Skip to main content
Log in

Defective lipid metabolism in neurodegeneration with brain iron accumulation (NBIA) syndromes: not only a matter of iron

  • Complex Lipids
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Neurodegeneration with brain iron accumulation (NBIA) is a group of devastating and life threatening rare diseases. Adult and early-onset NBIA syndromes are inherited as X-chromosomal, autosomal dominant or recessive traits and several genes have been identified as responsible for these disorders. Among the identified disease genes, only two code for proteins directly involved in iron metabolism while the remaining NBIA genes encode proteins with a wide variety of functions ranging from fatty acid metabolism and autophagy to still unknown activities. It is becoming increasingly evident that many neurodegenerative diseases are associated with metabolic dysfunction that often involves altered lipid metabolism. This is not surprising since neurons have a peculiar and heterogeneous lipid composition critical for the development and correct functioning of the nervous system. This review will focus on specific NBIA forms, namely PKAN, CoPAN, PLAN, FAHN and MPAN, which display an interesting link between neurodegeneration and alteration of phospholipids and sphingolipids metabolism, mitochondrial morphology and membrane remodelling

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

2-hFA :

2-hydroxylated fatty acids

2-nFA :

2-non hydroxylated fatty acids

2-OHOA :

2’-hydroxyoleic acidp

AA :

arachidonic acid

ATP :

Adenosine triphosphate

C19orf12 :

chromosome 19 open-reading frame 12 gene

CL :

cardiolipin

CL-ox :

oxidized CL

CNS :

central nervous system

CoA :

coenzyme A

DHA :

docosahexaenoic acid

ENU :

N-ethyl-N-nitrosourea

EPA :

eicosapentaenoic acid

ER :

endoplasmic reticulum

FA :

fatty acids

GalCer :

galactosylceramide

LPC :

lysophosphatidylcholine

MPAN :

mitochondrial membrane protein-associated neurodegeneration

MRI :

magnetic resonance imaging

PC :

phosphatidylcholine

PE :

phosphatidylethanolamine

PKAN :

PANK-associated neurodegeneration with brain iron accumulation

PL :

phospholipids

PLAN :

PLA2G6-associated neurodegeneration with brain iron accumulation

PNS :

peripheral nervous system

PPARs :

peroxisome proliferator-activated receptors

PS :

phosphatidylserine

PUFA :

poly-unsaturated fatty acids

ROS :

reactive oxygen species

References

  • Alderson NL, Hama H (2009) Fatty acid 2-hydroxylase regulates cAMP-induced cell cycle exit in D6P2T Schwannoma cells. J Lipid Res 50:1203–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alderson NL, Rembiesa BM, Walla MD, Bielawska A, Bielawski J, Hama H (2004) The human FA2H gene encodes a fatty acid 2-hydroxylase. J Biol Chem 279:48562–48568

    CAS  PubMed  Google Scholar 

  • Alderson NL, Maldonado EN, Kern MJ, Bhat NR, Hama H (2006) FA2Hdependent fatty acid 2-hydroxylation in postnatal mouse brain. J Lipid Res 47:2772–2780

    CAS  PubMed  Google Scholar 

  • Bao S, Jacobson DA, Wohltmann M, Bohrer A, Jin W, Philipson LH, Turk J (2008) Glucose homeostasis, insulin secretion, and islet phospholipids in mice that overexpress iPLA2β in pancreatic β-cells and in iPLA2 β-null mice. Am J Physiol Endocrinol Metab 294:E217–E229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Basselin M, Rosa AO, Ramadan E, Cheon Y, Chang L, Chen M, Greenstein D, Wohltmann M, Turk J, Rapoport SI (2010) Imaging decreased brain docosahexaenoic acid metabolism and signaling in iPLA(2)beta (VIA)-deficient mice. J Lipid Res 51:3166–3173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bayir H, Tyurin VA, Tyurina YY, Viner R, Ritov V, Amoscato AA, Zhao Q, Zhang XJ, Janesko-Feldman KL, Alexander H, Basova LV, Clark RS, Kochanek PM, Kagan VE (2007) Selective early cardiolipin peroxidation after traumatic brain injury: an oxidative lipidomics analysis. Ann Neurol 62:154–169

