman BB, Spencer JA, Holzer CE 3rd, Soukup VM (2006) Abnormal striatal dopaminergic synapses in National NeuroAIDS Tissue Consortium subjects with HIV encephalitis. J Neuroimmune Pharmacol 1(4):410–420

    Article  PubMed  Google Scholar 

  122. Bousman CA, Cherner M, Atkinson JH, Heaton RK, Grant I, Everall IP et al (2010) COMT Val158Met polymorphism, executive dysfunction, and sexual risk behavior in the context of HIV infection and methamphetamine dependence. Interdiscip Perspect Infect Dis 678648

    Google Scholar 

  123. Gupta S, Bousman CA, Chana G, Cherner M, Heaton RK, Deutsch R et al (2011) Dopamine receptor D3 genetic polymorphism (rs6280TC) is associated with rates of cognitive impairment in methamphetamine-dependent men with HIV: preliminary findings. J Neurovirol

    Google Scholar 

  124. Aouizerat BE, Pearce CL, Miaskowski C (2011) The search for host genetic factors of HIV/AIDS pathogenesis in the post-genome era: progress to date and new avenues for discovery. Curr HIV/AIDS Rep 8(1):38–44

    Article  PubMed  PubMed Central  Google Scholar 

  125. An P, Winkler CA (2010) Host genes associated with HIV/AIDS: advances in gene discovery. Trends Genet 26(3):119–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Belbin O, Carrasquillo MM, Crump M, Culley OJ, Hunter TA, Ma L et al (2011) Investigation of 15 of the top candidate genes for late-onset Alzheimer’s disease. Hum Genet 129(3):273–282

    Google Scholar 

  127. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303(18):1832–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Laumet G, Chouraki V, Grenier-Boley B, Legry V, Heath S, Zelenika D et al (2010) Systematic analysis of candidate genes for Alzheimer’s disease in a French, genome-wide association study. J Alzheimers Dis 20(4):1181–1188

    Article  CAS  PubMed  Google Scholar 

  129. Braskie MN, Jahanshad N, Stein JL, Barysheva M, McMahon KL, de Zubicaray GI et al (2011) Common Alzheimer’s disease risk variant within the CLU gene affects white matter microstructure in young adults. J Neurosci 31(18):6764–6770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Levine AJ, Service S, Miller EN, Reynolds SM, Singer EJ, Shapshak P et al (2012) Genome-wide association study of neurocognitive impairment and dementia in HIV+ adults. Am J Med Genet B Neuropsychiatr Genet

    Google Scholar 

  131. Noorbakhsh F, Ramachandran R, Barsby N, Ellestad KK, LeBlanc A, Dickie P et al (2010) MicroRNA profiling reveals new aspects of HIV neurodegeneration: caspase-6 regulates astrocyte survival. FASEB J 24(6):1799–1812

    Article  CAS  PubMed  Google Scholar 

  132. Gelman BB, Soukup VM, Schuenke KW, Keherly MJ, Holzer C 3rd, Richey FJ et al (2004) Acquired neuronal channelopathies in HIV-associated dementia. J Neuroimmunol 157(1–2):111–119

    Article  CAS  PubMed  Google Scholar 

  133. Benos DJ, Hahn BH, Bubien JK, Ghosh SK, Mashburn NA, Chaikin MA et al (1994) Envelope glycoprotein gp120 of human immunodeficiency virus type 1 alters ion transport in astrocytes: implications for AIDS dementia complex. Proc Natl Acad Sci U S A 91(2):494–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E et al (2009) STrengthening the REporting of Genetic Association Studies (STREGA): an extension of the STROBE statement. PLoS Med 6(2):e22

    Article  PubMed  Google Scholar 

  135. Cantor RM, Lange K, Sinsheimer JS (2010) Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 86(1):6–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shapshak P, Duncan R, Torres-Munoz JE, Duran EM, Minagar A, Petito CK (2004) Analytic approaches to differential gene expression in AIDS versus control brains. Front Biosci 9:2935–2946

    Article  CAS  PubMed  Google Scholar 

  137. Presson AP, Sobel EM, Papp JC, Suarez CJ, Whistler T, Rajeevan MS et al (2008) Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome. BMC Syst Biol 2:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Kim SY, Li J, Bentsman G, Brooks AI, Volsky DJ (2004) Microarray analysis of changes in cellular gene expression induced by productive infection of primary human astrocytes: implications for HAD. J Neuroimmunol 157(1–2):17–26

    Article  CAS  PubMed  Google Scholar 

  139. Kolson DL, Sabnekar P, Baybis M, Crino PB (2004) Gene expression in TUNEL-positive neurons in human immunodeficiency virus-infected brain. J Neurovirol 10(Suppl 1):102–107

    Article  CAS  PubMed  Google Scholar 

  140. Borjabad A, Brooks AI, Volsky DJ Gene expression profiles of HIV+ glia and brain: toward better understanding of the role of astrocytes in HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol 5(1):44–62

    Google Scholar 

  141. Masliah E, Roberts ES, Langford D, Everall I, Crews L, Adame A et al (2004) Patterns of gene dysregulation in the frontal cortex of patients with HIV encephalitis. J Neuroimmunol 157(1–2):163–175

    Article  CAS  PubMed  Google Scholar 

  142. Salaria S, Badkoobehi H, Rockenstein E, Crews L, Chana G, Masliah E et al (2007) Toll-like receptor pathway gene expression is associated with human immunodeficiency virus-associated neurodegeneration. J Neurovirol 13(6):496–503

    Article  CAS  PubMed  Google Scholar 

  143. Everall I, Salaria S, Roberts E, Corbeil J, Sasik R, Fox H et al (2005) Methamphetamine stimulates interferon inducible genes in HIV infected brain. J Neuroimmunol 170(1–2):158–171

    Article  CAS  PubMed  Google Scholar 

  144. Winkler JM, Chaudhuri AD, Fox HS (2012) Translating the brain transcriptome in neuroAIDS: from non-human primates to humans. J Neuroimmune Pharmacol

    Google Scholar 

  145. Roberts ES, Zandonatti MA, Watry DD, Madden LJ, Henriksen SJ, Taffe MA et al (2003) Induction of pathogenic sets of genes in macrophages and neurons in NeuroAIDS. Am J Pathol 162(6):2041–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gersten M, Alirezaei M, Marcondes MC, Flynn C, Ravasi T, Ideker T et al (2009) An integrated systems analysis implicates EGR1 downregulation in simian immunodeficiency virus encephalitis-induced neural dysfunction. J Neurosci 29(40):12467–12476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Winkler JM, Chaudhuri AD, Fox HS (2012) Translating the brain transcriptome in neuroAIDS: from non-human primates to humans. J Neuroimmune Pharmacol 7(2):372–379

    Article  PubMed  PubMed Central  Google Scholar 

  148. Gelman BB, Chen T, Lisinicchia JG, Soukup VM, Carmical JR, Starkey JM et al (2012) The national neuroAIDS tissue consortium brain Gene Array: two types of HIV-associated neurocognitive impairment. PLoS One 7(9):e46178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Levine AJ, Miller JA, Shapshak P, Gelman B, Singer EJ, Hinkin CH et al (2013) Systems analysis of human brain gene expression: mechanisms for HIV-associated neurocognitive impairment and common pathways with Alzheimer’s disease. BMC Med Genet 6(1):4

    Google Scholar 

  150. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S et al (2008) Functional organization of the transcriptome in human brain. Nat Neurosci 11(11):1271–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Borjabad A, Volsky DJ (2012) Common transcriptional signatures in brain tissue from patients with HIV-associated neurocognitive disorders, Alzheimer’s disease, and multiple sclerosis. J Neuroimmune Pharmacol

    Google Scholar 

  153. Borjabad A, Morgello S, Chao W, Kim SY, Brooks AI, Murray J et al (2011) Significant effects of antiretroviral therapy on global gene expression in brain tissues of patients with HIV-associated neurocognitive disorders. PLoS Pathog 7(9):e1002213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC et al (2008) Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol 65(1):65–70

    Article  PubMed  PubMed Central  Google Scholar 

  155. Tozzi V, Balestra P, Bellagamba R, Corpolongo A, Salvatori MF, Visco-Comandini U et al (2007) Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors. J Acquir Immune Defic Syndr 45(2):174–182

    Article  PubMed  Google Scholar 

  156. Cysique LA, Vaida F, Letendre S, Gibson S, Cherner M, Woods SP et al (2009) Dynamics of cognitive change in impaired HIV-positive patients initiating antiretroviral therapy. Neurology 73(5):342–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Marra CM, Lockhart D, Zunt JR, Perrin M, Coombs RW, Collier AC (2003) Changes in CSF and plasma HIV RNA and cognition after starting potent antiretroviral therapy. Neurology 60(8):1388–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Garvey L, Winston A, Walsh J, Post F, Porter K, Gazzard B et al (2011) Antiretroviral therapy CNS penetration and HIV-associated CNS disease. Neurology 76(8):693–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kahouadji Y, Dumurgier J, Sellier P, Lapalus P, Delcey V, Bergmann J et al (2012) Cognitive function after several years of antiretroviral therapy with stable central nervous system penetration score. HIV Med

