Skip to main content

Pharmacology of the Pulmonary Circulation

  • Chapter
  • First Online:
Principles and Practice of Anesthesia for Thoracic Surgery

Abstract

The pulmonary vasculature is a complex system and studies of the effects of anesthetic drugs on this system are often contradictory. A balanced anesthetic technique with adherence to the hemodynamic goals of maintenance of right ventricular preload and right coronary perfusion is the safest choice for patients with PHTN. There are no absolute contraindications to most anesthetic drugs in patients with pulmonary hypertension. Inhaled pulmonary vasodilators can be used to optimize hemodynamic variables perioperatively, although effects on gas exchange are variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CO:

Cardiac output

(m)PAP:

(Mean) pulmonary artery pressure

PHTN:

Pulmonary hypertension

PVB:

Paravertebral block

PVR(I):

Pulmonary vascular resistance (index)

SVR(I):

Systemic vascular resistance (index)

TEA:

Thoracic epidural analgesia

References

  1. Ramakrishna G, Sprung J, Ravi BS, Chandrasekaran K, McGoon MD. Impact of pulmonary hypertension on the outcomes of noncardiac surgery: predictors of perioperative morbidity and mortality. J Am Coll Cardiol. 2005;45(10):1691–9.

    Article  PubMed  Google Scholar 

  2. Lai HC, Wang KY, Lee WL, Ting CT, Liu TJ. Severe pulmonary hypertension complicates postoperative outcome of non-cardiac surgery. Br J Anaesth. 2007;99(2):184–90.

    Article  PubMed  Google Scholar 

  3. Granton J, Moric J. Pulmonary vasodilators – treating the right ventricle. Anesthesiol Clin. 2008;26(2):337–53. vii.

    Article  PubMed  Google Scholar 

  4. Hirota K, Lambert DG. Ketamine: its mechanism(s) of action and unusual clinical uses. Br J Anaesth. 1996;77(4):441–4.

    PubMed  CAS  Google Scholar 

  5. Baraka A, Harrison T, Kachachi T. Catecholamine levels after ketamine anesthesia in man. Anesth Analg. 1973;52(2):198–200.

    Article  PubMed  CAS  Google Scholar 

  6. Lundy PM, Lockwood PA, Thompson G, Frew R. Differential effects of ketamine isomers on neuronal and extraneuronal catecholamine uptake mechanisms. Anesthesiology. 1986;64(3):359–63.

    Article  PubMed  CAS  Google Scholar 

  7. Maruyama K, Maruyama J, Yokochi A, Muneyuki M, Miyasaka K. Vasodilatory effects of ketamine on pulmonary arteries in rats with chronic hypoxic pulmonary hypertension. Anesth Analg. 1995;80(4):786–92.

    PubMed  CAS  Google Scholar 

  8. Lee TS, Hou X. Vasoactive effects of ketamine on isolated rabbit pulmonary arteries. Chest. 1995;107(4):1152–5.

    Article  PubMed  CAS  Google Scholar 

  9. Balfors E, Haggmark S, Nyhman H, Rydvall A, Reiz S. Droperidol inhibits the effects of intravenous ketamine on central hemodynamics and myocardial oxygen consumption in patients with generalized atherosclerotic disease. Anesth Analg. 1983;62(2):193–7.

    PubMed  CAS  Google Scholar 

  10. Levanen J, Makela ML, Scheinin H. Dexmedetomidine premedication attenuates ketamine-induced cardiostimulatory effects and postanesthetic delirium. Anesthesiology. 1995;82(5):1117–25.

    Article  PubMed  CAS  Google Scholar 

  11. Reich DL, Silvay G. Ketamine: an update on the first twenty-five years of clinical experience. Can J Anaesth. 1989;36(2):186–97.

    Article  PubMed  CAS  Google Scholar 

  12. Tweed WA, Minuck M, Mymin D. Circulatory responses to ketamine anesthesia. Anesthesiology. 1972;37(6):613–9.

    Article  PubMed  CAS  Google Scholar 

  13. Gooding JM, Dimick AR, Tavakoli M, Corssen G. A physiologic analysis of cardiopulmonary responses to ketamine anesthesia in noncardiac patients. Anesth Analg. 1977;56(6):813–6.

    PubMed  CAS  Google Scholar 

  14. Williams GD, Philip BM, Chu LF, et al. Ketamine does not increase pulmonary vascular resistance in children with pulmonary hypertension undergoing sevoflurane anesthesia and spontaneous ventilation. Anesth Analg. 2007;105(6):1578–84.

    Article  PubMed  CAS  Google Scholar 

  15. Oklu E, Bulutcu FS, Yalcin Y, Ozbek U, Cakali E, Bayindir O. Which anesthetic agent alters the hemodynamic status during pediatric catheterization? Comparison of propofol versus ketamine. J Cardiothorac Vasc Anesth. 2003;17(6):686–90.

