Skip to main content
Log in

Neurochemical aspects of Alzheimer's disease: Involvement of membrane phospholipids

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abra, R. M., and Quinn, P. J. (1975). A novel pathway for phosphatidylcholine catabolism in rat brain microsomes.Biochim. Biophys. Acta 380: 436–443.

    Google Scholar 

  • Adolfsson, R., Gottfries, C. G., Rocs, B. E., and Winblad, B. (1979). Changes in brain catecholamines in patients with dementia of the Alzheimer type.Br. J. Psychiat. 135: 216–223.

    Google Scholar 

  • Amaducci, L. (1987). Phosphatidylserine in the treatment of clinically diagnosed Alzheimer's disease. In Wurtman, R. J., Corkin, S. H., and Growdon, J. H. (eds.),Alzheimer's Disease: Advances in Basic Research and Therapies, Center for Brain Sciences and Metabolism, Charitable Trust, Cambridge, Mass., pp. 305–314.

    Google Scholar 

  • Ansell, G. B., and Spanner, S. (1965). The Mg++ ion-dependent cleavage of vinyl ether linkage of brain ethanolamine plasmalogen.Biochem. J. 94: 252–258.

    Google Scholar 

  • Ansell, G. B., and Spanner, S. (1968a). The metabolism of [Me-14C]choline in the brain of the rat in vitro.Biochem. J. 110: 201–206.

    Google Scholar 

  • Ansell, G. B., and Spanner, S. (1968b). Plasmalogenase activity in normal and demyelinating tissue of central nervous system.Biochem. J. 108: 207–209.

    Google Scholar 

  • Beal, M. F., and Martin, J. B. (1986). Neuropeptides in neurological disease.Ann. Neurol. 20: 547–565.

    Google Scholar 

  • Beckman, J. K., Brorwitz, S. M., and Burr, I. M. (1987). The role of phospholipase A activity in rat liver microsomal lipid peroxidation.J. Biol. Chem. 262: 1479–1481.

    Google Scholar 

  • Bierkamper, G. G., and Goldberg, A. J. (1980). Release of acetylcholine from the vascular perfused rat phrenic nerve hemidiaphragm.Brain Res. 202: 234–237.

    Google Scholar 

  • Blusztajn, J. K., Maire, J. C., Tacconi, M. T., and Wurtman, R. J. (1984). The possible role of neuronal choline metabolism in the pathophysiology of Alzheimer's disease: A hypothesis. In Wurtman, R. J., Corkin, S. H., and Growdon, J. H. (eds.),Alzheimer's Disease: Advances in Basic Research and Therapies, Center for Brain Sciences and Metabolism, Charitable Trust, Cambridge, Mass., pp. 183–198.

    Google Scholar 

  • Bobik, A., Campbell, J., Snow, P., and Little, P. J. (1983). The effects of endogenous phospholipase A2 activation on ß-adrenoceptor function in cardiac cells.J. Mol. Cell. Cardiol. 15: 759–768.

    Google Scholar 

  • Bowen, D. M., Smith, C. B., and Davison, A. N. (1973). Molecular changes in senile dementia.Brain 96: 849–856.

    Google Scholar 

  • Bowen, D. M., Smith, A. B., White, P., and Davison, A. N. (1976). Neurotransmitter related enzymes and indices of hypoxia in senile dementia and other abiotrophies.Brain 99: 459–496.

    Google Scholar 

  • Bruch, R. C., and Thayer, W. J. (1983). Differential effect of lipid peroxidation on membrane fluidity as determined by electron spin resonance probes.Biochim. Biophys. Acta 733: 216–222.

    Google Scholar 

  • Burk, W. J., Chung, H. D., Nakra, B. R. S., Grossberg, G. T., and Joh, T. H. (1987). Phenylethanolamine N-methyltransferase activity is decreased in Alzheimer's disease brains.Ann. Neurol. 22: 278–280.

    Google Scholar 

  • Butcher, L. L., Talbot, K., and Bilezikjian, L. (1975). Acetylcholine esterase neurons in dopamine containing regions of the brain.J. Neurol Transm. 37: 127–153.

