Advertisement

Arachidonic Acid, Neurotrauma, and Neurodegenerative Diseases

  • Akhlaq A. Farooqui
  • Thad A. Rosenberger
  • Lloyd A. Horrocks
Chapter

Abstract

Polyunsaturated fatty acids are important constituents of membrane phospholipids throughout the central nervous system (CNS). They serve not only to maintain the fluid crystalline state of the lipid bilayer, but also to provide the membrane with adequate flexibility necessary to stabilize regions of high curvature. The functional properties of such membranes include: maintaining suitable ion permeability, providing a substrate for cellular signal transduction, and participating in biosynthetic pathways. Since approximately half of the dry weight of neural tissue in the CNS is lipid, with a large portion being phospholipid, a considerable amount of investigation has focused on studying the relationship between lipid structure and neural function. Advances include the involvement of the inositides, phosphatidylcholine, and, recently, sphingomyelin in signal transduction processes. The functions of fatty acid metabolites (eicosanoids) and other nonmembrane lipids (steroid hormones) have also been studied quite extensively and have been shown to influence cellular function.

Keywords

Free Fatty Acid Arachidonic Acid Neurodegenerative Disease Polyunsaturated Fatty Acid Essential Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbuckle, L. D., MacKinnon, M. J., and Innis, S. M. (1994) Formula 18:2 (n-6) and 18:3 (n-3) content and ratio influence long-chain polyunsaturated fatty acids in the developing piglet liver and central nervous system. J. Nutr., 124, 289–298.PubMedGoogle Scholar
  2. Arduini, A., Denisova, N., Virmani, A., Avrova, N., Federici, G., and ArrigoniMartelli, E. (1994) Evidence for the involvement of carnitine-dependent long-chain acyltransferases in neuronal triglyceride and phospholipid fatty acid turnover. J. Neurochem. 62, 1530–1538.PubMedCrossRefGoogle Scholar
  3. Axelrod, J. (1990) Receptor-mediated activation of phospholipase A2 and arachidonic acid release in signal transduction. Biochem. Soc. Trans. 18, 503–507.PubMedGoogle Scholar
  4. Bazan, N. G. (1970) Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta, 218, 1–10.PubMedCrossRefGoogle Scholar
  5. Bazan, N. G. (1989) Arachidonic acid in the modulation of excitable membrane function and at the onset of brain damage. Ann. NY Acad. Sci., 559, 1–16.PubMedCrossRefGoogle Scholar
  6. Bazan, N. G. and Rodriguez de Turco, E. B. (1980) Membrane lipids in the pathogenesis of brain edema: phospholipids and arachidonic acid, the earliest membrane components changed at the onset of ischemia, in Advances in Neurology, Vol. 28: Brain Edema ( Cervos-Navarro, J. and Ferszt, R., eds.), Raven, New York, pp. 197–205.Google Scholar
  7. Blobe, G. C., Khan, W. A., and Hannun, Y. A. (1995) Protein kinase C: cellular target of the second messenger arachidonic acid? [Review]. Prostaglandins Leukotrienes Essential Fatty Acids 52, 129–135.CrossRefGoogle Scholar
  8. Bondy, S. C. (1995) The relation of oxidative stress and hyperexcitation to neurological disease. Proc. Soc. Exp. Biol. Med. 208, 337–345.PubMedGoogle Scholar
  9. Butterfield, D. A., Hensley, K., Harris, M., Mattson, M., and Carney, J. (1994) [3-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease. Biochem. Biophys. Res. Commun. 200, 710–715.Google Scholar
  10. Carlson, S. E., Werkman, S. H., Peeples, J. M., Cooke, R. J., and Tolley, E. A. (1993) Arachidonic acid status correlates with first year growth in preterm infants. Proc. Natl. Acad. Sci. USA 90, 1073–1077.PubMedCrossRefGoogle Scholar
