Skip to main content

Advertisement

Log in

Human immunodeficiency virus infection in the CNS and decreased dopamine availability: relationship with neuropsychological performance

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus (HIV-1) infection in the central nervous system (CNS) is associated with a wide range of neurological, cognitive, and behavioral problems. HIV-1 enters the brain soon after the initial infection and is distributed in varying concentrations in different regions with specific affinity to the subcortical regions, particularly the basal ganglia, causing neurodegeneration of dopaminergic regions and resulting in the decreased availability of dopamine (DA) in the CNS. Although there are numerous reports on HIV-1-associated neuropsychological (NP) impairment, there is a paucity of studies showing a direct relationship between the decreased availability of dopamine in different regions of postmortem brains of HIV-1-infected individuals and the level of performance in different NP functions during life. Dopamine is the key neurotransmitter in the brain and plays a regulatory role for motor and limbic functions. The purpose of the present study was to investigate the relationship between the decreased availability of dopamine found in the postmortem brain regions (fronto-cortical regions, basal ganglia, caudate, putamen, globus pallidus, and substantia nigra) of individuals with HIV/AIDS and the antemortem level of performance (assessed as T scores) in different NP functions. The relationship between HIV-1 RNA levels in different brain regions and the level of performance in different NP domains was also investigated. We found that although DA concentrations were 2–53% lower in the brain regions of HIV-1-infected, HAART-treated individuals, compared with HIV-negative controls, a 45% decrease in DA levels in the substantia nigra (SN) of HIV-1-infected individuals was significantly correlated with the low level of performance (T scores) in the speed of information processing, learning, memory, verbal fluency, and average T scores across domains. In case of homovanillic acid (HVA), the variable changes in different regions, including the substantia nigra, basal ganglia, caudate, and putamen (compared to that in the HIV-negative individuals), were significantly correlated with the level of performance (T scores) in motor functions, speed of information processing, and attention/working memory. HIVRNA levels in the frontal cortex, caudate, and GP were significantly inversely correlated with abstract/executive function, motor, learning, verbal fluency, and attention/working memory. No significant correlations were found between HIVRNA in other brain regions and NP performance. These findings suggest that the decreased availability of dopamine in the SN (the main site of DA synthesis in the CNS), and changes in the levels of HVA in different brain regions are, in part, related with the lower level of performance in some of the NP functions in individuals with HIV/AIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • American Academy of Neurology (AAN) AIDS Task Force Working Group (1991) Nomenclature and research definition for neurological manifestations of human immunodeficiency virus type-1 (HIV-1) infection. Neurology 41:778–785

    Google Scholar 

  • Ances BM, Ellis RJ (2007) Dementia and neurocognitive disorders due to HIV-1 infection. Seminar Neurol 27(1):86–92

    Article  Google Scholar 

  • Ances BM, Roc AC, Wang J, Korczykowski M, Okawa J, Stern J, Kim J, Wolf R, Lawler K, Kolson DL, Detre JA (2006) Caudate blood flow and volume are reduced in HIV+ neurocognitively impaired patients. Neurology 66:862–866

    Article  CAS  PubMed  Google Scholar 

  • Anderson E, Zink W, Xiong H, Gendelman HE (2002) HIV-1-associated dementia: a metabolic encephalopathy perpetrated by virus-infected and immune-competent mononuclear phagocytes. J Acquir Immune Defic Syndr 31(suppl 2):S43–S54

    CAS  PubMed  Google Scholar 

  • Arendt G, Hefter H, Elsing C, Strohmeyer G, Freund HJ (1990) Motor dysfunctions in HIV-1 infected patients without clinically detectable central nervous system deficit. J Neurol 237:362–368

    Article  CAS  PubMed  Google Scholar 

  • Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799

    Article  CAS  PubMed  Google Scholar 

  • Aylward EH, Henderer JD, McArthur JC, Brettschneider PD, Harris GJ, Barta PE, Pearlson GD (1993) Reduced basal ganglia volume in HIV-1 associated dementia: results from quantitative neuroimaging. Neurology 43:2099–2104

    CAS  PubMed  Google Scholar 

  • Aylward EH, Brettschneider PD, McArthur JC, Harris GJ, Schlaepfer TE, Henderer JD, Barta PE, Tien AY, Pearlson GD (1995) Magnetic resonance imaging measurement of gray matter volume reductions in HIV dementia. Am J Psychiatry 152:987–994