    Google Scholar 

  • Calderini, G., Bellini, F., Bonetti, A. C., Galbiati, E., Rubini, R., Zanotti, A., and Toffano, G. (1986). Pharmacological properties of phosphatidylserine in the aging brain: Biochemical aspects and therapeutic potential. In Horrocks, L. A., Freysz, L., and Toffano, G. (eds.),Phospholipid Research and The Nervous System-Biochemical and Molecular Pharmacology, Vol. 4, Fidia Research Series, Liviana Press, Padova, Italy, pp. 232–241.

    Google Scholar 

  • Canter, N. L., Hallett, M., and Growdon, J. H. (1982). Lecithin does not affect EEG spectral analysis on P300 in Alzheimer's disease.Neurology 32: 1260–1266.

    Google Scholar 

  • Caramenti, F., Mantovani, P., Amaducci, L., and Pepeu, G. (1979). Effect of phosphatidylserine on acetylcholine output from the cerebral cortex of the rat.J. Neurochem. 32: 529–533.

    Google Scholar 

  • Chalifour, R., and Kanfer, J. N. (1982). Fatty acid activation and temperature perturbation of rat brain microsomal phospholipase D.J. Neurochem. 39: 299–305.

    Google Scholar 

  • Clausen, J. (1984). Demential syndromes and the lipid metabolism.Acta Neurol. Scand. 70: 345–355.

    Google Scholar 

  • Cole, G. M., and Timiras, P. S. (1988). Lipid peroxidation and Alzheimer amyloid precursor processing in vitro. In Bazan, N. G., Horrocks, L. A., and Toffano, G. (eds.),Phospholipid Research and the Nervous System, Biochemical and Molecular Pathology, Liviana Press, Padova, Italy (in press).

    Google Scholar 

  • Cowburn, R. J., Barton, A. J. L., Hardy, J. A., Wester, P., and Winblad, B. (1987). Region-specific defects in glutamate and γ-aminobutyric acid innervation in Alzheimer's disease.Biochem. Soc. Trans. 15: 505–506.

    Google Scholar 

  • Coyle, J. T., Price, D. L., and DeLong, M. R. (1983). Alzheimer's disease: A disorder of cortical cholinergic innervation.Science 219: 1184–1190.

    Google Scholar 

  • Cross, A. J., Crow, T. J., Perry, E. K., Perry, R. H., Blessed, G., and Tomlinson, B. E. (1981). Reduced dopamine β-hydroxylase activity in Alzheimer's disease.Br. Med. J. 282: 93–94.

    Google Scholar 

  • D'Amato, R. J., Zweig, R. M., Whitehouse, P. J., Wenk, G. L., Singer, H. S., Mayeux, R., Price, D. L., and Snyder, S. H. (1987). Aminergic systems in Alzheimer's disease and Parkinson's disease.Ann. Neurol. 22: 229–236.

    Google Scholar 

  • Davies, P. (1979). Neurotransmitter-related enzymes in senile dementia of the Alzheimer type.Brain Res. 171: 319–327.

    Google Scholar 

  • Davies, P., and Maloney, A. J. R. (1976). Selective loss of central cholinergic neurons in Alzheimer's disease.Lancet 2: 1403.

    Google Scholar 

  • Davies, P., Katz, D. A., and Crystal, H. A. (1982). Choline acetyltransferase, somatostatin and substance P in selected cases of Alzheimer's disease.Aging 19: 9–14.

    Google Scholar 

  • Davis, K. L., Mohs, R. C., Tinklenberg, J. R., and Pfefferbaum, A. (1978). Physostigmine: Improvement of long term memory processes in normal humans.Science 201: 272–274.

    Google Scholar 

  • DeKosky, S. T., and Bass, N. H. (1982). Aging, senile dementia, and the intralaminar microchemistry of cerebral cortex.Neurology 32: 1227–1233.