  11. Caspers, M. L., Bussone, M., Dow, M. J., Ulanski, L. J., and Grammas, P. (1993) Alterations of cerebromicrovascular Na+, K(+)-ATPase activity due to fatty acids and acute hypertension. Brain Res. 602, 215–220.PubMedCrossRefGoogle Scholar
  12. Cazevieille, C., Muller, A., Meynier, E, Dutrait, N., and Bonne, C. (1994) Protection by prostaglandins from glutamate toxicity in cortical neurons. Neurochem. Int. 24, 395–398.PubMedCrossRefGoogle Scholar
  13. Chan, R. H. and Fishman, R. A. (1978) Brain edema: induction in cortical slices by polyunsaturated fatty acids. Science 201, 358–360.PubMedCrossRefGoogle Scholar
  14. Chan, R. H., Kerlan, R., and Fishman, R. A. (1983) Reductions of gamma-aminobutyric acid and glutamate uptake and (Nat, K+)-ATPase activity in brain slices and synaptosomes by arachidonic acid. J. Neurochem. 40, 309–316.PubMedCrossRefGoogle Scholar
  15. Chilton, F. H., Fonteh, A. N., Surette, M. E., Triggiani, M., and Winkler, J. D. (1996) Control of arachidonate levels within inflammatory cells. Biochim. Biophys. Acta 1299, 1–15.PubMedCrossRefGoogle Scholar
  16. Chow, C. K. (1991) Vitamin E and oxidative stress. Free Radical Biol. Med. 11, 215–232.CrossRefGoogle Scholar
  17. Clarke, S. D. and Jump, D. B. (1993) Regulation of gene transcription by polyunsaturated fatty acids [Review]. Prog. Lipid Res. 32, 139–149.PubMedCrossRefGoogle Scholar
  18. Corrigan, F. M., Van Rhijn, A., and Horrobin, D. F. (1991) Essential fatty acids in Alzheimer’s disease. Ann. NY Acad. Sci. 640, 250–252.PubMedGoogle Scholar
  19. Damron, D. S. and Bond, M. (1993) Modulation of Cat+ cycling in cardiac myocytes by arachidonic acid. Circ. Res. 72, 376–386.PubMedCrossRefGoogle Scholar
  20. Demediuk, R, Saunders, R. D., Anderson, D. K., Means, E. D., and Horrocks, L. A. (1982) Membrane lipid changes in laminectomized and traumatized cat spinal cord. Proc. Natl. Acad. Sci. USA 82, 7071–7075.CrossRefGoogle Scholar
  21. Dexter, D. T., Carter, C. J., Wells, F. R., Javoy-Agid, F., Agid, Y., Lees, A., Jenner, P., and Marsden, C. D. (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J. Neurochem. 52, 381–389.PubMedCrossRefGoogle Scholar
  22. Doolan, C. M. and Keenan, A. K. (1994) Inhibition by fatty acids of cyclic AMP-dependent protein kinase activity in brush border membranes isolated from human placental vesicles. Br. J. Pharmacol. 111, 509–514.PubMedCrossRefGoogle Scholar
  23. Dykens, J. A. (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Cat+ and Nat: implications for neurodegeneration. J. Neurochem. 63, 584–591.PubMedCrossRefGoogle Scholar
  24. Edgar, A. D., Strosznajder, J., and Horrocks, L. A. (1982) Activation of ethanolamine phospholipase A2 in brain during ischemia. J. Neurochem. 39, 1111–1116.PubMedCrossRefGoogle Scholar
  25. Farooqui, A. A., Haun, S. E., and Horrocks, L. A. (1994) Ischemia and hypoxia, in Basic Neurochemistry ( Siegel, G. J., Agranoff, B. W., Albers, R. W, and Molinoff, P. B., eds.), Raven, New York, pp. 867–883.Google Scholar
  26. Farooqui, A. A., Liss, L., and Horrocks, L. A. (1988) Neurochemical aspects of Alzheimer’s disease: involvement of membrane phospholipids. Metab. Brain Dis. 3, 19–35.PubMedCrossRefGoogle Scholar
  27. Farooqui, A. A., Rammohan, K. W., and Horrocks, L. A. (1989) Isolation, characterization and regulation of diacylglycerol lipases from bovine brain. Ann. N.Y. Acad. Sci. 559, 25–36.PubMedCrossRefGoogle Scholar
  28. Farooqui, A. A., Wells, K., and Horrocks, L. A. (1995) Breakdown of membrane phospholipids in Alzheimer disease: involvement of excitatory amino acid receptors. Mol. Chem. Neuropathol. 25, 155–173.PubMedCrossRefGoogle Scholar