    CAS  PubMed  Google Scholar 

  • Bagasra O, Lavi E, Bobroski L, Khalili K, Pestanner JP, Tawadros R, Pomerantz RJ (1996) Cellular reservoirs of HIV-1 in the CNS of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS 10:573–585

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Robinson SM, Wolf KM, Bess JW Jr, Arthur LO (2004) Binding, internalization, and membrane incorporation of human immunodeficiency virus -1 at the blood–brain barrier is differentially regulated. Neuroscience 128:143–153

    Article  CAS  PubMed  Google Scholar 

  • Becker JT, Sanchez J, Dew MA, Lopez OL, Dorst SK, Banks G (1997) Neuropsychological abnormalities among HIV-infected individuals in a community-based sample. Neuropsychology 11(4):592–601

    Article  CAS  PubMed  Google Scholar 

  • Benedict RHB (1997) Brief visuospatial memory test-revised. Psychological Assessment Resources, Odessa

    Google Scholar 

  • Benton AL, Hamsher KD, Sivan AB (1994) Multilingual aphasia examination, 3rd edn. AJA Associates, Iowa City

    Google Scholar 

  • Berger JR, Arendt G (2000) HIV dementia: the role of basal ganglia and dopaminergic systems. J Psychopharmacol 14:214–221

    Article  CAS  PubMed  Google Scholar 

  • Berger JR, Kumar M, Kumar AM, Fernandez JB, Levin B (1994) Cerebrospinal fluid dopamine in HIV-1 infection. AIDS 8:67–71

    Article  CAS  PubMed  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson’s and Huntington: clinical and morphological and neurochemical correlations. J Neurol Sci 20:415–455

    Article  CAS  PubMed  Google Scholar 

  • Bobardt MD, Salmon P, Wang L, Esko JD, Gabzuda D, Fiala M, Trono D, Van der Schueren B, David G, Gallay PA (2004) Contribution of proteoglycans to human immunodeficiency virus type-1 brain invasion. J Virol 78:6567–6584

    Article  CAS  PubMed  Google Scholar 

  • Borozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficits caused by regional depletion of dopamine in the prefrontal cortex of rhesus monkey. Science 205:929–932

    Article  Google Scholar 

  • Brabers NA, Nottet HS (2006) Role of the pro-inflammatory cytokines TNF-α and IL-1beta in HIV-associated dementia. Euro J Clin Invest 36:447–458

    Article  CAS  Google Scholar 

  • Brack-Werner R (1999) Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. AIDS 13(1):1–22

    Article  CAS  PubMed  Google Scholar 

  • Broder CC, Dimitrov DS (1996) HIV and the 7-transmembrane domain receptors. Pathobiology 64:172–179

    Article  Google Scholar 

  • Butters N, Grant I, Haxby J, Judd LL, Martin A, McClelland J, Pequegnat W, Schacter D, Stover E (1990) Assessment of AIDS-related cognitive changes: recommendations of the NIMH workshop on neuropsychological assessment approaches. J Clin Exp Neuropsychol 12:963–978

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Ernst T, Leonido-Yee M, Witt M, Speck O, Walot I, Miller EN (1999) Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology 53:782–789

    CAS  PubMed  Google Scholar 

  • Chang L, Wang GJ, Volkow ND, Ernst T, Telang F, Logan J, Fowler JS (2008) Decreased brain dopamine transporters are related to cognitive deficits in HIV patients with or without cocaine abuse. NeuroImage 42(2):869–878

    Article  PubMed  Google Scholar 

  • Cummings JL (1993) Frontal–subcortical circuits and human behavior. Arch Neurol 50:873–880

    CAS  PubMed  Google Scholar 

  • Dawes S, Suarez P, Casey CY, Cherner M, Marcotte TD, Letendre S, Grant I, Heaton RK, and the HNRC Group (2008) Variable patterns of neuropsychological performance in HIV-1 infection. J Clin Exp Neuropsychol 30(6):613–626

    Article  CAS  PubMed  Google Scholar 

  • D’Esposito M, Defre JA, Alsop DC, Shin RK, Atlas S, Grassman M (1995) The neural basis of the central executive system of working memory. Nature 378:279–181

    Article  PubMed  Google Scholar 

  • Di Rocco A, Bottiglieri T, Dorfman D, Werner P, Morrison C, Simpson D (2000) Decreased homovanillic acid in cerebrospinal fluid correlates with impaired neuropsychological function in HIV-1 infected patients. Clin Neuropharmacol 23(4):190–194