    Google Scholar 

  • Demediuk, P., Saunders, R. D., Anderson, D. K., Means, E. D., and Horrocks, L. A. (1985). Membrane lipid changes in laminectomized and traumatized cat spinal cord.Proc. Natl. Acad. Sci. USA 82: 7071–7075.

    Google Scholar 

  • Dhopeshwarkar, G. A., and Mead, J. F. (1975). Age and lipids of the central nervous system: Lipid metabolism in the developing brain. In Brody, H., Harman, D., and Ordy, J. M. (eds.),Aging, Vol. 1, Raven Press, New York, pp. 119–132.

    Google Scholar 

  • Dugan, L. L., Demediuk, P., Pendley, C. E., II, and Horrocks, L. A. (1986). Separation of phospholipids by HPLC: All major classes, including ethanolamine and choline plasmalogens, and most minor classes, including lysophosphatidylethanolamine.J. Chromatogr. 378: 317–327.

    Google Scholar 

  • Eddy, D. E., and Harman, D. (1977). Free radical theory of aging: Effect of age, sex and dietary precursors on rat brain docosahexaenoic acid.J. Am. Geriat. Soc. 25: 220–229.

    Google Scholar 

  • Ellison, D. W., Beal, M. F., and Martin, J. B. (1987). Phosphoethanolamine and ethanolamine are decreased in Alzheimer's disease and Huntington's disease.Brain Res. 417, 389–392.

    Google Scholar 

  • Embree, L. J., Bass, N. H., and Pope, A. (1972). Biochemistry of middle and late life dementias. In Lajtha, A. (ed.),Handbook of Neurochemistry, Vol. 7, Plenum Press, New York, pp. 329–369.

    Google Scholar 

  • Farooqui, A. A., and Horrocks, L. A. (1985). Metabolic and functional aspects of neural membrane phospholipids. In Horrocks, L. A., Kanfer, J. N., and Porcellati, G. (eds.),Phospholipids in the Nervous System, Vol. II. Physiological Role, Raven Press, New York, pp. 341–348.

    Google Scholar 

  • Farooqui, A. A., Taylor, W. A., and Horrocks, L. A. (1987). Phospholipases, lysophospholipases and lipases and their involvement in various diseases.Neurochem. Pathol. (in press).

  • Farooqui, A. A., Liss, L., and Horrocks, L. A. (1988). Lipolytic enzyme activities in different brain regions in Alzheimer disease. In Bazan, N. G., Horrocks, L. A., and Toffano, G. (eds.),Phospholipid Research and the Nervous System, Biochemical and Molecular Pathology, Fidia Research Series, Liviana Press, Padua, Italy (in press).

    Google Scholar 

  • Filetti, S., Aguglia, E., and Drago, F. (1983). Cognitive-behavioural variations in aged patients in therapy with phosphatidylserine. In Ravizza, L. (ed.),Proceedings of the Congress “Man and Aging”, University of Turin Press, Turin, Italy, pp. 209–217.

    Google Scholar 

  • Fu, S. C., Mozzi, R., Krakowka, S., Higgins, R. J., and Horrocks, L. A. (1980). Plasmalogenase and phospholipases A1, A2 and L1 activities in white matter in canine distemper virus associated demyelinating encephalomyelitis.Acta Neuropathol. (Berl.) 49: 13–18.

    Google Scholar 

  • Geese, A., Mezei, A., and Telegdy, G. (1987). Neuropeptides and arachidonate cascade in the central nervous system.Front. Horm. Res. 15: 299–323.

    Google Scholar 

  • Gottfries, C. G., Gottfries, I., and Roos, B. E. (1969). Homovanillic acid and 5-hydroxyindole acetic acid in the cerebrospinal fluid of patients with senile dementia, pre-senile dementia and parkinsonism.J. Neurochem. 26: 1341–1345.

    Google Scholar 

  • Harman, D. (1984). Free radical theory of aging: The free radical disease.Age 7: 111–131.