  29. Gattaz, W. F., Schmitt, A., and Maras, A. (1995) Increased platelet phospholipase A2 activity in schizophrenia. Schizophr. Res. 16, 1–6.PubMedCrossRefGoogle Scholar
  30. Ginsberg, L., Rafique, S., Xuereb, J. H., Rapoport, S. I., and Gershfeld, N. L. (1995) Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. Brain Res. 698, 223–226.PubMedCrossRefGoogle Scholar
  31. Halliwell, B. (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344, 721–724.PubMedCrossRefGoogle Scholar
  32. Han, J. W., McCormick, F., and Macara, I. G. (1991) Regulation of Ras-GAP and the neurofibromatosis-1 gene product by eicosanoids. Science 252, 576–579.PubMedCrossRefGoogle Scholar
  33. Harris, M. E., Hensley, K., Butterfield, D. A., Leedle, R. A., and Carney, J. M. (1995) Direct evidence of oxidative injury produced by the Alzheimer’s ß-amyloid peptide (1–40) in cultured hippocampal neurons. Exp. Neurol. 131, 193–202.PubMedCrossRefGoogle Scholar
  34. Hayes, R. L., Jenkins, L. W., and Lyeth, B. G. (1992) Neurotransmitter-mediated mechanisms of traumatic brain injury: acetylcholine and excitatory amino acids. J. Neurotrauma 9, S173 - S187.PubMedCrossRefGoogle Scholar
  35. Hirashima, Y., Farooqui, A. A., Mills, J. S., and Horrocks, L. A. (1992) Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J. Neurochem. 59, 708–714.PubMedCrossRefGoogle Scholar
  36. Holman, R. T., Johnson, S. B., and Hatch, T. F. (1982) A case of human linolenic acid deficiency involving neurological abnormalities. Am. J. Clin. Nutr. 35, 617–623.PubMedGoogle Scholar
  37. Horrobin, D. F., Manku, M. S., Hillman, H., Iain, A., and Glen, M. (1991) Fatty acid levels in the brains of schizophrenics and normal controls. Biol. Psychiatry 30, 795–805.PubMedCrossRefGoogle Scholar
  38. Horrobin, D. F., Manku, M. S., Morse-Fisher, N., Vaddadi, K. S., Courtney, P., Glen, A. I., Glen, E., Spellman, M., and Bates, C. (1989) Essential fatty acids in plasma phospholipids in schizophrenics. Biol. Psychiatry 25, 562–568.PubMedCrossRefGoogle Scholar
  39. Jenner, P. (1994) Oxidative damage in neurodegenerative disease. Lancet 344, 796–798.PubMedCrossRefGoogle Scholar
  40. Jump, D. B., Clarke, S. D., Thelen, A., and Limatta, M. (1994) Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J. Lipid Res. 35, 1076–1084.PubMedGoogle Scholar
  41. Jurivich, D. A., Sistonen, L., Sarge, K. D., and Morimoto, R. I. (1994) Arachidonate is a potent modulator of human heat shock gene transcription. Proc. Natl. Acad. Sci. USA 91, 2280–2284.PubMedCrossRefGoogle Scholar
  42. Kaiya, H. (1991) Prostaglandin E1 suppression of platelet aggregation response in schizophrenia. Schizophr. Res. 5, 67–80.PubMedCrossRefGoogle Scholar
  43. Katsuki, H. and Okuda, S. (1995) Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 46, 607–636.PubMedCrossRefGoogle Scholar
  44. Khouja, A. and Jones, C. T. (1993) Modulation by protein kinase C of arachidonic acid release from permeabilised myometrial cells of guinea pig uterus. J. Dey. Physiol. 19, 1–7.Google Scholar
  45. Kim, D., Sladek, C. D., Aguado-Velasco, C., and Mathiasen, J. R. (1995) Arachidonic acid activation of a new family of K+ channels in cultured rat neuronal cells. J. Physiol. 484, 643–660.PubMedGoogle Scholar
  46. Kovalchuk, Y., Miller, B., Sarantis, M., and Attwell, D. (1994) Arachidonic acid depresses non—NMDA receptor currents. Brain Res. 643, 287–295.PubMedCrossRefGoogle Scholar