    Article  PubMed  CAS  Google Scholar 

  16. Heller AR, Litz RJ, Koch T. A fine balance – one-lung ventilation in a patient with Eisenmenger syndrome. Br J Anaesth. 2004;92(4):587–90.

    Article  PubMed  CAS  Google Scholar 

  17. Rees DI, Gaines III GY. One-lung anesthesia – a comparison of pulmonary gas exchange during anesthesia with ketamine or enflurane. Anesth Analg. 1984;63(5):521–5.

    Article  PubMed  CAS  Google Scholar 

  18. Aye T, Milne B. Ketamine anesthesia for pericardial window in a patient with pericardial tamponade and severe COPD. Can J Anaesth. 2002;49(3):283–6.

    Article  PubMed  Google Scholar 

  19. Kopka A, McMenemin IM, Serpell MG, Quasim I. Anaesthesia for cholecystectomy in two non-parturients with Eisenmenger’s syndrome. Acta Anaesthesiol Scand. 2004;48(6):782–6.

    Article  PubMed  CAS  Google Scholar 

  20. McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 2009;53(17):1573–619.

    Article  PubMed  Google Scholar 

  21. Trapani G, Altomare C, Liso G, Sanna E, Biggio G. Propofol in anesthesia. Mechanism of action, structure-activity relationships, and drug delivery. Curr Med Chem. 2000;7(2):249–71.

    PubMed  CAS  Google Scholar 

  22. Kondo U, Kim SO, Nakayama M, Murray PA. Pulmonary vascular effects of propofol at baseline, during elevated vasomotor tone, and in response to sympathetic alpha- and beta-adrenoreceptor activation. Anesthesiology. 2001;94(5):815–23.

    Article  PubMed  CAS  Google Scholar 

  23. Edanaga M, Nakayama M, Kanaya N, Tohse N, Namiki A. Propofol increases pulmonary vascular resistance during alpha-adrenoreceptor activation in normal and monocrotaline-induced pulmonary hypertensive rats. Anesth Analg. 2007;104(1):112–8.

    Article  PubMed  CAS  Google Scholar 

  24. Kondo U, Kim SO, Murray PA. Propofol selectively attenuates endothelium-dependent pulmonary vasodilation in chronically instrumented dogs. Anesthesiology. 2000;93(2):437–46.

    Article  PubMed  CAS  Google Scholar 

  25. Ouedraogo N, Mounkaila B, Crevel H, Marthan R, Roux E. Effect of propofol and etomidate on normoxic and chronically hypoxic pulmonary artery. BMC Anesthesiol. 2006;6:2.

    Article  PubMed  CAS  Google Scholar 

  26. Colvin MP, Savege TM, Newland PE, et al. Cardiorespiratory changes following induction of anaesthesia with etomidate in patients with cardiac disease. Br J Anaesth. 1979;51(6):551–6.

    Article  PubMed  CAS  Google Scholar 

  27. Sarkar M, Laussen PC, Zurakowski D, Shukla A, Kussman B, Odegard KC. Hemodynamic responses to etomidate on induction of anesthesia in pediatric patients. Anesth Analg. 2005;101(3):645–50.

    Article  PubMed  CAS  Google Scholar 

  28. Priebe HJ. Differential effects of isoflurane on regional right and left ventricular performances, and on coronary, systemic, and pulmonary hemodynamics in the dog. Anesthesiology. 1987;66(3):262–72.

    Article  PubMed  CAS  Google Scholar 

  29. Kerbaul F, Bellezza M, Mekkaoui C, et al. Sevoflurane alters right ventricular performance but not pulmonary vascular resistance in acutely instrumented anesthetized pigs. J Cardiothorac Vasc Anesth. 2006;20(2):209–16.

    Article  PubMed  Google Scholar 

  30. Cheng DC, Edelist G. Isoflurane and primary pulmonary hypertension. Anaesthesia. 1988;43(1):22–4.

    Article  PubMed  CAS  Google Scholar 

  31. Rorie DK, Tyce GM, Sill JC. Increased norepinephrine release from dog pulmonary artery caused by nitrous oxide. Anesth Analg. 1986;65(6):560–4.

    Article  PubMed  CAS  Google Scholar 

  32. Schulte-Sasse U, Hess W, Tarnow J. Pulmonary vascular responses to nitrous oxide in patients with normal and high pulmonary vascular resistance. Anesthesiology. 1982;57(1):9–13.

    Article  PubMed  CAS  Google Scholar 

  33. Konstadt SN, Reich DL, Thys DM. Nitrous oxide does not exacerbate pulmonary hypertension or ventricular dysfunction in patients with mitral valvular disease. Can J Anaesth. 1990;37(6):613–7.