    Google Scholar 

  • Harman, D., Eddy, D. E., and Seibold, J. (1976). Free radical theory of aging: Effect of dietary fat on central nervous system function.J. Am. Geriat. Soc. 24: 301–307.

    Google Scholar 

  • Heikkila, R. E. (1983). Ascorbate-induced lipid peroxidation and the binding of [3H]dihydroalprenolol.Eur. J. Pharmacol. 93: 79–85.

    Google Scholar 

  • Horrocks, L. A. (1972). Content, composition and metabolism of mammalian and avian lipids that contain ether groups. In Snyder, F. (ed.),Ether Lipids-Chemistry and Biology, Academic Press, New York, pp. 177–272.

    Google Scholar 

  • Horrocks, L. A., and Fu, S. C. (1977). Pathway for hydrolysis of plasmalogens in brain.Adv. Exp. Biol. Med. 101: 397–406.

    Google Scholar 

  • Horrocks, L. A., Spanner, S., Mozzi, R., Fu, S. C., D'Amato, R. A., and Krakowka, S. (1978). Plasmalogenase is elevated in early demyelinating lesions.Adv. Exp. Med. Biol. 100: 423–438.

    Google Scholar 

  • Horrocks, L. A., VanRollins, M., and Yates, A. J. (1981). Lipid changes in the ageing brain. In Davison, A. N., and Thompson, R. H. S. (eds.),The Molecular Basis of Neuropathology, Edward Arnold, London, pp. 601–630.

    Google Scholar 

  • Horrocks, L. A., Yeo, Y. K., Harder, H. W., Mozzi, R., and Goracci, G. (1986). Choline plasmalogens, glycerophospholipid methylation, and receptor-mediated activation of adenylate cyclase.Adv. Cyclic Nucleotide Protein Phosphor. Res. 20: 263–292.

    Google Scholar 

  • Horrocks, L. A., Dugan, L. A., Flynn, C. J., Goracci, G., Porcellati, S., and Yeo, Y. (1987). Modern techniques for the fractionation and purification of phospholipids from biological materials. In Ansell, G. B., and Hanin, I. (eds.),Lecithin: Technological, Biological, and Therapeutic Aspects, Plenum Press, New York, pp. 3–16.

    Google Scholar 

  • Jean-Baptiste, C., and Rizack, M. A. (1980). In vitro AMP-mediated lipolytic activity of endorphins, enkephalins and naloxone.Life Sci. 27: 135–141.

    Google Scholar 

  • Kanfer, J. N., Hattori, H., and Orihel, D. (1986). Reduced phospholipase D activity in brain tissue samples from Alzheimer's disease patients.Ann. Neurol. 22, 265–267.

    Google Scholar 

  • Katoh-Semba, R., Skaper, S. D., and Varon, S. (1984). Interaction of GM1, ganglioside with PC12 pheochromocytoma cells.J. Neurosci. Res. 12: 299–305.

    Google Scholar 

  • Katzman, R. (1986). Alzheimer's disease.N. Engl. J. Med. 314: 964–973.

    Google Scholar 

  • Leibowitz-Ben Gershon, Z., and Gatt, S. (1972). Lysophospholipases of rat brain.J. Biol. Chem. 247: 6840–6847.

    Google Scholar 

  • Mann, D. M. A., Lincoln, J., Yates, P. O., Stamp, J. E., and Toper, S. (1980). Changes in the monoamine containing neurons of the human CNS in senile dementia.Br. J. Psychiat. 136: 533–541.

    Google Scholar 

  • Mann, D. M. A., Yates, P. O., and Marcyniuk, B. (1985). Correlation between senile plaque and neurofibrillary tangle counts in cerebral cortex and neuronal counts in cortex and subcortical structures in Alzheimer's disease.Neurosci. Lett. 56: 51–55.

    Google Scholar 

  • Marchbanks, R. M. (1982). Biochemistry of Alzheimer's disease.J. Neurochem. 39: 9–15.