    Google Scholar 

  160. Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS (1997) Unique monocyte subset in patients with AIDS dementia. Lancet 349(9053):692–695

    Article  CAS  PubMed  Google Scholar 

  161. Ellery PJ, Tippett E, Chiu YL, Paukovics G, Cameron PU, Solomon A et al (2007) The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV in vivo. J Immunol 178(10):6581–6589

    Article  CAS  PubMed  Google Scholar 

  162. Peluso R, Haase A, Stowring L, Edwards M, Ventura P (1985) A Trojan Horse mechanism for the spread of visna virus in monocytes. Virology 147(1):231–236

    Article  CAS  PubMed  Google Scholar 

  163. Ancuta P, Moses A, Gabuzda D (2004) Transendothelial migration of CD16+ monocytes in response to fractalkine under constitutive and inflammatory conditions. Immunobiology 209(1–2):11–20

    Article  CAS  PubMed  Google Scholar 

  164. Kraft-Terry SD, Buch SJ, Fox HS, Gendelman HE (2009) A coat of many colors: neuroimmune crosstalk in human immunodeficiency virus infection. Neuron 64(1):133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Persidsky Y, Ghorpade A, Rasmussen J, Limoges J, Liu XJ, Stins M et al (1999) Microglial and astrocyte chemokines regulate monocyte migration through the blood-brain barrier in human immunodeficiency virus-1 encephalitis. Am J Pathol 155(5):1599–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Persidsky Y, Zheng J, Miller D, Gendelman HE (2000) Mononuclear phagocytes mediate blood-brain barrier compromise and neuronal injury during HIV-associated dementia. J Leukoc Biol 68(3):413–422

    CAS  PubMed  Google Scholar 

  167. Buckner CM, Calderon TM, Willams DW, Belbin TJ, Berman JW (2011) Characterization of monocyte maturation/differentiation that facilitates their transmigration across the blood-brain barrier and infection by HIV: implications for NeuroAIDS. Cell Immunol 267(2):109–123

    Article  CAS  PubMed  Google Scholar 

  168. Pulliam L, Rempel H, Sun B, Abadjian L, Calosing C, Meyerhoff DJ (2011) A peripheral monocyte interferon phenotype in HIV infection correlates with a decrease in magnetic resonance spectroscopy metabolite concentrations. AIDS 25(14):1721–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Levine AJ, Horvath S, Miller EN, Singer EJ, Shapshak P, Baldwin GC et al (2013) Transcriptome analysis of HIV+ peripheral blood monocytes: gene transcripts and networks associated with neurocognitive functioning. J Neuroimmunol 265(1–2):96–105

    Article  CAS  PubMed  Google Scholar 

  170. Yoshioka M, Shapshak P, Srivastava AK, Stewart RV, Nelson SJ, Bradley WG et al (1994) Expression of HIV and interleukin-6 in lumbosacral dorsal root ganglia of patients with AIDS. Neurology 44(6):1120–1130

    Article  CAS  PubMed  Google Scholar 

  171. Pedersen KK, Pedersen M, Gaardbo JC, Ronit A, Hartling HJ, Bruunsgaard H et al (2013) Persisting inflammation and chronic immune activation but intact cognitive function in HIV+ patients after long term treatment with combination antiretroviral therapy. J Acquir Immune Defic Syndr

    Google Scholar 

  172. Perez DI, Gil C, Martinez A (2011) Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases. Med Res Rev 31(6):924–954

    Article  CAS  PubMed  Google Scholar 

  173. Janeczko K (1991) The proliferative response of S-100 protein-positive glial cells to injury in the neonatal rat brain. Brain Res 564(1):86–90

    Article  CAS  PubMed  Google Scholar 

  174. Kuwabara K, Matsumoto M, Ikeda J, Hori O, Ogawa S, Maeda Y et al (1996) Purification and characterization of a novel stress protein, the 150-kDa oxygen-regulated protein (ORP150), from cultured rat astrocytes and its expression in ischemic mouse brain. J Biol Chem 271(9):5025–5032

    Article  CAS  PubMed  Google Scholar 

  175. Ozawa K, Kondo T, Hori O, Kitao Y, Stern DM, Eisenmenger W et al (2001) Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport. J Clin Invest 108(1):41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Tamatani M, Matsuyama T, Yamaguchi A, Mitsuda N, Tsukamoto Y, Taniguchi M et al (2001) ORP150 protects against hypoxia/ischemia-induced neuronal death. Nat Med 7(3):317–323

    Article  CAS  PubMed  Google Scholar 

  177. Zhao L, Rosales C, Seburn K, Ron D, Ackerman SL (2010) Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco-Sjogren syndrome. Hum Mol Genet 19(1):25–35

    Article  CAS  PubMed  Google Scholar 

  178. Kounnas MZ, Moir RD, Rebeck GW, Bush AI, Argraves WS, Tanzi RE et al (1995) LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted beta-amyloid precursor protein and mediates its degradation. Cell 82(2):331–340

    Article  CAS  PubMed  Google Scholar 

  179. Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE et al (2000) Uptake of HIV tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 6(12):1380–1387

    Article  CAS  PubMed  Google Scholar 

  180. Kang DE, Saitoh T, Chen X, Xia Y, Masliah E, Hansen LA et al (1997) Genetic association of the low-density lipoprotein receptor-related protein gene (LRP), an apolipoprotein E receptor, with late-onset Alzheimer’s disease. Neurology 49(1):56–61

    Article  CAS  PubMed  Google Scholar 

  181. Bian L, Yang JD, Guo TW, Duan Y, Qin W, Sun Y et al (2005) Association study of the A2M and LRP1 genes with Alzheimer disease in the Han Chinese. Biol Psychiatry 58(9):731–737

    Article  CAS  PubMed  Google Scholar 

  182. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD et al (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13(1):76–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10(11):549–557

    Article  CAS  PubMed  Google Scholar 

  184. Tanji K, Maruyama A, Odagiri S, Mori F, Itoh K, Kakita A et al (2013) Keap1 is localized in neuronal and glial cytoplasmic inclusions in various neurodegenerative diseases. J Neuropathol Exp Neurol 72(1):18–28

    Article  CAS  PubMed  Google Scholar 

  185. Zhao J, Redell JB, Moore AN, Dash PK (2011) A novel strategy to activate cytoprotective genes in the injured brain. Biochem Biophys Res Commun 407(3):501–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Reddy PV, Agudelo M, Atluri VS, Nair MP (2012) Inhibition of nuclear factor erythroid 2-related factor 2 exacerbates HIV gp120-induced oxidative and inflammatory response: role in HIV associated neurocognitive disorder. Neurochem Res 37(8):1697–1706

    Article  CAS  PubMed  Google Scholar 

  187. Letendre SL, Woods SP, Ellis RJ, Atkinson JH, Masliah E, van den Brande G et al (2006) Lithium improves HIV-associated neurocognitive impairment. AIDS 20(14):1885–1888

    Article  CAS  PubMed  Google Scholar 

  188. Guo L, Xing Y, Pan R, Jiang M, Gong Z, Lin L et al (2013) Curcumin protects microglia and primary rat cortical neurons against HIV gp120-mediated inflammation and apoptosis. PLoS One 8(8):e70565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gill AJ, Kovacsics CE, Cross SA, Vance PJ, Kolson LL, Jordan-Sciutto KL et al (2014) Heme oxygenase-1 deficiency accompanies neuropathogenesis of HIV-associated neurocognitive disorders. J Clin Invest 124(10):4459–4472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Roberts ES, Burudi EM, Flynn C, Madden LJ, Roinick KL, Watry DD et al (2004) Acute SIV infection of the brain leads to upregulation of IL6 and interferon-regulated genes: expression patterns throughout disease progression and impact on neuroAIDS. J Neuroimmunol 157(1–2):81–92

    Article  CAS  PubMed  Google Scholar 

  191. Shapshak P, Duncan R, Minagar A, Rodriguez de la Vega P, Stewart RV, Goodkin K (2004) Elevated expression of IFN-gamma in the HIV infected brain. Front Biosci 9:1073–1081

    Article  CAS  PubMed  Google Scholar 

  192. Eletto D, Russo G, Passiatore G, Del Valle L, Giordano A, Khalili K et al (2008) Inhibition of SNAP25 expression by HIV tat involves the activity of mir-128a. J Cell Physiol 216(3):764–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Yelamanchili SV, Chaudhuri AD, Chen LN, Xiong H, Fox HS (2010) MicroRNA-21 dysregulates the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease. Cell Death Dis 1:e77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Tatro ET, Scott ER, Nguyen TB, Salaria S, Banerjee S, Moore DJ et al (2010) Evidence for Alteration of Gene Regulatory Networks through MicroRNAs of the HIV+ brain: novel analysis of retrospective cases. PLoS One 5(4):e10337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Mukerjee R, Chang JR, Del Valle L, Bagashev A, Gayed MM, Lyde RB et al (2011) Deregulation of microRNAs by HIV Vpr protein leads to the development of neurocognitive disorders. J Biol Chem 286(40):34976–34985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kadri F, LaPlante A, De Luca M, Doyle L, Velasco-Gonzalez C, Patterson JR et al (2015) Defining plasma MicroRNAs associated with cognitive impairment in HIV+ patients. J Cell Physiol