    Article  PubMed  Google Scholar 

  • Ellis RJ, Hsia K, Spector SA, Nelson JA, Heaton RK, Wallace MR, Abramson I, Atkinson H, Grant I, McCutchan A, and the HIV Neurobehavioral Research Center Group (1997) Cerebrospinal fluid human immunodeficiency virus type 1 levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome. Ann Neurol 42(5):679–688

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, Moore DJ, Childers MD, Letendre S, McCutchan JA, Wolfson T, Spector SA, Hsia K, Heaton RK, Grant I, for the HNRC Group (2002) Progression to neuropsychological impairment in human immunodeficiency virus infection predicted by elevated cerebrospinal fluid levels of human immunodeficiency virus RNA. Arch Neurol 59:923–928

    Article  PubMed  Google Scholar 

  • Enting RH, Hoetelmans RM, Lamge JM, Burger DM, Beijnen JH, Portegies P (1998) Antiretroviral drugs and the central nervous system. AIDS 12:1941–1955

    Article  CAS  PubMed  Google Scholar 

  • Everall IP, Heaton RK, Marcotte TD, Ellis RJ, McCutchan JA, Atkinson JH, Grant I, Mallory M, Masliah E (1999) Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. HNRC Group. HIV Neurobiological Research Center. Brain Pathol 9:209–217

    Article  CAS  PubMed  Google Scholar 

  • Fujimura RK, Goodkin K, Petito CK, Douyon R, Feaster DJ, Concha M, Shapshak P (1997) HIV-1 proviral DNA load across neuroanatomical regions of individuals with evidence for HIV-1 associated dementia. J Acquir Immun Defic Syndrome Hum Retrovirol 16:146–152

    CAS  Google Scholar 

  • Gartner S (2000) HIV infection and dementia. Science 287(5453):602–604

    Article  CAS  PubMed  Google Scholar 

  • Giovanni DG (2010) Editorial. Dopamine interaction with other neurotransmitter systems: relevance in the pathophysiology and treatment of CNS disorders. CNS Neurosci Therapeutics 16:125–126

    Article  Google Scholar 

  • Grahn JA, Parkinson JA, Owen AM (2009) The role of basal ganglia in learning and memory: neuropsychological studies. Behav Res 199:53–60

    Article  Google Scholar 

  • Grant I, Martin A (1994) Neurocognitive disorders associated with HIV infection. In: Grant I, Martin A (eds) Neuropsychology of HIV infection. Oxford University Press, New York, pp 3–20

    Google Scholar 

  • Gronwall DMA (1977) Paced auditory serial addition task; a measure of recovery from concussion. Percept Mot Skills 44:367–373

    CAS  PubMed  Google Scholar 

  • Heaton RK, Grant I, Mathews CG (1991) Comprehensive norms for an expanded Halstead-Reitan Battery: demographic corrections. Research findings and clinical applications. Psychological Assessment Resources, Odessa

    Google Scholar 

  • Heaton RK, Chelune GJ, Talley JL, Kay CG, Curtis G (1993) Wisconsin Card Sorting Test (WCST) manual-revised and expanded. Psychological Assessment Resources, Odessa

    Google Scholar 

  • Heaton RK, Grant I, Butters N, White DA, Kirson D, Atkinson JH, McCutchan JA, Taylor MJ, Kelly MD, Ellis RJ (1995) The HNRC 500—neuropsychology of HIV infection at different disease stages. HIV Neurobehavioral Research Center. J Intl Neuropsychol Soc 1:231–251

    Article  CAS  Google Scholar 

  • Heyes MP, Brew BJ, Martin A, Price RW, Salazar AM, Sidtis JJ, Yergey JA, Mouradian MM, Sadler AE, Keilp J, Rubinow D, Markey SP (1991) Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann Neurol 29(2):202–209

    Article  CAS  PubMed  Google Scholar 

  • Ho D, Rota TR, Schooley RT, Kaplan JC, Allan JD, Groopman JE, Resnick L, Felsenstein D, Andrew CA, Hirsch MS (1985) Isolation of HTLV-III from cerebrospinal fluid and neural tissues of patients with neurologic syndromes related to the acquired immunodeficiency syndrome. N Engl J Med 313(24):1493–1497

    Article  CAS  PubMed  Google Scholar 

  • Hollander H, Golden J, Mendelson T, Cortland D (1985) Extra pyramidal symptoms in AIDS patients given low-dose metoclopramide or chlorpromazine [letter]. Lancet 2:1186