  47. Lenzen, S., Görlich, J., and Rustenbeck, I. (1989) Regulation of transmembrane ion transport by reaction products of phospholipase A2. I. Effects of lysophospholipids on mitochondrial Cat+ transport. Biochim. Biophys. Acta 982, 140–146.PubMedCrossRefGoogle Scholar
  48. Liscovitch, M. and Cantley, L. C. (1994) Lipid second messengers [Review]. Cell 77, 329–334.PubMedCrossRefGoogle Scholar
  49. Lynch, M. A. and Voss, K. L. (1990) Arachidonic acid increases inositol phospholipid metabolism and glutamate release in synaptosomes prepared from hippocampal tissue. J. Neurochem. 55, 215–221.PubMedCrossRefGoogle Scholar
  50. Mahadik, S. P., Mukherjee, S., Correnti, E. E., Kelkar, H. S., and Wakade, C. G. (1994) Plasma membrane phospholipid and cholesterol distribution of skin fibroblasts from drug-naive patients at the onset of psychosis. Schizophr. Res. 13, 239–247.PubMedCrossRefGoogle Scholar
  51. Makrides, M., Neumann, M., Simmer, K., Pater, J., and Gibson, R. (1995) Are long-chain polyunsaturated fatty acids essential nutrients in infancy? Lancet 345, 1463–1468.PubMedCrossRefGoogle Scholar
  52. Martinez-Cayuela, M. (1995) Oxygen free radicals and human disease [Review]. Biochimie 77, 147–161.PubMedCrossRefGoogle Scholar
  53. Morais Cabral, J. H., Atkins, G. L., Sonchez, L. M., Lopez-Baodo, Y. S., Lopez-Oton, C., and Sawyer, L. (1995) Arachidonic acid binds to apolipoprotein D: implications for the protein’s function. FEBS Lett. 366, 53–56.CrossRefGoogle Scholar
  54. Murphy, E. J., Behrmann, D., Bates, C. M., and Horrocks, L. A. (1994) Lipid alterations following impact spinal cord injury in the rat. Mol. Chem. Neuropathol. 23, 13–26.PubMedCrossRefGoogle Scholar
  55. Nakada, T., Kwee, I. L., and Ellis, W. (1990) Membrane fatty acid composition shows delta-6-desaturase abnormalities in Alzheimer’s disease. NeuroReport 1, 153–155.PubMedCrossRefGoogle Scholar
  56. O’Brien, J. S., Sampson, E. I., and Stern, M. B. (1967) Lipid composition of myelin from the peripheral nervous system: intradural spinal roots. J. Neurochem. 14, 357–363.PubMedCrossRefGoogle Scholar
  57. Okuda, S., Saito, H., and Katsuki, H. (1994) Arachidonic acid: toxic and trophicGoogle Scholar
  58. effects on cultured hippocampal neurons. Neuroscience 63, 691–699.Google Scholar
  59. Palmer, A. M. and Burns, M. A. (1994) Selective increase in lipid peroxidation in the inferior temporal cortex in Alzheimer’s disease. Brain Res. 645, 338–342.PubMedCrossRefGoogle Scholar
  60. Peet, M., Laugharne, J. D. E., Horrobin, D. F., and Reynolds, G. P. (1994) Arachidonic acid: a common link in the biology of schizophrenia? Arch. Gen. Psychiatry 51, 665–666.PubMedCrossRefGoogle Scholar
  61. Piomelli, D. and Greengard, P. (1990) Lipoxygenase metabolites of arachidonic acid in neuronal transmembrane signalling. Trends Pharmacol. Sci. 11, 367–373.PubMedCrossRefGoogle Scholar
  62. Piomelli, D., Wang, J. K., Sihra, T. S., Nairn, A. C., Czernik, A. J., and Greengard, P. (1989) Inhibition of Cat+/calmodulin-dependent protein kinase H by arachidonic acid and its metabolites. Proc. Natl. Acad. Sci. USA 86, 8550–8554.PubMedCrossRefGoogle Scholar
  63. Porter, N. A., Caldwell, S. E., and Mills, K. A. (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30, 277–290.PubMedCrossRefGoogle Scholar
  64. Rajakumar, D. V. and Rao, M. N. A. (1993) Dehydrozingerone and isoeugenol as inhibitors of lipid peroxidation and as free radical scavengers. Biochem. Pharmacol. 46, 2067–2072.PubMedCrossRefGoogle Scholar
  65. Rao, G. H. R. (1993) Signal transduction, second messengers, and platelet function. J. Lab. Clin. Med. 121, 18–20.PubMedGoogle Scholar
