Skip to main content
Log in

Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease

  • Published:
Lipids

Abstract

The two major phospholipid classes, namely, phosphatidylethanolamines (PE) and phosphatidylcholines (PC), were studied in four different regions of human brain,i.e., in frontal gray matter, frontal white matter, hippocampus and in pons. The fatty acid (FA) compositions of these phospholipids were found to be specific for the different regions. PC contains mostly saturated and 18∶1 FA, while PE is rich in polyunsaturated FA. Aging has no influence on the FA compositions, while in Alzheimer’s disease (AD) PE is modified in all four regions, particularly in frontal gray matter and in hippocampus. The abundance of the major monounsaturated FA of PE, 18∶1, is not significantly altered in Alzheimer’s disease, but there is a substantial increase in the relative amounts of the saturated components 14∶0, 16∶0 and 18∶0. This is paralleled by a decrease in the polyunsaturated FA 20∶4, 22∶4 and 22∶6. It is not clear whether the changes observed are specific for AD. Changes in saturated/polyunsaturated FA ratio are likely to influence cellular function, which in turn may cause certain neural deficiencies. The findings do not support the hypothesis that AD reflects an accelerated aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

FA:

fatty acids

GLC:

gasliquid chromatography

NADH:

nicotinamide adenine dinucleotide

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PL:

phospholipids

PUFA:

polyunsaturated fatty acids

TLC:

thin-layer chromatography

References

  1. Svennerholm, L. (1963)J. Neurochem. 10, 613–623.

    Article  PubMed  CAS  Google Scholar 

  2. Söderberg, M., Edlund, C., Kristensson, K., and Dallner, G. (1990)J. Neurochem. 54, 415–423.

    Article  PubMed  Google Scholar 

  3. van Dijck, P.W.M., de Kruijff, B., van Deenen, L.L.M., de Jier, J., and Demel, R.M. (1976)Biochim. Biophys. Acta 455, 576–587.

    Article  PubMed  Google Scholar 

  4. Valtersson, C., van Duyn, G., Verkleij, A.J., Chojnacki, T., de Kruijff, B., and Dallner, G. (1985)J. Biol. Chem. 260, 2742–2751.

    PubMed  CAS  Google Scholar 

  5. Horrocks, L.A., Van Rollins, M., and Yates, A.J. (1981) inThe Molecular Basis of Neuropathology (Davison, A.N., and Thompson, R.H.S., eds.) pp. 601–630, Edward Arnold, London.

    Google Scholar 

  6. Stokes, C.E., and Hawthorne, J.N. (1987)J. Neurochem. 48, 1018–1021.

    Article  PubMed  CAS  Google Scholar 

  7. Ellison, D.W., Beal, M.F., and Martin, J.B. (1987)Brain Research 417, 389–392.

    Article  PubMed  CAS  Google Scholar 

  8. Bowen, D.M., Smith, C.B., and Davison, A.N. (1973)Brain 96, 849–856.

    PubMed  CAS  Google Scholar 

  9. Brookshank, B.W.L., and Martinez, M. (1989)Mol. Chem. Neuropathol. 11, 157–185.

    Article  Google Scholar 

  10. Khachaturian, Z.S. (1985)Arch. Neurol. 42, 1097–1104.

    PubMed  CAS  Google Scholar 

  11. Morrison, W.R., and Smith, L.M. (1964)J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  12. Cullis, P.R., and Hope, M.J. (1985) inBiochemistry of Lipids and Membranes (Vance, D.E., and Vance, J.E., eds.) pp. 25–72, Benjamin/Cummings, Menlo Park.

    Google Scholar 

  13. Vanderkooi, G. (1974)Biochim. Biophys. Acta 344, 307–345.

    PubMed  CAS  Google Scholar 

  14. Hidalgo, C., and Ikemoto, N. (1977)J. Biol. Chem. 252, 8446–8454.

    PubMed  CAS  Google Scholar 

  15. Stier, A., and Sackmann, E. (1973)Biochim. Biophys. Acta 311, 400–408.

    Article  PubMed  CAS  Google Scholar 

  16. Valtersson, C., and Dallner, G. (1982)J. Lipid Res. 23, 868–876.

    PubMed  CAS  Google Scholar 

  17. Kishimoto, Y., Agranoff, B.W., Radin, N.S., and Burton, R.M. (1969)J. Neurochem. 16, 397–404.

    Article  PubMed  CAS  Google Scholar 

  18. Pullarkat, R.K., and Rena, H. (1978)J. Neurochem. 31, 707–712.

    Article  PubMed  CAS  Google Scholar 

  19. Gottfries, C.G. (1986) inProgress in Brain Research (Swaab, D.F., Fliers, E., Mirmiran, M., Van Gool, W.A., and Van Haren, F., eds.) Vol. 70, pp. 133–139, Elsevier, Amsterdam.

    Google Scholar 

  20. Jeffcoat, R. (1979)Essays Biochem. 15, 1–36.

    PubMed  CAS  Google Scholar 

  21. Strittmatter, P., Spatz, L., Corcoran, D., Rogers, M.J., Setlow, B., and Redline, R. (1974)Proc. Natl. Acad. Sci. USA 71, 4565–4569.

    Article  PubMed  CAS  Google Scholar 

  22. Dhopeshwarkar, G.A., and Mead, J.F. (1973)Adv. Lipid Res. 11, 109–142.

    PubMed  CAS  Google Scholar 

  23. Scheibel, M.E., and Scheibel, A.B. (1975) inClinical, Morphologic, and Neurochemical Aspects in the Aging Central Nervous System (Brody, H., Harman, D., and Ordy, J.M., eds.) Vol. 1, pp. 11–37, Raven Press, New York.

    Google Scholar 

  24. Cotman, C., Blank, M.L., Moehl, A., and Snyder, F. (1969)Biochemistry 8, 4606–4612.

    Article  PubMed  CAS  Google Scholar 

  25. Masliah, E., Terry, R.D., DeTeresa, R.M., and Hansen, L.A. (1989)Neurosci. Lett. 103, 234–239.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Söderberg, M., Edlund, C., Kristensson, K. et al. Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26, 421–425 (1991). https://doi.org/10.1007/BF02536067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536067

Keywords

Navigation