    Article  CAS  PubMed  Google Scholar 

  • Hornykiewicz O (1973) Dopamine in the basal ganglia: its role and therapeutic implications (including the clinical use of l-DOPA). Br Med Bull 29:172–178

    CAS  PubMed  Google Scholar 

  • Hornykiewicz O (1998) Biochemical aspects of Parkinson’s disease. Neurology 51(supplement 2):S2–S9

    CAS  PubMed  Google Scholar 

  • Hriso E, Kuhn T, Masdeu JC, Grundman M (1991) Extrapyramidal symptoms due to dopamine-blocking agents in patients with AIDS encephalopathy. Am J Psychiatry 148:1558–1561

    CAS  PubMed  Google Scholar 

  • Itoh K, Mehraein P, Weis S (2000) Neuronal damage of the substantia nigra in HIV-infected brains. Acta Neuropathol 99:376–384

    Article  CAS  PubMed  Google Scholar 

  • Kaul M, Lipton SA (2006) Mechanisms of neuronal injury and death in HIV-1 associated dementia. Curr HIV Res 4:307–318

    Article  CAS  PubMed  Google Scholar 

  • Kim RB, Fromm MF, Wandel C, Leake B, Wood JJ, Roden DM (1998) The drug transporter p-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 101:289–294

    Article  CAS  PubMed  Google Scholar 

  • Kolson DL, Lavie E, Gonzalez-Scarano F (1998) The effect of human immunodeficiency virus in the CNS. Adv Virus Res 50:1–47

    Article  CAS  PubMed  Google Scholar 

  • Kramer-Hammerle S, Rothenaigner I, Wolf H, Bell JE, Brack-Werner R (2005) Cells of the nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 111(2):194–213

    Article  PubMed  Google Scholar 

  • Kumar AM, Borodowsky I, Fernandez B, Gonzalez L, Kumar M (2007) Human immunodeficiency virus type 1 RNA levels in different regions of human brain: quantification using real-time reverse transcriptase-polymerase chain reaction. J NeuroVirol 13:210–224

    Article  CAS  PubMed  Google Scholar 

  • Kumar AM, Fernandez JB, Singer EJ, Commins D, Waldrop-Valverde D, Ownby RL, Kumar M (2009) Human immunodeficiency virus type-1 in the central nervous system leads to decreased dopamine in different regions of postmortem human brains. J NeuroVirol 15:257–274

    Article  CAS  PubMed  Google Scholar 

  • Larsson M, Hagberg L, Forsman A, Norkrans G (1991) Cerebrospinal fluid catecholamines metabolites in HIV-1 infected patients. J Neurosci Res 28:406–409

    Article  CAS  PubMed  Google Scholar 

  • Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC, Gelman BB, McArthur JC, McCutchan JA, Morgello S, Simpson D, Grant I, Ellis RJ (2008) Validation of the CNS penetration—effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol 65:65–70

    Article  PubMed  Google Scholar 

  • Luciana M, Collins P, Depue RA (1998) Opposing roles for dopamine and serotonin in the modulation of human spatial working memory function. Cerebral Cortex 8:218–226

    Article  CAS  PubMed  Google Scholar 

  • Marra CM, Zhao Y, Clifford DB, Letendre S, Evans S, Henry K, Ellid RJ, Rodriguez B, Coombs RW, Schiffito G, McArthur JC, Robertson K, AIDS Clinical Trials Group 736 Study Team (2009) Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS 23(14):1909–1910

    Article  Google Scholar 

  • Masliah E, Achim CL, Ge N, DeTeresa R, Terry RD, Wiley CA (1992) Spectrum of HIV associated neocortical damage. Ann Neurol 32:85–93

    Article  Google Scholar 

  • Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, Mallroy M, Achim CL, McCutcan JA, Nelson JA, Atkinson JH, Grant I (1997) Dendritic injury is a pathological substrate for human immunodeficiency virus related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann Neurol 42:963–972

    Article  CAS  PubMed  Google Scholar 

  • Mathews CG, Klove H (1964) Instruction manual for adult neuropsychology test battery. University of Wisconsin Medical School, Madison

    Google Scholar 

  • McArthur JC (2004) HIV dementia: an evolving disease. J Neuroimmnol 157:3–10

    Article  CAS  Google Scholar 

  • McArthur J, Mclernen DR, Cronin MF, Nance-Sproson TE, Saah AJ, Clair MS, Lanier ER (1997) Relationship between human immunodeficiency virus associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 42(5):689–698

