Skip to main content
Log in

Lipid alterations following impact spinal cord injury in the rat

  • Published:
Molecular and Chemical Neuropathology

Abstract

A computer-controlled impactor was used to produce a severe spinal cord injury in the rat thoracic spinal cord. Cords were rapidly frozenin situ at 5, 15, 30, and 60 min and 6, 12, and 24 h postinjury. Control cords were noninjured cords from animals having undergone a laminectomy and allowed to recover for 90 min postlaminectomy. The cords were assayed for alterations in lipid metabolism. Specifically, there were rapid increases in prostaglandin F and thromboxane, with a peak increase in thromboxane levels at 30 min. Prostaglandin F levels peaked at 15 min with levels remaining nearly constant for 12 h. There were no detectable changes in phospholipid levels, although diacylglycerol levels and free fatty acid levels were increased. Total free fatty acids were increased at 12 and 24 h postinjury by 2.3- and 3.2-fold over control levels, respectively. Arachidonic acid levels were not significantly elevated at early time points, however, these early time points correspond to elevated eicosanoid synthesis and this may account for the lack of early detectable increases in arachidonic acid. After 6 h postinjury, arachidonic acid levels were 20-fold greater than control levels and remained elevated at 24 h. There were minimal decreases in cholesterol and no decrease in either choline or ethanolamine plasmalogen levels. These results suggest a rapid turnover of arachidonic acid following spinal cord injury with a concomitant increase in vasoconstrictive eicosanoid synthesis. The lack of changes in major membrane constituents suggests the mechanisms may not involve general membrane degradation, but an over-stimulation of phospholipase A2-linked membrane receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akesson B., Elovsson J., and Arvidsson G. (1970) Initial incorporation into rat liver glycerolipids of intraportally injected [3h]glycerol.Biochim. Biophys. Acta 210, 15–27.

    PubMed  CAS  Google Scholar 

  • Anderson D. K., Saunders R. D., Demediuk P., Dugan L. L., Braughler J. M., Hall E. D., Means E. D., and Horrocks L. A. (1985) Lipid hydrolysis and peroxidation in injured spinal cord: Partial protection with methylprednisolone or vitamin E and selenium.Cent. Nerv. Sys. Trauma 2, 257–267.

    CAS  Google Scholar 

  • Banik N. L., Hogan E. L., and Hsu C. Y. (1987) The multimolecular cascade of spinal cord injury: Studies on prostanoids, calcium, and proteinases.Neurochem. Pathol. 7, 57–77.

    Article  PubMed  CAS  Google Scholar 

  • Behrmann D. L., Bresnahan J. C., Beattie M. S., and Shah B. R. (1992) Spinal cord injury produced by consistent mechanical displacement of the cord in rats: behavioral and histological analysis.J. Neurotrauma 9, 197–217.

    Article  PubMed  CAS  Google Scholar 

  • Brockerhoff H. (1975) Determination of the positional distribution of fatty acids in glycerophospholipids.Methods Enzymol. 35B, 315–323.

    Google Scholar 

  • Demediuk P. and Faden A. I. (1988) Traumatic spinal cord injury in rats causes increases in tissue thromboxane but not peptidoleukotrienes.J. Neurosci. Res. 20, 115–121.

    Article  PubMed  CAS  Google Scholar 

  • Demediuk P., Saunders R. D., Anderson D. K., Means E. D., and Horrocks L. A. (1985a) Membrane lipid changes in laminectomized and traumatized cat spinal cord.Proc. Natl. Acad. Sci. USA 82, 7071–7075.

    Article  PubMed  CAS  Google Scholar 

  • Demediuk P., Saunders R. D., Clendenon N. R., Means E. D., Anderson D. K., and Horrocks L. A. (1985b) Changes in lipid metabolism in traumatized spinal cord.Prog. Brain Res. 63, 211–226.

    Article  PubMed  CAS  Google Scholar 

  • Dugan L. L., Demediuk P., Pendley II C. E., and Horrocks L. A. (1986) Separation of phospholipids by high pressure liquid chromatography: All major classes including ethanolamine and choline plasmalogens, and most minor classes, including lysophosphatidylethanolamine.J. Chromatogr. 378, 317–327.

    Article  PubMed  CAS  Google Scholar 

  • Dumuis A., Pin J. P., Oomagari K., Sebben M., and Bockaert J. (1990) Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors.Nature 347, 182–184.