    CAS  PubMed  Google Scholar 

  • Beck G, Sugiura Y, Shinzawa K, Kato S, Setou M, Tsujimoto Y, Sakoda S, Sumi-Akamaru H (2011) Neuroaxonal dystrophy in calcium-independent phospholipase A2b deficiency results from insufficient remodeling and degeneration of mitochondrial and presynaptic membranes. J Neurosci 31:11411–11420

    CAS  PubMed  Google Scholar 

  • Beech DJ (2007) Bipolar phospholipid sensing by TRPC5 calcium channel. Biochem Soc Trans 35(1):101–104

    CAS  PubMed  Google Scholar 

  • Bolotina VM (2008) Orai, STIM1 and iPLA2β: a view from a different perspective. J Physiol 586(13):3035–3042

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bordet R, Ouk T, Petrault O et al (2006) PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans 34(Pt 6):1341–6

    CAS  PubMed  Google Scholar 

  • Bosetti F (2007) Arachidonic acid metabolism in brain physiology and pathology: lessons from genetically altered mouse models. J Neurochem 102(3):577–86

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bosveld F, Rana A, van der Wouden PE et al (2008) De novo CoA biosynthesis is required to maintain DNA integrity during development of the drosophila nervous system. Hum Mol Genet 17(13):2058–2069

    CAS  PubMed  Google Scholar 

  • Bousquet M, Gibrat C, Ouellet M, Rouillard C, Calon F, Cicchetti F (2010) Cystamine metabolism and brain transport properties: clinical implications for neurodegenerative diseases. J Neurochem 114:1651–8

    CAS  PubMed  Google Scholar 

  • Bras J, Singleton A, Cookson MR, Hardy J (2008) Emerging pathways in genetic Parkinson’s disease: potential role of ceramide metabolism in Lewy body disease. FEBS J 275:5767–5773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown HA, Murphy RC (2009) Working towards an exegesis for lipids in biology. Nat Chem Biol 5(9):602–606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brunetti D, Dusi S, Morbin M et al (2012) Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model. Hum Mol Genet 21:5294–305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brunetti D, Dusi S, Giordano C et al (2014) Effect of pantethine treatment in a pantothenate kinase-associated neurodegeneration mouse model. Brain 137(Pt 1):57–68

    PubMed Central  PubMed  Google Scholar 

  • Burke JE, Dennis EA (2009) Phospholipase A2 structure/function, mechanism, and signaling. J Lipid Res 50(Suppl):S237–42

    PubMed Central  PubMed  Google Scholar 

  • Carta M, Lanore F, Rebola N et al (2014) Membrane lipids tune synaptic transmission by direct modulation of presynaptic potassium channels. Neuron 81(4):787–99

    CAS  PubMed  Google Scholar 

  • Cheon Y, Kim HW, Igarashi M, Modi HR, Chang L, Ma K, Greenstein D, Wohltmann M, Turk J, Rapoport SI, Taha AY (2012) Disturbed brain phospholipid and docosahexaenoic acid metabolism in calcium-independent phospholipase A(2)-VIA (iPLA2-beta)-knockout mice. Biochim Biophys Acta 821(9):1278–86

    Google Scholar 

  • Conquer JA, Tierney MC, Zecevic J et al (2000) Fatty acid analysis of blood plasma of patients with Alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids 35(12):1305–12

    CAS  PubMed  Google Scholar 

  • Cossu G, Abruzzese G, Matta G et al (2014) Efficacy and safety of deferiprone for the treatment of pantothenate kinase-associated neurodegeneration (PKAN) and neurodegeneration with brain iron accumulation (NBIA): results from a four years follow-up. Parkinsonism Relat Disord 20(6):651–4

    PubMed  Google Scholar 

  • Dalleau S, Baradat M, Guéraud F, Huc L (2013) Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ 20:1615–1630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dan P, Edvardson S, Bielawski J, Hama H, Saada A (2011) 2-Hydroxylated sphingomyelin profiles in cells from patients with mutated fatty acid 2-hydroxylase. Lipids Health Dis 10:84

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dick KJ et al (2010) Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Hum Mutat 31:E1251–E1260