    Google Scholar 

  197. Hennessey PT, Sanford T, Choudhary A, Mydlarz WW, Brown D, Adai AT et al (2012) Serum microRNA biomarkers for detection of non-small cell lung cancer. PLoS One 7(2):e32307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sun JM, Spencer VA, Chen HY, Li L, Davie JR (2003) Measurement of histone acetyltransferase and histone deacetylase activities and kinetics of histone acetylation. Methods 31(1):12–23

    Article  CAS  PubMed  Google Scholar 

  199. Thomas EA (2009) Focal nature of neurological disorders necessitates isotype-selective histone deacetylase (HDAC) inhibitors. Mol Neurobiol 40(1):33–45

    Article  CAS  PubMed  Google Scholar 

  200. Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7(10):854–868

    Article  CAS  PubMed  Google Scholar 

  201. Saiyed ZM, Gandhi N, Agudelo M, Napuri J, Samikkannu T, Reddy PV et al (2011) HIV Tat upregulates expression of histone deacetylase-2 (HDAC2) in human neurons: implication for HIV-associated neurocognitive disorder (HAND). Neurochem Int 58(6):656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115

    Article  PubMed  PubMed Central  Google Scholar 

  203. Horvath S, Levine AJ (2015) HIV infection accelerates age according to the epigenetic clock. J Infect Dis

    Google Scholar 

  204. Levine AJ, Quach A, Moore DJ, Achim CL, Soontornniyomkij V, Masliah E et al ( 2015) Accelerated epigenetic aging in brain is associated with pre-mortem HIV-associated neurocognitive disorders. J Neurovirol

    Google Scholar 

  205. Boelaert JR, Weinberg GA, Weinberg ED (1996) Altered iron metabolism in HIV infection: mechanisms, possible consequences, and proposals for management. Infect Agents Dis 5(1):36–46

    CAS  PubMed  Google Scholar 

  206. Kallianpur AR, Jia P, Ellis RJ, Zhao Z, Bloss C, Wen W et al (2014) Genetic variation in iron metabolism is associated with neuropathic pain and pain severity in HIV+ patients on antiretroviral therapy. PLoS One 9(8):e103123

    Article  PubMed  PubMed Central  Google Scholar 

  207. Armitage AE, Stacey AR, Giannoulatou E, Marshall E, Sturges P, Chatha K et al (2014) Distinct patterns of hepcidin and iron regulation during HIV, HBV, and HCV infections. Proc Natl Acad Sci U S A 111(33):12187–12192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Gordeuk VR, Delanghe JR, Langlois MR, Boelaert JR (2001) Iron status and the outcome of HIV infection: an overview. J Clin Virol 20(3):111–115

    Article  CAS  PubMed  Google Scholar 

  209. McDermid JM, van der Loeff MF, Jaye A, Hennig BJ, Bates C, Todd J et al (2009) Mortality in HIV infection is independently predicted by host iron status and SLC11A1 and HP genotypes, with new evidence of a gene-nutrient interaction. Am J Clin Nutr 90(1):225–233

    Article  CAS  PubMed  Google Scholar 

  210. Kallianpur AR, Wang Q, Jia P, Hulgan T, Zhao Z, Letendre SL et al (2015) Anemia and red cell indices predict HIV-associated neurocognitive impairment in the HAART era. J Infect Dis

    Google Scholar 

  211. Malvoisin E, Makhloufi D, Livrozet JM (2014) Serum hepcidin levels in women infected with HIV under antiviral therapy. J Med Virol 86(10):1656–1660

    Article  CAS  PubMed  Google Scholar 

  212. Redig AJ, Berliner N (2013) Pathogenesis and clinical implications of HIV-related anemia in 2013. Hematology 2013:377–381

    Article  PubMed  Google Scholar 

  213. Ketonen L, Kieburtz K, Kazee AM, Tuite M (1996) Putaminal iron deposition in the brain in HIV infection. J NeuroAIDS 1(2):33–40

    CAS  PubMed  Google Scholar 

  214. Miszkiel KA, Paley MN, Wilkinson ID, Hall-Craggs MA, Ordidge R, Kendall BE et al (1997) The measurement of R2, R2* and R2’ in HIV+ patients using the prime sequence as a measure of brain iron deposition. Magn Reson Imaging 15(10):1113–1119

    Google Scholar 

  215. Granziera C, Daducci A, Simioni S, Cavassini M, Roche A, Meskaldji D et al (2013) Micro-structural brain alterations in aviremic HIV+ patients with minor neurocognitive disorders: a multi-contrast study at high field. PLoS One 8(9):e72547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Bar-Or A, Rieckmann P, Traboulsee A, Yong VW (2011) Targeting progressive neuroaxonal injury lessons from multiple sclerosis. CNS Drugs 25(9):783–799

    Article  CAS  PubMed  Google Scholar 

  217. McNeill A (2012) PLA2G6 mutations and other rare causes of neurodegeneration with brain iron accumulation. Curr Drug Targets 13(9):1204–1206

    Article  CAS  PubMed  Google Scholar 

  218. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–1060

    Article  CAS  PubMed  Google Scholar 

  219. Li M, Wang L, Wang W, Qi XL, Tang ZY (2014) Mutations in the HFE gene and sporadic amyotrophic lateral sclerosis risk: a meta-analysis of observational studies. Braz J Med Biol Res 47(3):215–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Stankiewicz JM, Neema M, Ceccarelli A (2014) Iron and multiple sclerosis. Neurobiol Aging 35:S51–SS8

    Article  CAS  PubMed  Google Scholar 

  221. Hogarth P (2015) Neurodegeneration with brain iron accumulation: diagnosis and management. J Mov Disord 8(1):1–13

    Article  PubMed  PubMed Central  Google Scholar 

  222. Ali-Rahmani F, Grigson PS, Lee S, Neely E, Connor JR, Schengrund CL (2014) H63D mutation in hemochromatosis alters cholesterol metabolism and induces memory impairment. Neurobiol Aging 35(6):1511.e1–1511.12

    Article  CAS  Google Scholar 

  223. Crespo AC, Silva B, Marques L, Marcelino E, Maruta C, Costa S et al (2014) Genetic and biochemical markers in patients with Alzheimer’s disease support a concerted systemic iron homeostasis dysregulation. Neurobiol Aging 35(4):777–785

    Article  CAS  PubMed  Google Scholar 

  224. Mariani S, Ventriglia M, Simonelli I, Spalletta G, Bucossi S, Siotto M et al (2013) Effects of hemochromatosis and transferrin gene mutations on peripheral iron dyshomeostasis in mild cognitive impairment and Alzheimer’s and Parkinson’s diseases. Front Aging Neurosci 5:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Andersen HH, Johnsen KB, Moos T (2014) Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration. Cell Mol Life Sci 71(9):1607–1622

    Article  CAS  PubMed  Google Scholar 

  226. Jahanshad N, Rajagopalan P, Thompson PM (2013) Neuroimaging, nutrition, and iron-related genes. Cell Mol Life Sci 70(23):4449–4461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Li H, Swiercz R, Englander EW (2009) Elevated metals compromise repair of oxidative DNA damage via the base excision repair pathway: implications of pathologic iron overload in the brain on integrity of neuronal DNA. J Neurochem 110(6):1774–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Gille G, Reichmann H (2011) Iron-dependent functions of mitochondria – relation to neurodegeneration. J Neural Transm 118(3):349–359

    Article  CAS  PubMed  Google Scholar 

  229. Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Nunez MT (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21:92–105

    Article  CAS  PubMed  Google Scholar 

  230. Batista-Nascimento L, Pimentel C, Menezes RA, Rodrigues-Pousada C (2012) Iron and neurodegeneration: from cellular homeostasis to disease. Oxidative Med Cell Longev 2012:128647

    Article  CAS  Google Scholar 

  231. Schulz K, Kroner A, David S (2012) Iron efflux from astrocytes plays a role in remyelination. J Neurosci 32(14):4841–4847

    Article  CAS  PubMed  Google Scholar 

  232. Graeber MB, Raivich G, Kreutzberg GW (1989) Increase of transferrin receptors and iron uptake in regenerating motor neurons. J Neurosci Res 23(3):342–345

    Article  CAS  PubMed  Google Scholar 

  233. Bartzokis G, PH L, Tingus K, Peters DG, Amar CP, Tishler TA et al (2011) Gender and iron genes may modify associations between brain iron and memory in healthy aging. Neuropsychopharmacology 36(7):1375–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Halpin LE, Collins SA, Yamamoto BK (2014) Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci 97(1):37–44

    Article  CAS  PubMed  Google Scholar 

  235. Smith MA, Harris PLR, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A 94(18):9866–9868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Yoshida T, Tanaka M, Sotomatsu A, Hirai S, Okamoto K (1998) Activated microglia cause iron-dependent lipid peroxidation in the presence of ferritin. Neuroreport 9(9):1929–1933

    Article  CAS  PubMed  Google Scholar 

  237. Wong BX, Duce JA (2014) The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders. Front Pharmacol 5:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. McCarthy RC, Kosman DJ (2015) Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cell Mol Life Sci 72(4):709–727