    Article  PubMed  CAS  Google Scholar 

  • Faden A. I., Chan P. H., and Longar S. (1987) Alterations in lipid metabolism, Na+, K+-ATPase activity, and tissue water content of spinal cord following experimental traumatic injury.J. Neurochem. 48, 1809–1816.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Anderson D. K., and Horrocks L. A. (1993) Effect of glutamate and its analogs on diacylglycerol and monoacylglycerol lipase activities of neuron-enriched cultures.Brain Res. 604, 180–184.

    Article  PubMed  CAS  Google Scholar 

  • Hara A. and Radin N. S. (1978) Lipid extraction of tissues with a low-toxicity solvent.Anal. Biochem. 90, 420–426.

    Article  PubMed  CAS  Google Scholar 

  • Horrocks L. A., Wells K., and Anderson D. K. (1993) Glutamate neurotoxicity and arachidonate release in primary cultures of fetal mouse spinal cord.J. Neurochem. 61, S272D.

    Google Scholar 

  • Hsu C. Y., Halushka P. V., Hogan E. L., Banik N. L., Lee W. A., and Perot P. L. (1985) Alteration of thromboxane and prostacyclin levels in experimental spinal cord injury.Neurology 35, 1003–1009.

    PubMed  CAS  Google Scholar 

  • Hsu C. Y., Halushka P. V., Hogan E. L., and Cox R. D. (1986) Increased thromboxane level in experimental spinal cord injury.J. Neurol. Sci. 74, 289–296.

    Article  PubMed  CAS  Google Scholar 

  • Morand O. H., Zoeller R. A., and Raetz C. R. H. (1988) Disappearance of plasmalogens from membranes of animal cells subjected to photosensitized oxidation.J. Biol. Chem. 263, 11597–11606.

    PubMed  CAS  Google Scholar 

  • Noyes D. H. (1987) Electromechanical impactor for producing experimental spinal cord injury in animals.Med. Biol. Eng. Comput. 25, 335–340.

    Article  PubMed  CAS  Google Scholar 

  • Panter S. S., Yum S. W., and Faden A. I. (1990) Alteration in extracellular amino acids after traumatic spinal cord injury.Ann. Neurol. 27, 96–99.

    Article  PubMed  CAS  Google Scholar 

  • Rouser G., Siakotos A., and Fleischer S. (1969) Quantitative analysis of phospholipids by thin layer chromatography and phosphorus analysis of spots.Lipids 1, 85–86.

    Article  Google Scholar 

  • Sanfeliu C., Hunt A., and Patel A. J. (1990) Exposure toN-methyl-d-aspartate increases release of arachidonic acid in primary cultures of rat hippocampal neurons and not in astrocytes.Brain Res. 526, 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Saunders R. D., and Horrocks L. A. (1984) Simultaneous extraction and preparation for HPLC of prostaglandins and phospholipids.Anal. Biochem. 143, 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Saunders R., and Horrocks L. A. (1987) Eicosanoids, plasma membranes, and molecular mechanisms of spinal cord injury.Neurochem. Pathol 7, 1–22.

    Article  PubMed  CAS  Google Scholar 

  • Saunders R. D., Dugan L. L., Demediuk P., Means E. D., and Horrocks L. A. (1987) Effects of methylprednisolone and the combination of alpha tocopherol and selenium on arachidonic acid metabolism and lipid peroxidation in traumatized spinal cord tissue.J. Neurochem. 49, 24–31.

    Article  PubMed  CAS  Google Scholar 

  • Somerson S. K., and Stokes B. T. (1987) Functional analysis of an electromechanical spinal cord injury device.Exp. Neurol. 96, 82–96.

    Article  PubMed  CAS  Google Scholar 

  • Stokes B. T., Noyes D. H., and Behrmann D. L. (1992) An electromechanical spinal injury technique with dynamic sensitivity.J. Neurotrauma 9, 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Zoeller R. A., Morand O. H., and Raetz C. R. H. (1988) A possible role for plasmalogens in protecting animal cells against photosensitized killing.J. Biol. Chem. 263, 11590–11596.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, E.J., Behrmann, D., Bates, C.M. et al. Lipid alterations following impact spinal cord injury in the rat. Molecular and Chemical Neuropathology 23, 13–26 (1994). https://doi.org/10.1007/BF02858504

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858504

Index Entries

Navigation