    Article  CAS  PubMed  Google Scholar 

  • McClernon DR, Lanier R, Gartner S, Feaser P, Pardo CA, St Claire M, Liao Q, McArthur JC (2001) HIV in the brain: RNA levels and patterns of zidovudine resistance. Neurology 57:1396–1401

    CAS  PubMed  Google Scholar 

  • Mirsattari SM, Power C, Nath A (1998) Parkinsonism with HIV infection. Mov Disord 13:684–689

    Article  CAS  PubMed  Google Scholar 

  • Moore DJ, Masliah E, Rippeth JD, Gonzalez R, Carey CL, Cherner M, Ellis RJ, Achim CL, Marcotte TD, Heaton RK, Grant R, and the HNRC Group (2005) Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS 20:879–887

    Article  Google Scholar 

  • Morgello S, Gelman BB, Kozlowski PB, Vinters HV, Masliah E, Cornford M, Cavert W, Marra C, Grant I, Singer EJ (2001) The National NeuroAIDS Tissue Consortium: a new paradigm in brain banking with an emphasis on infectious diseases. Neuropathol Appl Neurobiol 27:326–335

    Article  CAS  PubMed  Google Scholar 

  • Nath A (2002) Human immunodeficiency virus proteins in neuropathogenesis of HIV dementia. J Infect Dis 186(Suppl 2):S193–S198

    Article  CAS  PubMed  Google Scholar 

  • Nath A, Geiger J (1998) Neurobiological aspects of human immunodeficiency virus infection: neurotoxic mechanisms. Prog Neurobiol 54:19–33

    Article  CAS  PubMed  Google Scholar 

  • Nath A, Jones M, Maragos W, Booz R, Mactutus C, Bell J, Hauser K, Mattson M (2000) Neurotoxicity and dysfunction of dopaminergic systems associated with AIDS dementia. J Psychopharmacol 14(3):222–228

    Article  CAS  PubMed  Google Scholar 

  • Navia BA, Jordan BD, Price RW (1986) The AIDS dementia complex: clinical features. Ann Neurol 19:517–524

    Article  CAS  PubMed  Google Scholar 

  • Nieoullon A (2002) Dopamine and the regulation of cognition and attention. Prog Neurobiol 67:53–83

    Article  CAS  PubMed  Google Scholar 

  • Nottet HS, Pesidsky Y, Sasseville VG, Nukuma AN, Bock P, Zhai QH, Sharer LR, McComb RD, Swindells S, Soderland C, Gendelman HE (1996) Mechanisms for the transendothelial migration of HIV-1 infected monocytes in to the brain. J Immunol 156:1284–1295

    CAS  PubMed  Google Scholar 

  • Obermann M, Kuper M, Kastrup O, Yaldizli O, Esser S, Thiermann J, Koutsilieri E, Arendt G, Diener HC, Maschke M (2009) Substantia nigra hyperechogenicity and CSF dopamine depletion in HIV. J Neurol 256:948–953

    Article  CAS  PubMed  Google Scholar 

  • Owen AM, Doyon J, Petrides M, Evans AC (1996) Planning and spatial working memory: a positron emission tomography study in humans. Eur J Neurosci 8:353–364

    Article  CAS  PubMed  Google Scholar 

  • Peavy G, Jacobs D, Salmon DP (1994) Verbal memory performance of patients with human immunodeficiency virus infection: evidence of subcortical dysfunction. J Clin Exp Neuropsychol 16:508–523

    Article  CAS  PubMed  Google Scholar 

  • Pomara N, Crandall DT, Choi SJ, Johnson G, Lim KO (2001) White matter abnormalities in HIV-1 infection: a diffusion tensor imaging study. Psychiatry Res 106:15–24

    Article  CAS  PubMed  Google Scholar 

  • Previc FH (1999) Dopamine and origin of human intelligence. Brain Cognition 41:299–350

    Article  CAS  Google Scholar 

  • Rajput AH, Sitte HH, Rajput A, Fenton ME, Pifi C, Hornykiewicz O (2008) Globus pallidus dopamine and Parkinson motor subtypes: clinical and brain biochemical correlations. Neurology 17(16 pt 2):1403–1410

    Article  Google Scholar 

  • Reger M, Welsh R, Razani J, Martin DJ, Boon KB (2002) A meta-analysis of the neuropsychological sequelae of HIV-1 infection. J Int Neuropsychol Soc 8:410–424

    Article  PubMed  Google Scholar 

  • Resnick L, Berger JR, Shapshak P, Tourtellote WW (1988) Early penetration of the blood brain–barrier by HIV. Neurology 38:9–14