    CAS  PubMed  Google Scholar 

  • Dusi S, Valletta L, Haack TB et al (2013) Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. Am J Hum Genet 94(1):11–22

    PubMed  Google Scholar 

  • Eddlestone GT (1995) ATP-sensitive K channel modulation by products of PLA2 action in the insulin-secreting HIT cell line. Am J Physiol Cell Physiol 268:C181–C190

    CAS  Google Scholar 

  • Edvardson S, Hama H, Shaag A et al (2008) Mutations in the fatty acid 2-hydroxylase gene are associated with leukodystrophy with spastic paraparesis and dystonia. Am J Hum Genet 83:643–648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Esposito G, Giovacchini G, Liow JS et al (2008) Imaging neuroinflammation in Alzheimer’s disease with radiolabeled arachidonic acid and PET. J Nucl Med 49(9):1414–21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans SJ, Prossin AR, Harrington GJ et al (2012) Fats and factors: lipid profiles associate with personality factors and suicidal history in bipolar subjects. PLoS One 7(1):e29297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia M, Leonardi R, Zhang YM et al (2012) Germline deletion of pantothenate kinases 1 and 2 reveals the key roles for CoA in postnatal metabolism. PLoS One 7(7):e40871

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ginsberg L, Rafique S, Xuereb JH et al (1995) Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. Brain Res 698(1–2):223–6

    CAS  PubMed  Google Scholar 

  • Gregory A, Hayflick SJ (2011) Genetics of neurodegeneration with brain iron accumulation. Curr Neurol Neurosci 11(3):254–61

    CAS  Google Scholar 

  • Guo L, Zhou D, Pryse KM, Okunade AL, Su X (2010) Fatty acid 2-hydroxylase mediates diffusional mobility of raft-associated lipids, GLUT4 level, and lipogenesis in 3T3-L1 adipocytes. J Biol Chem 285:25438–47

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hama H (2012) Fatty acid 2-Hydroxylation in mammalian sphingolipid biology. Biochim Biophys Acta 1801(4):405–14

    Google Scholar 

  • Hartig MB, Iuso A, Haack T et al (2011) Absence of an orphan mitochondrial protein, c19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation. Am J Hum Genet 89:543–550

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayflick SJ (2006) Neurodegeneration with brain iron accumulation: from genes to pathogenesis. Semin Pediatr Neurol 13(3):182–5

    PubMed  Google Scholar 

  • Hodson L, Eyles HC, McLachlan KJ et al (2014) Plasma and erythrocyte fatty acids reflect intakes of saturated and n-6 PUFA within a similar time frame. J Nutr 44(1):33–41

    Google Scholar 

  • Holowka D, Korzeniowski MK, Bryant KL, Baird B (2014) Polyunsaturated fatty acids inhibit stimulated coupling between the ER Ca2+ sensor STIM1 and the Ca2+ channel protein Orai1 in a process that correlates with inhibition of stimulated STIM1 oligomerization. Biochim Biophys Acta 1841(8):1210–6

    CAS  PubMed  Google Scholar 

  • Hong S, Gronert K, Devchand P, Moussignac R-L, Serhan CN (2003) Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood and glial cells: autacoids in anti-inflammation. J Biol Chem 278:14677–14687

    CAS  PubMed  Google Scholar 

  • Horvath R, Holinski-Feder E, Neeve V et al (2012) A new phenotype of brain iron accumulation with dystonia, optic atrophy and peripheral neuropathy. Mov Disord 27(6):789–93

    CAS  PubMed  Google Scholar 

  • Innis SM (2000) The role of dietary n-6 and n-3 fatty acids in the developing brain. Dev Neurosci 22(5–6):474–80

    CAS  PubMed  Google Scholar 

  • Itoh K, Negishi H, Obayashi C, Hayashi Y, Hanioka K, Imai Y, Itoh H (1993) Infantile neuroaxonal dystrophy: immunohistochemical and ultrastructural studies on the central and peripheral nervous systems in infantile neuroaxonal dystrophy. Kobe J Med Sci 39:133–146

    CAS  PubMed  Google Scholar 

  • Iuso A, Sibon OCM, Gorza M, Heim K, Organisti C, Meitinger T, Prokisch H (2014) Impairment of Drosophila orthologs of the human orphan protein C19orf12 induces bang sensitivity and neurodegeneration. PLoS ONE 9(2):e89439