    Google Scholar 

  • Mazzari, S., and Battistella, A. (1986). Phosphatidylserine effects on dopamine release from striatum synaptosomes. In Di Benedetta, C., Balazs, R., Gombos, G., and Porcellati, G. (eds.),Multidisciplinary Approach to Brain Development, Elsevier/North-Holland, Amsterdam, pp. 569–570.

    Google Scholar 

  • Meier-Ruge, W., Iwangoff, P., and Reichlmeier, K. (1984). Neurochemical enzyme changes in Alzheimer's and Pick's disease.Arch. Gerontol. Geriat. 3: 161–165.

    Google Scholar 

  • Miatto, O., Gonzalez, R. G., Buonanno, F., and Growdon, J. H. (1986). In vitro31P NMR spectroscopy defects altered phospholipid metabolism in Alzheimer's disease.Can. J. Neurol. Sci. 13: 535–539.

    Google Scholar 

  • Miatto, O., Blusztajn, J. K., Logue, M., Gonzalez, G., Buonanno, F., and Growdon, J. H. (1988). Detection of phospholipids in brain tissue using31P NMR spectroscopy. In Bazan, N. G., Horrocks, L. A., and Toffano, G. (eds.),Phospholipid Research and the Nervous System, Biochemical and Molecular Pathology, Vol. 5, Liviana Press, Padova, Italy (in press).

    Google Scholar 

  • Miyata, S., Nagata, H., Yamao, S., Nakamura, S., and Kameyama, M. (1984). Dopamine β-hydroxylase activities in serum and cerebrospinal fluid of aged and demented patients.J. Neurol. Sci. 63: 403–409.

    Google Scholar 

  • Mountjoy, C. Q., Roth, M., Evans, N. J. R., and Evans, H. M. (1983). Cortical neuronal counts in normal elderly controls and demented patients.Neurobiol. Aging 4: 1–11.

    Google Scholar 

  • Neri, M., Pirani, A., Dinelli, M., and Belli, L. (1985). Phosphatidylcholine intake and senile dementia.Acta Ther. 11: 49–59.

    Google Scholar 

  • Nunzi, M. G., Milan, F., Guidolin, D., and Toffano, G. (1988). Phosphatidylserine treatment prevents age-induced structural alterations in the rat septo-hippocampal system. In Bazan, N. G., Horrocks, L. A., and Toffano, G. (eds.),Phospholipid Research and the Nervous System, Biochemical and Molecular Pathology, Vol. 5, Liviana Press, Padova, Italy (in press).

    Google Scholar 

  • Palmieri, G., Palmieri, R., and Insoli, M. R. (1985). Studio doppio-cieco dell'effecto della fosfatidilserina in pazienti affetti da deterioramento mentale senile.Gior. Ital. Ricer. Clin. Ter. 6: 91–97.

    Google Scholar 

  • Perry, E. K., Perry, R. H., Blessed, G., and Tomlinson, B. E. (1977). Necropsy evidence of central cholinergic deficits in senile dementia.Lancet 1: 189.

    Google Scholar 

  • Peterson, C., and Goldman, J. E. (1986). Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer donors.Proc. Nad. Acad. Sci. USA 83: 2758–2762.

    Google Scholar 

  • Peterson, C., Gibson, G. E., and Blass, J. P. (1985). Altered calcium uptake in cultured skin fibroblasts from patients with Alzheimer's disease.N. Engl. J. Med. 312: 1063–1065.

    Google Scholar 

  • Porcellati, G. (1983). Phospholipid metabolism in neural membrane. In Sun, G. Y., Bazan, N., Wu, J. Y., Porcellati, G., and Sun, A. Y. (eds.),Neural Membranes, Humana Press, N.J., pp. 3–35.

    Google Scholar 

  • Porcellati, G., Goracci, G., and Arienti, G. (1983). Lipid turnover. In Lajtha, A. (ed.),Handbook of Neurochemistry, Vol. 5, 2nd ed., Plenum Press, New York, pp. 277–294.

    Google Scholar 

  • Richter, W. O., Kerscher, P., and Schwandt, P. (1983). β-Endorphin stimulates in vivo lipolysis in the rabbit.Life Sci. (Suppl. I)33: 743–746.