    Article  CAS  PubMed  Google Scholar 

  239. Ke Y, Qian ZM (2007) Brain iron metabolism: neurobiology and neurochemistry. Prog Neurobiol 83(3):149–173

    Article  CAS  PubMed  Google Scholar 

  240. Du F, Qian ZM, Luo Q, Yung WH, Ke Y (2015) Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-overloaded rats. Mol Neurobiol 52(1):101–114

    Article  CAS  PubMed  Google Scholar 

  241. Simpson IA, Ponnuru P, Klinger ME, Myers RL, Devraj K, Coe CL et al (2015) A novel model for brain iron uptake: introducing the concept of regulation. J Cereb Blood Flow Metab 35(1):48–57

    Article  CAS  PubMed  Google Scholar 

  242. Connor JR, Ponnuru P, Wang XS, Patton SM, Allen RP, Earley CJ (2011) Profile of altered brain iron acquisition in restless legs syndrome. Brain 134(Pt 4):959–968

    Article  PubMed  PubMed Central  Google Scholar 

  243. McCarthy RC, Kosman DJ (2014) Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells. PLoS One 9(2):e89003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Zhao L, Hadziahmetovic M, Wang C, Xu X, Song Y, Jinnah HA et al (2015) Cp/Heph mutant mice have iron-induced neurodegeneration diminished by deferiprone. J Neurochem 135(5):958–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Zumbrennen-Bullough KB, Becker L, Garrett L, Holter SM, Calzada-Wack J, Mossbrugger I et al (2014) Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments. PLoS One 9(6):e98072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Jahanshad N, Kohannim O, Hibar DP, Stein JL, McMahon KL, de Zubicaray GI et al (2012) Brain structure in healthy adults is related to serum transferrin and the H63D polymorphism in the HFE gene. Proc Natl Acad Sci U S A 109(14):E851–E859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Robson KJ, Lehmann DJ, Wimhurst VL, Livesey KJ, Combrinck M, Merryweather-Clarke AT et al (2004) Synergy between the C2 allele of transferrin and the C282Y allele of the haemochromatosis gene (HFE) as risk factors for developing Alzheimer’s disease. J Med Genet 41(4):261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Ali-Rahmani F, Schengrund CL, Connor JR (2014) HFE gene variants, iron, and lipids: a novel connection in Alzheimer’s disease. Front Pharmacol 5:165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Bartzokis G, PH L, Tishler TA, Peters DG, Kosenko A, Barrall KA et al (2010) Prevalent iron metabolism gene variants associated with increased brain ferritin iron in healthy older men. J Alzheimers Dis 20(1):333–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Nandar W, Connor JR (2011) HFE gene variants affect iron in the brain. J Nutr 141(4):729S–739S

    Article  CAS  PubMed  Google Scholar 

  251. Blazquez L, De Juan D, Ruiz-Martinez J, Emparanza JI, Saenz A, Otaegui D et al (2007) Genes related to iron metabolism and susceptibility to Alzheimer’s disease in Basque population. Neurobiol Aging 28(12):1941–1943

    Article  CAS  PubMed  Google Scholar 

  252. Guerreiro RJ, Bras JM, Santana I, Januario C, Santiago B, Morgadinho AS et al (2006) Association of HFE common mutations with Parkinson’s disease, Alzheimer’s disease and mild cognitive impairment in a Portuguese cohort. BMC Neurol 6:24

    Google Scholar 

  253. Sampietro M, Caputo L, Casatta A, Meregalli M, Pellagatti A, Tagliabue J et al (2001) The hemochromatosis gene affects the age of onset of sporadic Alzheimer’s disease. Neurobiol Aging 22(4):563–568

    Article  CAS  PubMed  Google Scholar 

  254. Combarros O, Garcia-Roman M, Fontalba A, Fernandez-Luna JL, Llorca J, Infante J et al (2003) Interaction of the H63D mutation in the hemochromatosis gene with the apolipoprotein E epsilon 4 allele modulates age at onset of Alzheimer’s disease. Dement Geriatr Cogn Disord 15(3):151–154

    Article  CAS  PubMed  Google Scholar 

  255. Berlin D, Chong G, Chertkow H, Bergman H, Phillips NA, Schipper HM (2004) Evaluation of HFE (hemochromatosis) mutations as genetic modifiers in sporadic AD and MCI. Neurobiol Aging 25(4):465–474

    Article  CAS  PubMed  Google Scholar 

  256. Isaya G (2014) Mitochondrial iron-sulfur cluster dysfunction in neurodegenerative disease. Front Pharmacol 5:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Colombelli C, Aoun M, Tiranti V (2015) Defective lipid metabolism in neurodegeneration with brain iron accumulation (NBIA) syndromes: not only a matter of iron. J Inherit Metab Dis 38(1):123–136

    Article  CAS  PubMed  Google Scholar 

  258. Meyer E, Kurian MA, Hayflick SJ (2015) Neurodegeneration with brain iron accumulation: genetic diversity and pathophysiological mechanisms. Annu Rev Genomics Hum Genet 16:257–279

    Article  CAS  PubMed  Google Scholar 

  259. Ramos P, Santos A, Pinto NR, Mendes R, Magalhaes T, Almeida A (2014) Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol 28(1):13–17

    Article  CAS  PubMed  Google Scholar 

  260. Ayton S, Faux NG, Bush AI (2015) Alzheimer’s disease neuroimaging I. Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat Commun 6:6760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Ghadery C, Pirpamer L, Hofer E, Langkammer C, Petrovic K, Loitfelder M et al (2015) R2* mapping for brain iron: associations with cognition in normal aging. Neurobiol Aging 36(2):925–932

    Article  CAS  PubMed  Google Scholar 

  262. Tao Y, Wang Y, Rogers JT, Wang F (2014) Perturbed iron distribution in Alzheimer’s disease serum, cerebrospinal fluid, and selected brain regions: a systematic review and meta-analysis. J Alzheimers Dis 42(2):679–690

    CAS  PubMed  Google Scholar 

  263. Wang ZX, Tan L, Wang HF, Ma J, Liu J, Tan MS et al (2015) Serum iron, zinc, and copper levels in patients with Alzheimer’s disease: a replication study and meta-analyses. J Alzheimers Dis 47(3):565–581

    Article  CAS  PubMed  Google Scholar 

  264. Szabo ST, Harry GJ, Hayden KM, Szabo DT, Birnbaum L (2015) Comparison of metal levels between postmortem brain and ventricular fluid in Alzheimer’s disease and nondemented elderly controls. Toxicol Sci

    Google Scholar 

  265. Wood H (2015) Alzheimer disease: iron – the missing link between ApoE and Alzheimer disease? Nat Rev Neurol 11(7):369

    Article  CAS  PubMed  Google Scholar 

  266. Yu X, Du T, Song N, He Q, Shen Y, Jiang H et al (2013) Decreased iron levels in the temporal cortex in postmortem human brains with Parkinson disease. Neurology 80(5):492–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Pichler I, Del Greco MF, Gogele M, Lill CM, Bertram L, Do CB et al (2013) Serum iron levels and the risk of Parkinson disease: a Mendelian randomization study. PLoS Med 10(6):e1001462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Mitchell RM, Simmons Z, Beard JL, Stephens HE, Connor JR (2010) Plasma biomarkers associated with ALS and their relationship to iron homeostasis. Muscle Nerve 42(1):95–103

    Article  CAS  PubMed  Google Scholar 

  269. Savarino A, Pescarmona GP, Boelaert JR (1999) Iron metabolism and HIV infection: reciprocal interactions with potentially harmful consequences? Cell Biochem Funct 17(4):279–287

    Article  CAS  PubMed  Google Scholar 

  270. Perrella O, Finelli L, Munno I, Perrella A, Soscia E, Carrieri PB (1993) Cerebrospinal fluid ferritin in human immunodeficiency virus infection: a marker of neurologic involvement? J Infect Dis 168(4):1079–1080

    Article  CAS  PubMed  Google Scholar 

  271. Deisenhammer F, Miller RF, Brink NS, Harrison MJ, Thompson EJ (1997) Cerebrospinal fluid ferritin in HIV infected patients with acute neurological episodes. Genitourin Med 73(3):181–183

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Rozek W, Horning J, Anderson J, Ciborowski P (2008) Sera proteomic biomarker profiling in HIV infected subjects with cognitive impairment. Proteomics Clin Appl 2(10–11):1498–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Poynton CB, Jenkinson M, Adalsteinsson E, Sullivan EV, Pfefferbaum A, Wells W 3rd (2015) Quantitative susceptibility mapping by inversion of a perturbation field model: correlation with brain iron in normal aging. IEEE Trans Med Imaging 34(1):339–353

    Article  PubMed  Google Scholar 

  274. Pitcher J, Abt A, Myers J, Han R, Snyder M, Graziano A et al (2014) Neuronal ferritin heavy chain and drug abuse affect HIV-associated cognitive dysfunction. J Clin Invest 124(2):656–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Kim J, Wessling-Resnick M (2014) Iron and mechanisms of emotional behavior. J Nutr Biochem 25(11):1101–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Hyacinthe C, De Deurwaerdere P, Thiollier T, Li Q, Bezard E, Ghorayeb I (2015) Blood withdrawal affects iron store dynamics in primates with consequences on monoaminergic system function. Neuroscience 290:621–635