  • Jadoon A, Chiu CC, McDermott L et al (2012) Associations of polyunsaturated fatty acids with residual depression or anxiety in older people with major depression. J Affect Disord 136(3):918–25

    CAS  PubMed  Google Scholar 

  • Ji J, Kline AE, Amoscato A, Samhan-Arias AK, Sparvero LJ, Tyurin VA, Tyurina YY, Fink B, Manole MD, Puccio AM, Okonkwo DO, Cheng JP, Alexander H, Clark RS, Kochanek PM, Wipf P, Kagan VE, Bayir H (2012) Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy ofbrain injury. Nat Neurosci 15:1407–1413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson MA, Kuo YM, Westaway SK et al (2004) Mitochondrial localization of human PANK2 and hypotheses of secondary iron accumulation in pantothenate kinase-associated neurodegeneration. Ann N Y Acad Sci 1012:282–98

    CAS  PubMed  Google Scholar 

  • Kagan VE, Bayir HA, Belikova NA, Kapralov O, Tyurina YY, Tyurin VA, Jiang J, Stoyanovsky DA, Wipf P, Kochanek PM, Greenberger JS, Pitt B, Shvedova AA, Borisenko G (2009) Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic Biol Med 46:1439–1453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khateeb S, Flusser H, Ofir R, Shelef I, Narkis G, Vardi G, Shorer Z, Levy R, Galil A, Elbedour K, Birk OS (2006) PLA2G6 mutation underlies infantile neuroaxonal dystrophy. Am J Hum Genet 79(5):942–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura S (1991) Terminal axon pathology in infantile neuroaxonal dystrophy. Pediatr Neurol 7:116–120

    CAS  PubMed  Google Scholar 

  • Kishimoto Y, Radin NS (1963) Occurrence of 2-hydroxy fatty acids in animal tissues. J Lipid Res 4:139–143

    CAS  PubMed  Google Scholar 

  • Köroğlu C, Seven M, Tolun A (2013) Recessive truncating NALCN mutation in infantile neuroaxonal dystrophy with facial dysmorphism. J Med Genet 50(8):515–20

    PubMed  Google Scholar 

  • Kota V, Hama H (2014) 2′-Hydroxy ceramide in membrane homeostasis and cell signaling. Adv Biol Regul 54:223–230

    CAS  PubMed  Google Scholar 

  • Kotzbauer PT, Truax AC, Trojanowski JQ, Lee VM (2005) Altered neuronal mitochondrial coenzyme A synthesis in neurodegeneration with brain iron accumulation caused by abnormal processing, stability, and catalytic activity of mutant pantothenate kinase 2. J Neurosci 19;25(3):689–98

    Google Scholar 

  • Kruer MC, Paisan-Ruiz C, Boddaert N, Yoon MY, Hama H, Gregory A et al (2010) Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol 68:611–61

    CAS  PubMed  Google Scholar 

  • Kuo YM, Duncan JL, Westaway SK et al (2005) Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia. Hum Mol Genet 14(1):49–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuo YM, Hayflick SJ, Gitschier J (2007) Deprivation of pantothenic acid elicits a movement disorder and azoospermia in a mouse model of pantothenate kinase-associated neurodegeneration. J Inherit Metab Dis 30(3):310–317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurian MA, Morgan NV, MacPherson L, Foster K, Peake D, Gupta R, Philip SG, Hendriksz C, Morton JE, Kingston HM, Rosser EM, Wassmer E, Gissen P, Maher ER (2008) Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology 70:1623–9

    CAS  PubMed  Google Scholar 

  • Lamari F, Mochel F, Sedel F, Saudubray JM (2013) Disorders of phospholipids, sphingolipids and fatty acids biosynthesis: toward a new category of inherited metabolic diseases. J Inherit Metab Dis 36:411–425

    CAS  PubMed  Google Scholar 

  • Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, Lindemann RK et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113:717–30