    Google Scholar 

  • Rossor, M. N., Emson, P. C., and Mountjoy, C. Q. (1980). Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of Alzheimer type.Neurosci. Lett. 20: 373–377.

    Google Scholar 

  • Saito, M., and Kanfer, J. N. (1975). Phosphatidohydrolase activity in a solubilized preparation from rat brain particulate fraction.Arch. Biochem. Biophys. 169: 318–323.

    Google Scholar 

  • Samorajski, T., and Rolsten, C. (1973). Age and regional differences in the chemical composition of brains of mice, monkeys and humans. In Ford, D. H. (ed.),Progress in Brain Research, Vol. 40, Elsevier, New York, pp. 253–265.

    Google Scholar 

  • Saunders, R. D., and Horrocks, L. A. (1984). Simultaneous extraction and preparation for HPLC of prostaglandins and phospholipids.Anal. Biochem. 143: 71–75.

    Google Scholar 

  • Schmidt, D. E., and Wecker, L. (1981). CNS effects of choline administration: Evidence for temporal dependence.Neuropharmacology 20: 535–539.

    Google Scholar 

  • Schwandt, P., Richter, W., and Morley, J. S. (1981). β-Lipotropin contains two lipolytic sequences.Neuropeptides 1: 211–216.

    Google Scholar 

  • Scott, J. A. (1984). Phospholipase activity and plasma membrane homeostasis.J. Theor. Biol. 111: 659–665.

    Google Scholar 

  • Sekar, M. C., and Hokin, L. E. (1986). The role of phosphoinositide in signal transduction.J. Membr. Biol. 89: 193–210.

    Google Scholar 

  • Sevanian, A. (1986). Free-radical induced phospholipase A2 activity is based on altered membrane properties.Fed. Proc. 45: 1535.

    Google Scholar 

  • Sevanian, A., and Kim, E. (1986). Phospholipase A2 dependent release of fatty acids from peroxidized membrane.J. Free Radicals Biol Med. 1: 263–271.

    Google Scholar 

  • Sims, N. R., Bowen, D. M., and Davison, A. N. (1981). [14C]Acetylcholine synthesis and [14C]carbon dioxide production from [U-−14C]glucose by tissue prisms from human neocortex.Biochem. J. 196: 867–876.

    Google Scholar 

  • Sinex, F. M., and Merril, C. R. (1982). Alzheimer's disease, Down's syndrome and aging.Ann. N. Y. Acad. Sci. 396: 3–55.

    Google Scholar 

  • Stokes, C. E., and Hawthorne, J. N. (1987). Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brain.J. Neurochem. 48: 1018–1021.

    Google Scholar 

  • Svennerholm, L., Gottfries, C. G., and Karlsson, I. (1988). Ganglioside changes in Alzheimer's disease.Proceedings of International Symposium on New Trends in Aging Research, Sirmione, Italy (in press).

    Google Scholar 

  • Sun, G. Y., and Samorajski, T. (1973). Age differences in the acyl group composition of phosphoglycerides in myelin isolated from the brain of the rhesus monkey.Biochim. Biophys. Acta 316: 19–27.

    Google Scholar 

  • Suzuki, K., and Chen, G. (1966). Chemical studies on Jakob-Cruetzfeldt disease.J. Neuropathol. Exp. Neurol. 25: 396–408.

    Google Scholar 

  • Suzuki, K., Katzman, R., and Korey, S. R. (1965). Chemical studies on Alzheimer's disease.J. Neuropathol. Exp. Neurol. 24: 211–224.

    Google Scholar 

  • Suzuki, Y., and Matsumoto, M. (1982). Release of lysosomal phospholipase A1 and A1 into cytosol and rapid turnover of newly formed lysophosphatidylcholine in FL cells during fusion from within induced by measles virus.J. Biochem. (Tokyo) 92: 1683–1692.

    Google Scholar 

  • Terry, R. D., and Katzman, R. (1983). Senile dementia of the Alzheimer type.Ann. Neurol. 14, 497–506.