    CAS  PubMed  Google Scholar 

  • Reyes MG, Faraldi F, Senseng CS, Flowers C, Fariello R (1991) Nigral degeneration in acquired immune deficiency syndrome (AIDS). Acta Neuropathol 82:39–44

    Article  CAS  PubMed  Google Scholar 

  • Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, McArthur JC, Collier AC, Evans SR, Ellis RJ (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 21:1915–1921

    Article  PubMed  Google Scholar 

  • Sacktor N (2002) The epidemiology of human immunodeficiency virus-associated neurological disease in era of highly active antiretroviral therapy. J NeuroVirol 8(Suppl 2):115–121

    Article  CAS  PubMed  Google Scholar 

  • Sacktor N, McDermott MP, Marder K, Schiffito G, Selnes OA, McArthur JC, Stern Y, Albert S, Palumbo D, Kieburtz A, De Marcaida JA, Cohen B, Epstein L (2002) HIV-associated cognitive impairment before and after the advent of combination therapy. J NeuroVirol 8:136–142

    Article  PubMed  Google Scholar 

  • Sardar AM, Czudek C, Reynolds GP (1996) Dopamine deficits in the brain: the neurochemical basis of Parkinsonian symptoms in AIDS. Neuroreport 7:910–912

    Article  CAS  PubMed  Google Scholar 

  • Schrager LK, D’Souza MP (1998) Cellular and anatomical reservoirs of HIV-1 in patients receiving potent antiretroviral combination therapy. JAMA 280:67–71

    Article  CAS  PubMed  Google Scholar 

  • Tracey I, Carr CA, Guimaraes AR, Worth JL, Navia BA, Gonzalez RG (1996) Brain choline-containing compounds are elevated in HIV-positive patients before the onset of AIDS dementia complex. A proton magnetic resonance spectroscopy study. Neurology 46(3):783–788

    CAS  PubMed  Google Scholar 

  • Tracey I, Hamberg LM, Guimaraes AR, Hunter G, Chang I, Navia BA, Gonzalez RG (1998) Increased cerebral blood volume in HIV-positive patients detected by functional MRI. Neurology 50:1821–1826

    CAS  PubMed  Google Scholar 

  • Van Kammen DP, Van Kammen WB, Mann LS, Seppala T, Linnoila M (1986) Dopamine metabolism in cerebrospinal fluid of drug free schizophrenic patients with and without cortical atrophy. Arch Gen Psychiatry 43:978–983

    PubMed  Google Scholar 

  • Walsh FX, Stevens JT, Langlais PJ, Bird ED (1982) Dopamine and homovanillic acid concentrations in striatal and limbic regions of human brain. Ann Neurol 12:52–55

    Article  CAS  PubMed  Google Scholar 

  • Wang GJ, Chang L, Volkow ND, Telang F, Logan J, Ernst T, Fowler JS (2004) Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain 127:2452–2458

    Article  PubMed  Google Scholar 

  • Wechsler D (1997) The Wechsler adult intelligent scale-III edition. Psychological Corp, New York

    Google Scholar 

  • Wiley CA, Soontornniyomkji V, Radhakrishnan L, Masliah E, Mellors J, Herman SA, Dalley P, Achim CL (1998) Distribution of brain HIV load in AIDS. Brain Pathol 8:277–284

    Article  CAS  PubMed  Google Scholar 

  • Wilk S, Stanley M (1978) Dopamine metabolites in human brain tissue. J Neural Transm 39:281–290

    Google Scholar 

  • Wilkie FI, Goodkin K, van Zulien MH, Tyll MD, Lecusay R, Edwin T (2000) Cognitive effects of HIV-1 infection. CNS Spectrum 5(5):33–51

    CAS  Google Scholar 

  • Woods SP, Moore DJ, Weber E, Grant I (2009) Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev 19:152–168

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by the NIH grants RO1 NS43982, R21 NS062669, and RO1 NS055653. The authors thank the NNTC for providing the postmortem brain tissues for this project under request #77. The authors like to thank the tissue donors who made commitment during their life to donate their brain for the advancement of scientific knowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adarsh M. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A.M., Ownby, R.L., Waldrop-Valverde, D. et al. Human immunodeficiency virus infection in the CNS and decreased dopamine availability: relationship with neuropsychological performance. J. Neurovirol. 17, 26–40 (2011). https://doi.org/10.1007/s13365-010-0003-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-010-0003-4

Keywords

Navigation