    CAS  PubMed  Google Scholar 

  • Leoni V, Strittmatter L, Zorzi G et al (2012) Metabolic consequences of mitochondrial coenzyme A deficiency in patients with PANK2 mutations. Mol Genet Metab 105(3):463–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu HM, Larson M, Mizuno Y (1974) An analysis of the ultrastructural findings in infantile neuroaxonal dystrophy (Seitelberger’s disease). Acta Neuropathol 27:201–213

    CAS  PubMed  Google Scholar 

  • Lopés-Vales R, Navarro X, Shimizu T, Baskakis C, Kokotos G, Constantinou-Kokotou V, Stephens D, Dennis EA, David S (2008) Intracellular phospholipase A2 group IVA and group VIA play important roles in Wallerian degeneration and axon regeneration after peripheral nerve injury. Brain 131:2620–2631

    Google Scholar 

  • Mahadevan A, Santosh V, Gayatri N, Ratnavalli E, NandaGopal R, Vasanth A, Roy AK, Shankar SK (2000) Infantile neuroaxonal dystrophy and giant axonal neuropathy: overlap diseases of neuronal cytoskeletal elements in childhood? Clin Neuropathol 19:221–229

    CAS  PubMed  Google Scholar 

  • Maldonado EN, Alderson NL, Monje PV, Wood PM, Hama H (2008) FA2H is responsible for the formation of 2-hydroxy galactolipids in peripheral nervous system myelin. J Lipid Res 49(1):153–61

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malik I, Turk J, Mancuso DJ, et al (2008) Disrupted membrane homeostasis and accumulation of ubiquitinated proteins in a mouse model of infantile neuroaxonal dystrophy caused by PLA2G6 mutations Am J Pathol 172(2):406-16

  • Mapstone M, Cheema AK, Fiandaca MS et al (2014) Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 20(4):415–8

    CAS  PubMed  Google Scholar 

  • Morgan NV, Westaway SK, Morton JE, Gregory A, Gissen P, Sonek S, Cangul H, Coryell J, Canham N, Nardocci N, Zorzi G, Pasha S, Rodriguez D, Desguerre I, Mubaidin A, Bertini E, Trembath RC, Simonati A, Schanen C, Johnson CA et al (2006) PLA2G6, encoding a phospholipaseA2, is mutated neurodegenerative disorders with high brain iron. Nat Genet 38:752–754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mulder C, Wahlund LO, Teerlink T (2003) Decreased lysophosphatidylcholine/phosphatidylcholine ratio in cerebrospinal fluid in Alzheimer’s disease. J Neural Transm 110(8):949–55

    CAS  PubMed  Google Scholar 

  • Nemazanyy I, Panasyuk G, Breus O et al (2006) Identification of a novel CoA synthase isoform, which is primarily expressed in the brain. Biochem Biophys Res Commun 341:995–1000

    CAS  PubMed  Google Scholar 

  • Owada S, Larsson O, Arkhammar P et al (1999) Glucose decreases Na+K+-ATPase activity in pancreatic β-cells. An effect mediated by Ca2+-independent phospholipase A2 and protein kinase C-dependent phosphorylation of the α-subunit. J Biol Chem 274:2000–2008

    CAS  PubMed  Google Scholar 

  • Pandey V, Turm H, Bekenstein H, Shifman S, Kadener S (2013) A new in vivo model of pantothenate kinase-associated neurodegeneration reveals a surprising role for transcriptional regulation in pathogenesis. Front Cell Neurosci 7:146

    PubMed Central  PubMed  Google Scholar 

  • Perry TL, Norman MG, Yong VW et al (1985) Hallervorden-Spatz disease: cysteine accumulation and cysteine dioxygenase deficiency in the globus pallidus. Ann Neurol 18(4):482–9

    CAS  PubMed  Google Scholar 

  • Pizzimenti S, Ciamporcero E, Daga M, Pettazzoni P, Arcaro A, Cetrangolo G, Minelli R, Dianzani C, Lepore A, Gentile F, Barrera G (2013) Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Front Physiol 4:242

    PubMed Central  PubMed  Google Scholar 

  • Pope S, Land JM, Heales SJ (2008) Oxidative stress and mitochondrial dysfunction in neurodegeneration; cardiolipin a critical target? Biochim Biophys Acta 1777:794–799