    Article  CAS  PubMed  Google Scholar 

  277. Baumgartner J, Smuts CM, Malan L, Arnold M, Yee BK, Bianco LE et al (2012) Combined deficiency of iron and (n-3) fatty acids in male rats disrupts brain monoamine metabolism and produces greater memory deficits than iron deficiency or (n-3) fatty acid deficiency alone. J Nutr 142(8):1463–1471

    Article  CAS  PubMed  Google Scholar 

  278. Burdo TH, Walker J, Williams KC (2015) Macrophage polarization in AIDS: dynamic interface between anti-viral and anti-inflammatory macrophages during acute and chronic infection. J Clin Cell Immunol 6(3)

    Google Scholar 

  279. Ortega M, Ances BM (2014) Role of HIV in amyloid metabolism. J Neuroimmune Pharmacol 9(4):483–491

    Article  PubMed  PubMed Central  Google Scholar 

  280. Drakesmith H, Chen N, Ledermann H, Screaton G, Townsend A, Xu XN (2005) HIV Nef down-regulates the hemochromatosis protein HFE, manipulating cellular iron homeostasis. Proc Natl Acad Sci U S A 102(31):11017–11022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Chang HC, Bayeva M, Taiwo B, Palella FJ Jr, Hope TJ, Ardehali H (2015) Short communication: high cellular iron levels are associated with increased HIV infection and replication. AIDS Res Hum Retrovir 31(3):305–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Gaetano C, Massimo L, Alberto M (2010) Control of iron homeostasis as a key component of macrophage polarization. Haematologica 95(11):1801–1803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Brown A (2015) Understanding the MIND phenotype: macrophage/microglia inflammation in neurocognitive disorders related to human immunodeficiency virus infection. Clin Transl Med 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  284. Bisht K, Sharma KP, Lecours C, Gabriela Sanchez M, El Hajj H, Milior G et al (2016) Dark microglia: a new phenotype predominantly associated with pathological states. Glia

    Google Scholar 

  285. Tremblay ME, Marker DF, Puccini JM, Muly EC, SM L, Gelbard HA (2013) Ultrastructure of microglia-synapse interactions in the HIV Tat-injected murine central nervous system. Commun Integr Biol 6(6):e27670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  286. McArthur JC, Hoover DR, Bacellar H, Miller EN, Cohen BA, Becker JT et al (1993) Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS cohort study. Neurology 43(11):2245–2252

    Article  CAS  PubMed  Google Scholar 

  287. Qureshi AI, Hanson DL, Jones JL, Janssen RS (1998) Estimation of the temporal probability of human immunodeficiency virus (HIV) dementia after risk stratification for HIV+ persons. Neurology 50(2):392–397

    Article  CAS  PubMed  Google Scholar 

  288. Marquine MJ, Umlauf A, Rooney AS, Fazeli PL, Gouaux BD, Paul Woods S et al (2014) The veterans aging cohort study index is associated with concurrent risk for neurocognitive impairment. J Acquir Immune Defic Syndr 65(2):190–197

    Article  PubMed  PubMed Central  Google Scholar 

  289. Heaton RK, Franklin DR Jr, Deutsch R, Letendre S, Ellis RJ, Casaletto K et al (2015) Neurocognitive change in the era of HIV combination antiretroviral therapy: the longitudinal CHARTER study. Clin Infect Dis 60(3):473–480

    Article  CAS  PubMed  Google Scholar 

  290. Wobeser W, Morgan E, Rumman A, Ford PM (2012) Macrocytosis is a predictor of resting lactate concentrations in persons on dideoxynucleoside therapy for HIV infection. Int J Infect Dis 16(4):e225–e227

    Article  CAS  PubMed  Google Scholar 

  291. Sternfeld T, Lorenz A, Schmid M, Schlamp A, Demmelmair H, Koletzko B et al (2009) Increased red cell corpuscular volume and hepatic mitochondrial function in NRTI-treated HIV infected patients. Curr HIV Res 7(3):336–339

    Article  CAS  PubMed  Google Scholar 

  292. Pottala JV, Yaffe K, Robinson JG, Espeland MA, Wallace R, Harris WS (2014) Higher RBC EPA + DHA corresponds with larger total brain and hippocampal volumes: WHIMS-MRI study. Neurology 82(5):435–442

    Article  PubMed  PubMed Central  Google Scholar 

  293. Weiss G (2015) Anemia of chronic disorders: new diagnostic tools and new treatment strategies. Semin Hematol 52(4):313–320

    Article  PubMed  Google Scholar 

  294. Fuchs D, Zangerle R, Artner-Dworzak E, Weiss G, Fritsch P, Tilz GP et al (1993) Association between immune activation, changes of iron metabolism and anaemia in patients with HIV infection. Eur J Haematol 50(2):90–94

    Article  CAS  PubMed  Google Scholar 

  295. Bhatt L, Horgan CP, McCaffrey MW (2009) Knockdown of beta2-microglobulin perturbs the subcellular distribution of HFE and hepcidin. Biochem Biophys Res Commun 378(4):727–731

    Article  CAS  PubMed  Google Scholar 

  296. Kallianpur AR GH, Letendre SL, Ellis R, Barnholtz-Sloan J, Bush W, Heaton R, Samuels D, Hulgan T for the CHARTER Study Group (2016) Novel CSF biomarker associations with HIV-associated neurocognitive disorder (HAND). Abstract #409, Conference on Retroviruses and Opportunistic Infections (CROI), Boston, 22–25 Feb 2016

    Google Scholar 

  297. Thornton-Wells T, Fennema-Notestine, C, Hulgan T, Letendre S, Ellis R, Franklin, DR, Morgello, S, McArthur J, Collier AC, Gelman BB, McCutchan JA, Kallianpur AR for the CHARTER Study Group (2015) Iron-regulatory genes are associated with neuroimaging traits in HIV infection. Abstract #461, Conference on Retroviruses and Opportunistic Infections (CROI), Seattle, 23–26 Feb 2015

    Google Scholar 

  298. Spudich S (2014) CROI 2014: neurologic complications of HIV infection. Top Antiviral Med 22(3):594–601

    Google Scholar 

  299. Mascitelli L, Goldstein MR (2013) Iron homeostasis and cardiovascular events after acute infections. Int J Cardiol 168(2):1675–1676

    Article  PubMed  Google Scholar 

  300. van Empel VP, Lee J, Williams TJ, Kaye DM (2014) Iron deficiency in patients with idiopathic pulmonary arterial hypertension. Heart Lung Circ 23(3):287–292

    Article  PubMed  Google Scholar 

  301. Howard LS, Watson GM, Wharton J, Rhodes CJ, Chan K, Khengar R et al (2013) Supplementation of iron in pulmonary hypertension: rationale and design of a phase II clinical trial in idiopathic pulmonary arterial hypertension. Pulm Circ 3(1):100–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. White K, Lu Y, Annis S, Hale AE, Chau BN, Dahlman JE et al (2015) Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron-sulfur deficiency and pulmonary hypertension. EMBO Mol Med 7(6):695–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Tang H, Ayon RJ, Yuan JX (2015) New insights into the pathology of pulmonary hypertension: implication of the miR-210/ISCU1/2/Fe-S axis. EMBO Mol Med 7(6):689–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Parikh VN, Park J, Nikolic I, Channick R, PB Y, De Marco T et al (2015) Brief report: coordinated modulation of circulating miR-21 in HIV, HIV-associated pulmonary arterial hypertension, and HIV/hepatitis C virus coinfection. J Acquir Immune Defic Syndr 70(3):236–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Gorospe M, Tominaga K, Wu X, Fahling M, Ivan M (2011) Post-transcriptional control of the hypoxic response by RNA-binding proteins and MicroRNAs. Front Mol Neurosci 4:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Hulgan T, Samuels DC, Bush W, Ellis RJ, Letendre SL, Heaton RK et al (2015) Mitochondrial DNA haplogroups and neurocognitive impairment during HIV infection. Clin Infect Dis 61(9):1476–1484

    Article  PubMed  PubMed Central  Google Scholar 

  307. Atilano SR, Malik D, Chwa M, Caceres-Del-Carpio J, Nesburn AB, Boyer DS et al (2015) Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes. Hum Mol Genet 24(16):4491–4503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Kenney MC, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C, Malik D et al (2014) Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial-nuclear interactions. Hum Mol Genet 23(13):3537–3551

    Article  PubMed  CAS  Google Scholar 

  309. Samuels D, Kallianpur A, Guo Y, Brown TT, Mehta SR, Ellis R, Letendre SL, Hulgan T for the CHARTER Study Group (2016) Mitochondrial DNA copy number and neurocognitive impairment in HIV+ persons. Abstract #144, Conference on Retroviruses and Opportunistic Infections (CROI), Boston, 22–25 Feb 2016