  66. Rao, K. V., Vaidyanathan, V. V., and Sastry, P. S. (1994) Diacylglycerol kinase is stimulated by arachidonic acid in neural membranes. J. Neurochem. 63, 1454–1459.PubMedGoogle Scholar
  67. Rordorf, G., Uemura, Y., and Bonventre, J. V. (1991) Characterization of phospholipase A2 (PLA2) activity in gerbil brain: enhanced activities of cytosolic, mitochondrial, and microsomal forms after ischemia and reperfusion. J. Neurosci. 11, 1829–1836.PubMedGoogle Scholar
  68. Ruan, C. L., Liu, X. F., Man, H. S., Ma, X. L., Lin, G. Z., Duan, G. H., DeFrancesco, C. A., and Connor, W. E. (1995) Milk composition in women from five different regions of China: the great diversity of milk fatty acids. J. Nutri. 125, 2993–2998.Google Scholar
  69. Sakata, A., Ida, E., Tominaga, M., and Onoue, K. (1987) Arachidonic acid acts as an intracellular activator of NADPH-oxidase inFc gamma receptor-mediated superoxide generation in macrophages. J. Immunol. 138, 4353–4359.PubMedGoogle Scholar
  70. Saunders, R. and Horrocks, L. A. (1987) Eicosanoids, plasma membranes, and molecular mechanisms of spinal cord injury [Review]. Neurochem. Pathol. 7, 1–22.PubMedCrossRefGoogle Scholar
  71. Shearman, M. S., Sekiguchi, K., and Nishizuka, Y. (1989) Modulation of ion channel activity: a key function of the protein kinase C enzyme family. Pharmacol. Rev. 41, 211–237.PubMedGoogle Scholar
  72. Shearman, M. S., Shinomura, T., Oda, T., and Nishizuka, Y. (1991) Protein kinase C subspecies in adult rat hippocampal synaptosomes. Activation by diacylglycerol and arachidonic acid. FEBS Lett. 279, 261–264.PubMedCrossRefGoogle Scholar
  73. Shohami, E., Shapira, Y., Yadid, G., Reisfeld, N., and Yedgar, S. (1989) Brain phospholipase A2 is activated after experimental closed head injury in the rat. J. Neurochem. 53, 1541–1546.PubMedCrossRefGoogle Scholar
  74. Siesjö, B. K. Ingvar, M., and Westerberg, E. (1982) The influence of bicucullineinduced seizures on free fatty acid concentrations in cerebral cortex, hippocampus, and cerebellum. J. Neurochem. 39, 796–802.Google Scholar
  75. Siesjö, B. K. and Wieloch, T. (1986) Epileptic brain damage: pathophysiology and neurochemical pathology, in Advances in Neurology, Vol. 44 ( Delgado-Escueta, A. V., Ward, A. A., Jr., Woodbury, D. M., and Porter, R. J., eds.), Raven, New York, pp. 813–847.Google Scholar
  76. Skulachev, V. P. (1991) Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation [Review]. FEBS Lett. 294, 158–162.PubMedCrossRefGoogle Scholar
  77. Smith, S. L., Andrus, P. K., Zhang, J. R., and Hall, E. D. (1994a) Direct measurement of hydroxyl radicals, lipid peroxidation, and blood-brain barrier disruption following unilateral cortical impact head injury in the rat. J. Neurotrauma 11, 393–404.PubMedCrossRefGoogle Scholar
  78. Smith, M. A., Richey, P. L., Taneda, S., Kutty, R. K., Sayre, L. M., Monnier, V. M., and Perry, G. (1994b) Advanced Maillard reaction end products, free radicals, and protein oxidation in Alzheimer’s disease. Ann. N.Y. Acad. Sci. 738, 447–454.CrossRefGoogle Scholar
  79. Soderberg, M., Edlund, C., Kristensson, K., and Dallner, G. (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26, 421–425.PubMedCrossRefGoogle Scholar
  80. Sorg, O., Pellerin, L., Stolz, M., Beggah, S., and Magistretti, P. J. (1995) Adenosine triphosphate and arachidonic acid stimulate glycogenolysis in primary cultures of mouse cerebral cortical astrocytes. Neurosci. Lett. 188, 109–112.PubMedCrossRefGoogle Scholar
  81. Stankova, J. and Rola-Pleszczynski, M. (1992) Leukotriene B4 stimulates c-fos and c-jun gene transcription and AP-1 binding activity in human monocytes. Biochem. J. 282, 625–629.PubMedGoogle Scholar