    CAS  PubMed  Google Scholar 

  • Potter KA, Kern MJ, Fullbright G, Bielawski J, Scherer SS, Yum SV, Li JJ, Cheng H, Han X, Venkata JK, Khan PAA, Rohrer B, Hama H (2011) Central nervous system dysfunction in a mouse model of FA2H deficiency. Glia 59:1009–1021

    PubMed Central  PubMed  Google Scholar 

  • Quehenberger O, Armando AM, Brown AH et al (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51(11):3299–305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rabin O, Deutsch J, Grange E et al (1997) Changes in cerebral acyl-CoA concentrations following ischemia-reperfusion in awake gerbils. J Neurochem 68(5):2111–8

    CAS  PubMed  Google Scholar 

  • Rana A, Seinen E, Siudeja K et al (2010) Pantethine rescues a Drosophila model for pantothenate kinase-associated neurodegeneration. Proc Natl Acad Sci 107(15):6988–93

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reed TT (2011) Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 51:1302–1319

    CAS  PubMed  Google Scholar 

  • Ren D (2011) Sodium leak channels in neuronal excitability and rhythmic behaviors. Neuron 72:899–911

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rhee HW, Zou P, Udeshi ND et al (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339(6125):1328–31

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ross BM, Seguin J, Sieswerda LE (2007) Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid? Lipids Health Dis 6:21

    PubMed Central  PubMed  Google Scholar 

  • Rouault TA (2013) Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci 14(8):551–64

    CAS  PubMed  Google Scholar 

  • Schaefer EJ, Bongard V, Beiser AS et al (2006) Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham heart study. Arch Neurol 63(11):1545–50

    PubMed  Google Scholar 

  • Schipper HM (2012) Neurodegeneration with brain iron accumulation - clinical syndromes and neuroimaging. Biochim Biophys Acta 1822(3):350–60

    CAS  PubMed  Google Scholar 

  • Schlame M (2008) Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J Lipid Res 49:1607–1620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider SA, Bhatia KP (2010) Three faces of the same gene: FA2H links neurodegeneration with brain iron accumulation, leukodystrophies, and hereditary spastic paraplegias. Ann Neurol 68(5):575–7

    CAS  PubMed  Google Scholar 

  • Schneider SA, Dusek P, Hardy J et al (2013) Genetics and pathophysiology of neurodegeneration with brain iron accumulation (NBIA). Curr Neuropharmacol 11:59–79

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schon EA, Area-Gomez E (2013) Mitochondria-associated ER membranes in Alzheimer disease. Mol Cell Neurosci 55:26–36

    CAS  PubMed  Google Scholar 

  • Schulte EC, Claussen MC, Jochim A et al (2013) Mitochondrial membrane protein associated neurodegeneration: a novel variant of neurodegeneration with brain iron accumulation. Mov Disord 28(2):224–7

    CAS  PubMed  Google Scholar 

  • Schwab JM, Chiang N, Arita M et al (2007) Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447(7146):869–74

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seleznev K, Zhao C, Zhang XH, Song K, Ma ZA (2006) Calcium-independent phospholipase A2 localizes in and protects mitochondria during apoptotic induction by staurosporine. J Biol Chem 281:22275–22288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharon R, Goldberg MS, Bar-Josef I, Betensky RA, Shen J, Selkoe DJ (2001) Alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc Natl Acad Sci U S A 98(16):9110–5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shinzawa K, Sumi H, Ikawa M, Matsuoka Y, Okabe M, Sakoda S, Tsujimoto Y (2008) Neuroaxonal dystrophy caused by group VIA phospholipase A2 deficiency in mice: a model of human neurodegenerative disease. J Neurosci 28:2212–2220

  • Sian-Hülsmann J, Mandel S, Youdim MB et al (2011) The relevance of iron in the pathogenesis of Parkinson’s disease. J Neurochem 118(6):939–57

    PubMed  Google Scholar 

  • Smani T, Zakharov SI, Csutora P et al (2004) A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol 6:113–120

    CAS  PubMed  Google Scholar 

  • Sonnino S, Aureli M, Grassi S, et al (2013) Lipid rafts in neurodegeneration and neuroprotection. Mol Neurobiol Epub ahead of print