    Google Scholar 

  310. Akay C, Cooper M, Odeleye A, Jensen BK, White MG, Vassoler F et al (2014) Antiretroviral drugs induce oxidative stress and neuronal damage in the central nervous system. J Neurovirol 20(1):39–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Poirier MC, Gibbons AT, Rugeles MT, Andre-Schmutz I, Blanche S (2015) Fetal consequences of maternal antiretroviral nucleoside reverse transcriptase inhibitor use in human and nonhuman primate pregnancy. Curr Opin Pediatr 27(2):233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Divi RL, Einem TL, Fletcher SL, Shockley ME, Kuo MM, St Claire MC et al (2010) Progressive mitochondrial compromise in brains and livers of primates exposed in utero to nucleoside reverse transcriptase inhibitors (NRTIs). Toxicol Sci 118(1):191–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Zhang Y, Wang M, Li H, Zhang H, Shi Y, Wei F et al (2012) Accumulation of nuclear and mitochondrial DNA damage in the frontal cortex cells of patients with HIV-associated neurocognitive disorders. Brain Res 1458:1–11

    Article  CAS  PubMed  Google Scholar 

  314. Perez-Santiago J, Schrier RD, de Oliveira MF, Gianella S, Var SR, Day TR et al (2015) Cell-free mitochondrial DNA in CSF is associated with early viral rebound, inflammation, and severity of neurocognitive deficits in HIV infection. J Neurovirol

    Google Scholar 

  315. Var SR, Day TR, Vitomirov A, Smith DM, Soontornniyomkij V, Moore DJ et al (2016) Mitochondrial injury and cognitive function in HIV infection and methamphetamine use. AIDS 30(6):839–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Stephenson E, Nathoo N, Mahjoub Y, Dunn JF, Yong VW (2014) Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat Rev Neurol 10(8):459–468

    Article  CAS  PubMed  Google Scholar 

  317. Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J et al (2014) Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 20(6):659–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Pelizzoni I, Macco R, Morini MF, Zacchetti D, Grohovaz F, Codazzi F (2011) Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity. Aging Cell 10(1):172–183

    Article  CAS  PubMed  Google Scholar 

  319. Meulendyke KA, Queen SE, Engle EL, Shirk EN, Liu J, Steiner JP et al (2014) Combination fluconazole/paroxetine treatment is neuroprotective despite ongoing neuroinflammation and viral replication in an SIV model of HIV neurological disease. J Neurovirol 20(6):591–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Bandyopadhyay S, Rogers JT (2014) Alzheimer’s disease therapeutics targeted to the control of amyloid precursor protein translation: maintenance of brain iron homeostasis. Biochem Pharmacol 88(4):486–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Sacktor N, Skolasky RL, Haughey N, Munro C, Moxley R, Steiner J, Nath A, McArthur J (2016) Paroxetine and fluconazole therapy for HAND: a double-blind, placebo-controlled trial. Abstract #146, Conference on Retroviruses and Opportunistic Infections (CROI), Boston, 22–25 Feb 2016

    Google Scholar 

  322. Gao G, Chang YZ (2014) Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases. Front Pharmacol 5:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  323. Guo C, Wang T, Zheng W, Shan ZY, Teng WP, Wang ZY (2013) Intranasal deferoxamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 34(2):562–575

    Google Scholar 

  324. Sharer LR, Cho ES (1989) Neuropathology of HIV infection: adults versus children. Prog AIDS Pathol 1:131–141

    CAS  PubMed  Google Scholar 

  325. Mitchell W (2001) Neurological and developmental effects of HIV and AIDS in children and adolescents. Ment Retard Dev Disabil Res Rev 7(3):211–216

    Article  CAS  PubMed  Google Scholar 

  326. Tardieu M, Le Chenadec J, Persoz A, Meyer L, Blanche S, Mayaux MJ (2000) HIV-related encephalopathy in infants compared with children and adults. French Pediatric HIV Infection Study and the SEROCO Group. Neurology 54(5):1089–1095

    Article  CAS  PubMed  Google Scholar 

  327. Kollar K, Jelenik Z, Hegelsberger E (2003) Neurologic aspects of HIV infections – follow-up of pediatric patients. Ideggyogy Sz 56(11–12):397–404

    PubMed  Google Scholar 

  328. Tepper VJ, Farley JJ, Rothman MI, Houck DL, Davis KF, Collins-Jones TL et al (1998) Neurodevelopmental/neuroradiologic recovery of a child infected with HIV after treatment with combination antiretroviral therapy using the HIV-specific protease inhibitor ritonavir. Pediatrics 101(3):E7

    Article  CAS  PubMed  Google Scholar 

  329. Wachtel RC, Tepper VJ, Houck D, McGrath CJ, Thompson C (1994) Neurodevelopment in pediatric HIV infection. The use of CAT/CLAMS. Clinical Adaptive Test/Clinical Linguistic and Auditory Milestone Scale. Clin Pediatr 33(7):416–420

    Article  CAS  Google Scholar 

  330. Bossi G, Maccabruni A, Caselli D, Astori MG, Piazza F (1995) Neurological manifestations in HIV+ child. Minerva Pediatr 47(7–8):285–295

    CAS  PubMed  Google Scholar 

  331. Czornyj LA (2006) Encephalopathy in children infected by vertically transmitted human immunodeficiency virus. Rev Neurol 42(12):743–753

    CAS  PubMed  Google Scholar 

  332. Donald KA, Hoare J, Eley B, Wilmshurst JM (2014) Neurologic complications of pediatric human immunodeficiency virus: implications for clinical practice and management challenges in the African setting. Semin Pediatr Neurol 21(1):3–11

    Article  PubMed  Google Scholar 

  333. Englund JA, Baker CJ, Raskino C, McKinney RE, Petrie B, Fowler MG et al (1997) Zidovudine, didanosine, or both as the initial treatment for symptomatic HIV+ children. AIDS Clinical Trials Group (ACTG) Study 152 Team. N Engl J Med 336(24):1704–1712

    Article  CAS  PubMed  Google Scholar 

  334. RE MK Jr, Johnson GM, Stanley K, Yong FH, Keller A, O’Donnell KJ et al (1998) A randomized study of combined zidovudine-lamivudine versus didanosine monotherapy in children with symptomatic therapy-naive HIV infection. The Pediatric AIDS Clinical Trials Group Protocol 300 Study Team. J Pediatr 133(4):500–508

    Google Scholar 

  335. Centers for Disease C (1987) Classification system for human immunodeficiency virus (HIV) infection in children under 13 years of age. MMWR Morb Mortal Wkly Rep 36(15):225–230, 235–236

    Google Scholar 

  336. Singh KK, Barroga CF, Hughes MD, Chen J, Raskino C, RE MK Jr et al (2004) Prevalence of chemokine and chemokine receptor polymorphisms in seroprevalent children with symptomatic HIV infection in the United States. J Acquir Immune Defic Syndr 35(3):309–313

    Article  PubMed  Google Scholar 

  337. Singh KK, Hughes MD, Chen J, Spector SA (2005) Genetic polymorphisms in CX3CR1 predict HIV disease progression in children independently of CD4+ lymphocyte count and HIV RNA load. J Infect Dis 191(11):1971–1980

    Article  CAS  PubMed  Google Scholar 

  338. Singh KK, Hughes MD, Chen J, Spector SA (2006) Impact of MCP-1-2518-G allele on the HIV disease of children in the United States. AIDS 20(3):475–478

    Article  PubMed  Google Scholar 

  339. Singh KK, Hughes MD, Chen J, Spector SA (2004) Lack of protective effects of interleukin-4 -589-C/T polymorphism against HIV-related disease progression and central nervous system impairment, in children. J Infect Dis 189(4):587–592

    Article  CAS  PubMed  Google Scholar 

  340. Singh KK, Lieser A, Ruan PK, Fenton T, Spector SA (2008) An age-dependent association of mannose-binding lectin-2 genetic variants on HIV-related disease in children. J Allergy Clin Immunol 122(1):173–80, 80.e1–e2

    Google Scholar 

  341. Thomas J, Doherty SM (2003) HIV infection – a risk factor for osteoporosis. J Acquir Immune Defic Syndr 33(3):281–291

    Article  CAS  PubMed  Google Scholar 

  342. Grinspoon S, Carr A (2005) Cardiovascular risk and body-fat abnormalities in HIV+ adults. N Engl J Med 352(1):48–62

    Article  CAS  PubMed  Google Scholar 

  343. Fausto A, Bongiovanni M, Cicconi P, Menicagli L, Ligabò EV, Melzi S et al (2006) Potential predictive factors of osteoporosis in HIV-positive subjects. Bone 38(6):893–897

    Article  PubMed  Google Scholar 

  344. Triant VA, Lee H, Hadigan C, Grinspoon SK (2007) Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metabol 92(7):2506–2512

    Article  CAS  Google Scholar 

  345. Lucas GM, Mehta SH, Atta MG, Kirk GD, Galai N, Vlahov D et al (2007) End-stage renal disease and chronic kidney disease in a cohort of African-American HIV+ and at-risk HIV-seronegative participants followed between 1988 and 2004. AIDS 21(18):2435–2443. doi:10.1097/QAD.0b013e32827038ad