  82. Staub, F., Winkler, A., Peters, J., Kempski, O., Kachel, V., and Baethmann, A. (1994) Swelling, acidosis, and irreversible damage of glial cells from exposure to arachidonic acid in vitro. J. Cereb. Blood Flow Metab. 14, 1030–1039.PubMedCrossRefGoogle Scholar
  83. Subbarao, K. V., Richardson, J. S., and Ang, L. C. (1990) Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro. J. Neurochem. 55, 342–345.PubMedCrossRefGoogle Scholar
  84. Tebbey, P. W. and Buttke, T. M. (1992) Arachidonic acid regulates unsaturated fatty acid synthesis in lymphocytes by inhibiting stearoyl-CoA desaturase gene expression. Biochim. Biophys. Acta, 1171, 27–34.PubMedCrossRefGoogle Scholar
  85. Tomaska, L. and Resnick, R. J. (1993) Suppression of platelet-derived growth factor receptor tyrosine kinase activity by unsaturated fatty acids. J. Biol. Chem. 268, 5317–5322.PubMedGoogle Scholar
  86. Trotti, D., Volterra, A., Lehre, K. P., Rossi, D., Gjesdal, O., Racagni, G., and Danbolt, N. C. (1995) Arachidonic acid inhibits a purified and reconstituted glutamate transporter directly from the water phase and not via the phospholipid membrane. J. Biol. Chem. 270, 9890–9895.PubMedCrossRefGoogle Scholar
  87. Vijayaraghavan, S., Huang, B., Blumenthal, E. M., and Berg, D. K. (1995) Arachidonic acid as a possible negative feedback inhibitor of nicotinic acetylcholine receptors on neurons. J. Neurosci. 15, 3679–3687.PubMedGoogle Scholar
  88. Volterra, A., Trotti, D., and Racagni, G. (1994) Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol. Pharmacol. 46, 986–992.PubMedGoogle Scholar
  89. Wei, E. R, Lamb, R. G., and Kontos, H. A. (1982) Increased phospholipase C activity after experimental brain injury. J. Neurosurg. 56, 695–698.PubMedCrossRefGoogle Scholar
  90. Wells, K., Farooqui, A. A., Liss, L., and Horrocks, L. A. (1995) Neural membrane phospholipids in Alzheimer disease. Neurochem. Res. 20, 1329–1333.PubMedCrossRefGoogle Scholar
  91. Wolfe, L. S. and Horrocks, L. A. (1994) Eicosanoids, in Basic Neurochemistry ( Siegel, G. J., Agranoff, B. W., Albers, R. W., and Molinoff R B., eds.), Raven, New York, pp. 475–490.Google Scholar
  92. Yavin, E., Goldin, E., Magal, E., Tomer, A., and Harel, S. (1989) Ischemia stress and arachidonic acid metabolites in the fetal brain. Ann. N.Y. Acad. Sci. 559, 248–258.PubMedCrossRefGoogle Scholar
  93. Yoshida, S., Ikeda, M., Busto, R., Santiso, M., and Martinez, E. (1986) Cerebral phosphoinositide, triacylglycerol, and energy metabolism in reversible ischemia: origin and fate of free fatty acids. J. Neurochem. 47, 744–757.PubMedCrossRefGoogle Scholar
  94. Yu, A. C., Chan, R H., and Fishman, R. A. (1986) Effects of arachidonic acid on glutamate and gamma-aminobutyric acid uptake in primary cultures of rat cerebral cortical astrocytes and neurons. J. Neurochem. 47, 1181–1189.PubMedCrossRefGoogle Scholar
  95. Zerangue, N., Arriza, J. L., Amara, S. G., and Kavanaugh, M. P. (1995) Differential modulation of human glutamate transporter subtypes by arachidonic acid. J. Biol. Chem. 270, 6433–6435.PubMedCrossRefGoogle Scholar
  96. Zhang, J. P. and Sun, G. Y. (1995) Free fatty acids, neutral glycerides, and phosphoglycerides in transient focal cerebral ischemia. J. Neurochem. 64, 1688–1695.PubMedCrossRefGoogle Scholar
  97. Zhang, L. and Dorman, R. V. (1993) Synergistic potentiation of glutamate release by arachidonic acid and oleoyl-acetyl-glycerol. Brain Res. Bull. 32, 437–441.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Akhlaq A. Farooqui
  • Thad A. Rosenberger
  • Lloyd A. Horrocks

There are no affiliations available

Personalised recommendations