  • Strokin M, Seburn KL, Cox GA et al (2012) Severe disturbance in the Ca2+ signaling in astrocytes from mouse models of human infantile neuroaxonal dystrophy with mutated Pla2g6. Hum Mol Genet 21(12):2807–2814

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tatsuta T, Scharwey, Langer T (2014) Mitochondrial lipid trafficking. Trends Cell Biol 24(1):44–52

    CAS  PubMed  Google Scholar 

  • Timmermann L, Pauls KA, Wieland K et al (2010) Dystonia in neurodegeneration with brain iron accumulation: outcome of bilateral pallidal stimulation. Brain 133(Pt 3):701–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vacher P, McKenzie J, Dufy B (1989) Arachidonic acid affects membrane ionic conductances of GH3 pituitary cells. Am J Physiol Endocrinol Metab 257:E203–E211

    CAS  Google Scholar 

  • Vance JE (2014) MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim Biophys Acta 1841(4):595–609

    CAS  PubMed  Google Scholar 

  • Vanden Abeele F, Zholos A, Bidaux G et al (2006) Ca2+-independent phospholipase A2-dependent gating of TRPM8 by lysophospholipids. J Biol Chem 281:40174–40182

    CAS  PubMed  Google Scholar 

  • Wada H, Yasuda T, Miura I et al (2009) Establishment of an improved mouse model for infantile neuroaxonal dystrophy that shows early disease onset and bears a point mutation in Pla2g6. Am J Pathol 175(6):2257–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walter A, Korth U, Hilgert M et al (2004) Glycerophosphocholine is elevated in cerebrospinal fluid of Alzheimer patients. Neurobiol Aging 25(10):1299–303

    CAS  PubMed  Google Scholar 

  • Zhao Z, Zhang X, Zhao C, Choi J, Shi J et al (2010) Protection of pancreatic beta-cells by group VIA phospholipase A2-mediated repair of mitochondrial membrane peroxidation. Endocrinology 151:3038–3048

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Z, Wang J, Zhao C, Bi W, Yue Z et al (2011) Genetic ablation of PLA2G6 in mice leads to cerebellar atrophy characterized by Purkinje cell loss and glial cell activation. PLoS One 6(10):e26991

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou B, Westaway SK, Levinson B et al (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 28(4):345–9

    CAS  PubMed  Google Scholar 

  • Zhyvoloup A, Nemazanyy I, Babich A et al (2001) Molecular cloning of CoA synthase. The missing link in CoA biosynthesis. J Biol Chem 277(25):22107–10

    Google Scholar 

  • Zhyvoloup A, Nemazanyy I, Panasyuk G et al (2003) Subcellular localization and regulation of coenzyme a synthase. J Biol Chem 278(50):50316–50321

    CAS  PubMed  Google Scholar 

  • Zöller I, Meixner M, Hartmann D, Bussow H, Meyer R, Gieselmann V, Eckhardt M (2008) Absence of 2-hydroxylated sphingolipids is compatible with normal neural development but causes late-onset axon and myelin sheath degeneration. J Neurosci 28:9741–975

    PubMed  Google Scholar 

  • Zorzi G, Zibordi F, Chiapparini L et al (2011) Iron-related MRI images in patients with pantothenate kinase-associated neurodegeneration (PKAN) treated with deferiprone: results of a phase II pilot trial. Mov Disord 6(9):1756–9

    Google Scholar 

Download references

Acknowledgments

The support of Telethon GGP11088 and TIRCON project of the European Commission’s Seventh Framework Programme (FP7/2007-2013, HEALTH-F2-2011, grant agreement No. 277984) to VT are gratefully acknowledged. MA is supported by the Mitochondrial European Educational

Training, MEET, ITN MARIE CURIE PEOPLE (grant agreement No. 317433).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Tiranti.

Additional information

Communicated by: Jean-Marie Saudubray

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombelli, C., Aoun, M. & Tiranti, V. Defective lipid metabolism in neurodegeneration with brain iron accumulation (NBIA) syndromes: not only a matter of iron. J Inherit Metab Dis 38, 123–136 (2015). https://doi.org/10.1007/s10545-014-9770-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-014-9770-z

Keywords

Navigation