    Article  PubMed  Google Scholar 

  346. Silverberg M, Chao C, Leyden W, Xu L, Tang B, Horberg M et al (2009) HIV infection and the risk of cancers with and without a known infectious cause. AIDS 23(17):2337–2345

    Article  PubMed  PubMed Central  Google Scholar 

  347. Martin J, Volberding P (2010) HIV and premature aging: a field still in its infancy. Ann Intern Med 153(7):477–479

    Article  PubMed  Google Scholar 

  348. Deeks SG (2011) HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med 62(1):141–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Desquilbet L, Jacobson LP, Fried LP, Phair JP, Jamieson BD, Holloway M et al (2011) A frailty-related phenotype before HAART initiation as an independent risk factor for AIDS or death after HAART among HIV+ men. J Gerontol Ser A Biol Med Sci 66A(9):1030–1038

    Article  CAS  Google Scholar 

  350. Silverberg MJ, Chao C, Leyden WA, Xu L, Horberg MA, Klein D et al (2011) HIV infection, immunodeficiency, viral replication, and the risk of cancer. Cancer Epidemiol Biomark Prev 20(12):2551–2559

    Article  CAS  Google Scholar 

  351. Womack JA, Goulet JL, Gibert C, Brandt C, Chang CC, Gulanski B et al (2011) Increased risk of fragility fractures among HIV infected compared to uninfected male veterans. PLoS One 6(2):e17217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Wendelken L, Valcour V (2012) Impact of HIV and aging on neuropsychological function. J Neurovirol 18(4):256–263

    Article  PubMed  PubMed Central  Google Scholar 

  353. Kirk GD, Mehta SH, Astemborski J, Galai N, Washington J, Higgins Y et al (2013) HIV, age, and the severity of hepatitis C virus–related liver disease. A cohort study. Ann Intern Med N/A(N/A):N/A–N/A

    Google Scholar 

  354. Greene M, Justice AC, Lampiris HW, Valcour V (2013) Management of human immunodeficiency virus infection in advanced age. JAMA 309(13):1397–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Cherner M, Ellis RJ, Lazzaretto D, Young C, Mindt MR, Atkinson JH et al (2004) Effects of HIV infection and aging on neurobehavioral functioning: preliminary findings. AIDS 18(Suppl 1):S27–S34

    Article  PubMed  Google Scholar 

  356. Cassol E, Misra V, Dutta A, Morgello S, Gabuzda D (2014) Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment. AIDS

    Google Scholar 

  357. Ojeda D, Lopez-Costa JJ, Sede M, Lopez EM, Berria MI, Quarleri J (2014) Increased in vitro glial fibrillary acidic protein expression, telomerase activity, and telomere length after productive human immunodeficiency virus-1 infection in murine astrocytes. J Neurosci Res 92(2):267–274

    Article  CAS  PubMed  Google Scholar 

  358. Chang L, Holt JL, Yakupov R, Jiang CS, Ernst T (2013) Lower cognitive reserve in the aging human immunodeficiency virus-infected brain. Neurobiol Aging 34(4):1240–1253

    Article  PubMed  Google Scholar 

  359. Holt JL, Kraft-Terry SD, Chang L (2012) Neuroimaging studies of the aging HIV+ brain. J Neurovirol 18(4):291–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Giesbrecht CJ, Thornton AE, Hall-Patch C, Maan EJ, Cote HC, Money DM et al (2014) Select neurocognitive impairment in HIV+ women: associations with HIV viral load, hepatitis C virus, and depression, but not leukocyte telomere length. PLoS One 9(3):e89556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  361. Malan-Muller S, Hemmings SM, Spies G, Kidd M, Fennema-Notestine C, Seedat S (2013) Shorter telomere length – a potential susceptibility factor for HIV-associated neurocognitive impairments in South African women [corrected]. PLoS One 8(3):e58351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Rickabaugh TM, Baxter RM, Sehl M, Sinsheimer JS, Hultin PM, Hultin LE et al (2015) Acceleration of age-associated methylation patterns in HIV+ adults. PLoS One 10(3):e0119201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  363. Brew BJ, Pemberton L, Blennow K, Wallin A, Hagberg L (2005) CSF amyloid beta42 and tau levels correlate with AIDS dementia complex. Neurology 65(9):1490–1492

    Article  CAS  PubMed  Google Scholar 

  364. Soontornniyomkij V, Moore DJ, Gouaux B, Soontornniyomkij B, Tatro ET, Umlauf A et al (2012) Cerebral beta-amyloid deposition predicts HIV-associated neurocognitive disorders in APOE epsilon4 carriers. AIDS

    Google Scholar 

  365. Corder EH, Galeazzi L, Franceschi C, Cossarizza A, Paganelli R, Pinti M et al (2007) Differential course of HIV infection and apolipoprotein E polymorphism. Central Eur J Med 2(4):404–416

    Google Scholar 

  366. Valcour VG, Shiramizu B, Shikuma C (2008) Frequency of apolipoprotein E4 among older compared with younger HIV patients: support for detrimental effect of E4 on survival. Proc Natl Acad Sci U S A 105(41):E66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Panos SE, Hinkin CH, Singer EJ, Thames AD, Patel SM, Sinsheimer JS et al (2013) Apolipoprotein-E genotype and human immunodeficiency virus-associated neurocognitive disorder: the modulating effects of older age and disease severity. Neurobehav HIV Med 2013 (in press)

    Google Scholar 

  368. Morgan EE, Woods SP, Letendre SL, Franklin DR, Bloss C, Goate A et al (2013) Apolipoprotein E4 genotype does not increase risk of HIV-associated neurocognitive disorders. J Neurovirol 19(2):150–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Goplen AK, Liestol K, Dunlop O, Bruun JN, Maehlen J (2001) Dementia in AIDS patients in Oslo; the role of HIV encephalitis and CMV encephalitis. Scand J Infect Dis 33(10):755–758

    Article  CAS  PubMed  Google Scholar 

  370. Soontornniyomkij V, Moore DJ, Gouaux B, Soontornniyomkij B, Tatro ET, Umlauf A et al (2012) Cerebral beta-amyloid deposition predicts HIV-associated neurocognitive disorders in APOE epsilon4 carriers. AIDS 26(18):2327–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Haider L (2015) Inflammation, iron, energy failure, and oxidative stress in the pathogenesis of multiple sclerosis. Oxidative Med Cell Longev 2015:725370

    Article  CAS  Google Scholar 

  372. Wang X, Chen XJ (2015) A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature 524(7566):481–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Rouault TA, Tong WH (2008) Iron-sulfur cluster biogenesis and human disease. Trends Genet 24(8):398–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Dickens AM, Anthony DC, Deutsch R, Mielke MM, Claridge TD, Grant I et al (2015) Cerebrospinal fluid metabolomics implicate bioenergetic adaptation as a neural mechanism regulating shifts in cognitive states of HIV+ patients. AIDS 29(5):559–569

    CAS  PubMed  PubMed Central  Google Scholar 

  375. Singh N, Haldar S, Tripathi AK, McElwee MK, Horback K, Beserra A (2014) Iron in neurodegenerative disorders of protein misfolding: a case of prion disorders and Parkinson’s disease. Antioxid Redox Signal 21(3):471–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Adamo DE, Daugherty AM, Raz N (2014) Grasp force matching and brain iron content estimated in vivo in older women. Brain Imaging Behav 8(4):579–587

    Article  PubMed  Google Scholar 

  377. Wei S, Shi W, Li M, Gao Q (2014) Calorie restriction down-regulates expression of the iron regulatory hormone hepcidin in normal and D-galactose-induced aging mouse brain. Rejuvenation Res 17(1):19–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Kallianpur AR, Levine AJ (2014) Host genetic factors predisposing to HIV-associated neurocognitive disorder. Curr HIV/AIDS Rep

    Google Scholar 

  379. Villeneuve LM, Purnell PR, Stauch KL, Callen SE, Buch SJ, Fox HS (2016) HIV transgenic rats display mitochondrial abnormalities consistent with abnormal energy generation and distribution. J Neurovirol

    Google Scholar 

  380. Crist MB, Melekhin VV, Bian A, Shintani A, Milne GL, Kallianpur AR et al (2013) Higher serum iron is associated with increased oxidant stress in HIV+ men. J Acquir Immune Defic Syndr 64(4):367–373

    Article  CAS  PubMed  Google Scholar 

  381. Horvath S, Levine AJ (2015) HIV infection accelerates age according to the epigenetic clock. J Infect Dis 212(10):1563–1573

    Article  PubMed  PubMed Central  Google Scholar 

  382. Devall M, Roubroeks J, Mill J, Weedon M, Lunnon K (2016) Epigenetic regulation of mitochondrial function in neurodegenerative disease: new insights from advances in genomic technologies. Neurosci Lett

    Google Scholar 

  383. Blanch M, Mosquera JL, Ansoleaga B, Ferrer I, Barrachina M (2016) Altered mitochondrial DNA methylation pattern in Alzheimer disease-related pathology and in Parkinson disease. Am J Pathol 186(2):385–397

    Article  CAS  PubMed  Google Scholar 

  384. Lill R, Srinivasan V, Muhlenhoff U (2014) The role of mitochondria in cytosolic-nuclear iron-sulfur protein biogenesis and in cellular iron regulation. Curr Opin Microbiol 22:111–119

    Article  CAS  PubMed  Google Scholar 

  385. Pomara N, Belzer K, Sidtis JJ (2008) Deleterious CNS effects of the APOE epsilon4 allele in individuals with HIV infection may be age-dependent. Proc Nat Acad Sci USA 105(41):E65; author reply E7–E8.