    Google Scholar 

  • Terry, R. D., Peck, A., de Teresa, R., Schechter, R., and Horoupian, D. S. (1981). Some morphometric aspects of the brain in senile dementia of the Alzheimer's type.Ann. Neurol. 10: 184–192.

    Google Scholar 

  • Toffano, G., Leon, A., Mazzari, S., Savoini, G., Teolato, S., and Orlando, P. (1978). Modifications of noradrenergic hypothalamic system in rat injected with phosphatidylserine liposomes.Life Sci. 23: 1093–1102.

    Google Scholar 

  • Toffano, G., Agnati, L. F., Fuxe, K., Aldinio, C., Consolazione, A., Valenti, G., and Sovoini, G. (1984). Effect of GM1 ganglioside treatment on the recovery of dopaminergic nigro-striatal neurons after different types of lesion.Acta Physiol. Scand. 122: 313–318.

    Google Scholar 

  • Trommer, B. A., Schmidt, D. E., and Wecker, L. (1982). Exogenous choline enhances the synthesis of acetylcholine only under conditions of increased cholinergic neural activity.J. Neurochem. 39: 1704–1709.

    Google Scholar 

  • Tucek, S. (1985). Regulation of acetylcholine synthesis in the brain.J. Neurochem. 44: 11–24.

    Google Scholar 

  • Ulus, I. H., and Wurtman, R. J. (1979). Selective response of rat peripheral sympathetic nervous system of various stimuli.J. Physiol. (London) 293: 513–523.

    Google Scholar 

  • van den Bosch, H. (1980). Intracellular phospholipases A.Biochim. Biophys. Acta 604: 191–246.

    Google Scholar 

  • van Kuijk, F. J. G. M., Sevanian, A., Handelman, G. J., and Dratz, E. A. (1987). A new role for phospholipase A2: Protection of membranes from lipid peroxidation damage.Trends Biochem. Sci. 12: 31–34.

    Google Scholar 

  • Webster, G. R., Marples, E. A., and Thompson, R. H. S. (1957). Glycerylphosphorylcholine diesterase activity of nervous tissues.Biochem. J. 65: 374–377.

    Google Scholar 

  • Wettstein, A. (1983). No effect from double-blind trial of physostigmine and lecithin in Alzheimer disease.Ann. Neurol. 13: 210–212.

    Google Scholar 

  • Wilcock, G. K., Esiri, M. M., Bowen, D. M., and Smith, C. C. T. (1982). Alzheimer's disease: Correlation of cortical choline acetyltransferase activity with severity of dementia and histological abnormalities.J. Neurol. Sci. 57: 407–417.

    Google Scholar 

  • Wood, J. L., and Allison, R. G. (1982). Effect of consumption of choline and lecithin on neurological and cardiovascular systems.Fed. Proc. 41: 3015–3021.

    Google Scholar 

  • Wurtman, R. J. (1985). Alzheimer's disease.Sci. Am. 252: 62–74.

    Google Scholar 

  • Wurtman, R. J., Blusztajn, J. K., and Maire, J. C. (1985). “Autocannibalism” of choline-containing membrane phospholipids in the pathogenesis of Alzheimer's disease-A hypothesis.Neurochem. Int. 7: 369–372.

    Google Scholar 

  • Wykle, R. L., and Schremmer, J. M. (1974). A lysophospholipase D pathway in the metabolism of ether-linked lipids in brain microsomes.J. Biol. Chem. 249: 1742–1747.

    Google Scholar 

  • Yates, C. M., Allison, Y., Simpson, J., Maloney, A. F. J., and Gordon, A. (1979). Dopamine in Alzheimer's disease and senile dementia.Lancet 2: 851–852.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farooqui, A.A., Liss, L. & Horrocks, L.A. Neurochemical aspects of Alzheimer's disease: Involvement of membrane phospholipids. Metab Brain Dis 3, 19–35 (1988). https://doi.org/10.1007/BF01001351

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01001351

Keywords

Navigation