    Google Scholar 

  386. Cysique LA, Hewitt T, Croitoru-Lamoury J, Taddei K, Martins RN, Chew CS et al (2015) APOE epsilon4 moderates abnormal CSF-abeta-42 levels, while neurocognitive impairment is associated with abnormal CSF tau levels in HIV+ individuals – a cross-sectional observational study. BMC Neurol 15:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  387. Panos SE, Hinkin CH, Singer EJ, Thames AD, Patel SM, Sinsheimer JS et al (2013) Apolipoprotein-E genotype and human immunodeficiency virus-associated neurocognitive disorder: the modulating effects of older age and disease severity. Neurobehav HIV Med 5:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Dusek P, Dezortova M, Wuerfel J (2013) Imaging of iron. Int Rev Neurobiol 110:195–239

    Article  CAS  PubMed  Google Scholar 

  389. Spector SA, Singh KK, Gupta S, Cystique LA, Jin H, Letendre S et al (2010) APOE epsilon4 and MBL-2 O/O genotypes are associated with neurocognitive impairment in HIV+ plasma donors. AIDS 24(10):1471–1479

    Google Scholar 

  390. Woods SP, Rippeth JD, Frol AB, Levy JK, Ryan E, Soukup VM et al (2004) Interrater reliability of clinical ratings and neurocognitive diagnoses in HIV. J Clin Exp Neuropsychol 26(6):759–778

    Article  PubMed  Google Scholar 

  391. Gisslen M, Price RW, Nilsson S (2011) The definition of HIV-associated neurocognitive disorders: are we overestimating the real prevalence? BMC Infect Dis 11:356

    Article  PubMed  PubMed Central  Google Scholar 

  392. Schretlen DJ, Munro CA, Anthony JC, Pearlson GD (2003) Examining the range of normal intraindividual variability in neuropsychological test performance. J Int Neuropsychol Soc 9(6):864–870

    Article  PubMed  Google Scholar 

  393. Moore DJ, Masliah E, Rippeth JD, Gonzalez R, Carey CL, Cherner M et al (2006) Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS 20(6):879–887

    Article  PubMed  Google Scholar 

  394. Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38(5):755–762

    Article  CAS  PubMed  Google Scholar 

  395. Bell JE, Brettle RP, Chiswick A, Simmonds PHIV (1998) Encephalitis, proviral load and dementia in drug users and homosexuals with AIDS. Effect of neocortical involvement. Brain 121(Pt 11):2043–2052

    Article  PubMed  Google Scholar 

  396. Persidsky Y, Gendelman HE (2003) Mononuclear phagocyte immunity and the neuropathogenesis of HIV infection. J Leukoc Biol 74(5):691–701

    Article  CAS  PubMed  Google Scholar 

  397. Everall IP, Hansen LA, Masliah E (2005) The shifting patterns of HIV encephalitis neuropathology. Neurotox Res 8(1–2):51–61

    Article  CAS  PubMed  Google Scholar 

  398. Boven LA, Middel J, Breij EC, Schotte D, Verhoef J, Soderland C et al (2000) Interactions between HIV+ monocyte-derived macrophages and human brain microvascular endothelial cells result in increased expression of CC chemokines. J Neurovirol 6(5):382–389

    Article  CAS  PubMed  Google Scholar 

  399. McArthur JC, Brew BJ, Nath A (2005) Neurological complications of HIV infection. Lancet Neurol 4(9):543–555

    Article  PubMed  Google Scholar 

  400. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S et al HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol

    Google Scholar 

  401. Everall I, Vaida F, Khanlou N, Lazzaretto D, Achim C, Letendre S et al (2009) Cliniconeuropathologic correlates of human immunodeficiency virus in the era of antiretroviral therapy. J Neurovirol 15(5–6):360–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  402. Thompson PM, Dutton RA, Hayashi KM, Lu A, Lee SE, Lee JY et al (2006) 3D mapping of ventricular and corpus callosum abnormalities in HIV/AIDS. NeuroImage 31(1):12–23

    Article  PubMed  Google Scholar 

  403. Chiang MC, Dutton RA, Hayashi KM, Lopez OL, Aizenstein HJ, Toga AW et al (2007) 3D pattern of brain atrophy in HIV/AIDS visualized using tensor-based morphometry. NeuroImage 34(1):44–60

    Article  PubMed  Google Scholar 

  404. Thompson PM, Dutton RA, Hayashi KM, Toga AW, Lopez OL, Aizenstein HJ et al (2005) Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline. Proc Natl Acad Sci U S A 102(43):15647–15652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Chang L, Lee PL, Yiannoutsos CT, Ernst T, Marra CM, Richards T et al (2004) A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. NeuroImage 23(4):1336–1347

    Article  CAS  PubMed  Google Scholar 

  406. Ances BM, Roc AC, Wang J, Korczykowski M, Okawa J, Stern J et al (2006) Caudate blood flow and volume are reduced in HIV+ neurocognitively impaired patients. Neurology 66(6):862–866

    Article  CAS  PubMed  Google Scholar 

  407. Schifitto G, Zhong J, Gill D, Peterson DR, Gaugh MD, Zhu T et al (2009) Lithium therapy for human immunodeficiency virus type 1-associated neurocognitive impairment. J Neurovirol 15(2):176–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  408. Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, Mallory M et al (1997) Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann Neurol 42(6):963–972

    Article  CAS  PubMed  Google Scholar 

  409. Achim CL, Adame A, Dumaop W, Everall IP, Masliah E (2009) Increased accumulation of intraneuronal amyloid beta in HIV+ patients. J Neuroimmune Pharmacol 4(2):190–199

    Article  PubMed  PubMed Central  Google Scholar 

  410. Rempel HC, Pulliam L (2005) HIV Tat inhibits neprilysin and elevates amyloid beta. AIDS 19(2):127–135

    Article  CAS  PubMed  Google Scholar 

  411. Green DA, Masliah E, Vinters HV, Beizai P, Moore DJ, Achim CL (2005) Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS 19(4):407–411

    Article  CAS  PubMed  Google Scholar 

  412. Esiri MM, Biddolph SC, Morris CS (1998) Prevalence of Alzheimer plaques in AIDS. J Neurol Neurosurg Psychiatry 65(1):29–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Kaul M, Lipton SA (1999) Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci U S A 96(14):8212–8216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Nath A, Hauser KF, Wojna V, Booze RM, Maragos W, Prendergast M et al (2002) Molecular basis for interactions of HIV and drugs of abuse. J Acquir Immune Defic Syndr 31(Suppl 2):S62–S69

    Article  CAS  PubMed  Google Scholar 

  415. Garden GA (2002) Microglia in human immunodeficiency virus-associated neurodegeneration. Glia 40(2):240–251

    Article  PubMed  Google Scholar 

  416. Mortimer JA, Snowdon DA, Markesbery WR (2009) The effect of APOE-epsilon4 on dementia is mediated by Alzheimer neuropathology. Alzheimer Dis Assoc Disord 23(2):152–157

    Article  PubMed  PubMed Central  Google Scholar 

  417. Bennett DA, Schneider JA, Wilson RS, Bienias JL, Berry-Kravis E, Arnold SE (2005) Amyloid mediates the association of apolipoprotein E e4 allele to cognitive function in older people. J Neurol Neurosurg Psychiatry 76(9):1194–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Shulman JM, Chibnik LB, Aubin C, Schneider JA, Bennett DA, De Jager PL Intermediate phenotypes identify divergent pathways to Alzheimer’s disease. PLoS One 5(6):e11244

    Google Scholar 

  419. Bennett DA, De Jager PL, Leurgans SE, Schneider JA (2009) Neuropathologic intermediate phenotypes enhance association to Alzheimer susceptibility alleles. Neurology 72(17):1495–1503

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Dr. Levine – NIH R21 MH107327-01 (Levine and Hoare), R21AG046954 (Horvath and Levine), R01MH096648 (Levine and Moore), R01DA030913 (Levine and Horvath), R03DA026099 (Levine), California HIV-AIDS Research Program ID06-LA-187 (Levine), UCLA-AIDS Institute, and the UCLA Center for AIDS Research AI28697 (Freimer and Levine).

Dr. Kallianpur – NIH R01 MH095621 (To A. Kallianpur and T. Hulgan).

Dr. Singh – NIH R01 (MH085608), R03 (MH103995), and California HIV/AIDS Research Program IDEA Grant (ID07-SD-160) (To K.K. Singh).

Conflict of interest The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Levine PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Levine, A.J., Singh, K.K., Kallianpur, A.R. (2017). Genetic, Epigenetic, and Transcriptomic Studies of NeuroAIDS. In: Shapshak, P., et al. Global Virology II - HIV and NeuroAIDS. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7290-6_19

Download citation

Publish with us

Policies and ethics