    Article  PubMed  CAS  Google Scholar 

  34. Kaye AD, Hoover JM, Kaye AJ, et al. Morphine, opioids, and the feline pulmonary vascular bed. Acta Anaesthesiol Scand. 2008;52(7):931–7.

    Article  PubMed  CAS  Google Scholar 

  35. Chen TL, Ueng TH, Huang CH, Chen CL, Huang FY, Lin CJ. Improvement of arterial oxygenation by selective infusion of prostaglandin E1 to ventilated lung during one-lung ventilation. Acta Anaesthesiol Scand. 1996;40(1):7–13.

    Article  PubMed  CAS  Google Scholar 

  36. McCoy EP, Maddineni VR, Elliott P, Mirakhur RK, Carson IW, Cooper RA. Haemodynamic effects of rocuronium during fentanyl anaesthesia: comparison with vecuronium. Can J Anaesth. 1993;40(8):703–8.

    Article  PubMed  CAS  Google Scholar 

  37. Searle NR, Thomson I, Dupont C, et al. A two-center study evaluating the hemodynamic and pharmacodynamic effects of cisatracurium and vecuronium in patients undergoing coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 1999;13(1):20–5.

    Article  PubMed  CAS  Google Scholar 

  38. Hemmerling TM, Russo G, Bracco D. Neuromuscular blockade in cardiac surgery: an update for clinicians. Ann Card Anaesth. 2008;11(2):80–90.

    Article  PubMed  Google Scholar 

  39. Dube L, Granry JC. The therapeutic use of magnesium in anesthesiology, intensive care and emergency medicine: a review. Can J Anaesth. 2003;50(7):732–46.

    Article  PubMed  Google Scholar 

  40. Fullerton DA, Hahn AR, Agrafojo J, Sheridan BC, McIntyre Jr RC. Magnesium is essential in mechanisms of pulmonary vasomotor control. J Surg Res. 1996;63(1):93–7.

    Article  PubMed  CAS  Google Scholar 

  41. al-Halees Z, Afrane B, el-Barbary M. Magnesium sulfate to facilitate weaning of nitric oxide in pulmonary hypertension. Ann Thorac Surg. 1997;63(1):298–9.

    PubMed  CAS  Google Scholar 

  42. Haas NA, Kemke J, Schulze-Neick I, Lange PE. Effect of increasing doses of magnesium in experimental pulmonary hypertension after acute pulmonary embolism. Intensive Care Med. 2004;30(11):2102–9.

    Article  PubMed  Google Scholar 

  43. Houfflin Debarge V, Sicot B, Jaillard S, et al. The mechanisms of pain-induced pulmonary vasoconstriction: an experimental study in fetal lambs. Anesth Analg. 2007;104(4):799–806.

    Article  PubMed  Google Scholar 

  44. Veering BT, Cousins MJ. Cardiovascular and pulmonary effects of epidural anaesthesia. Anaesth Intensive Care. 2000;28(6):620–35.

    PubMed  CAS  Google Scholar 

  45. Rex S, Missant C, Segers P, Wouters PF. Thoracic epidural anesthesia impairs the hemodynamic response to acute pulmonary hypertension by deteriorating right ventricular-pulmonary arterial coupling. Crit Care Med. 2007;35(1):222–9.

    Article  PubMed  Google Scholar 

  46. Garutti I, Olmedilla L, Cruz P, Pineiro P, De la Gala F, Cirujano A. Comparison of the hemodynamic effects of a single 5 mg/kg dose of lidocaine with or without epinephrine for thoracic paravertebral block. Reg Anesth Pain Med. 2008;33(1):57–63.

    PubMed  CAS  Google Scholar 

  47. Armstrong P. Thoracic epidural anaesthesia and primary pulmonary hypertension. Anaesthesia. 1992;47(6):496–9.

    Article  PubMed  CAS  Google Scholar 

  48. Mallampati SR. Low thoracic epidural anaesthesia for elective cholecystectomy in a patient with congenital heart disease and pulmonary hypertension. Can Anaesth Soc J. 1983;30(1):72–6.

    Article  PubMed  CAS  Google Scholar 

  49. Kobayashi Y, Amenta F. Neurotransmitter receptors in the pulmonary circulation with particular emphasis on pulmonary endothelium. J Auton Pharmacol. 1994;14(2):137–64.

    Article  PubMed  CAS  Google Scholar 

  50. Barnes PJ, Liu SF. Regulation of pulmonary vascular tone. Pharmacol Rev. 1995;47(1):87–131.

    PubMed  CAS  Google Scholar 

  51. Greenberg B, Rhoden K, Barnes PJ. Endothelium-dependent relaxation of human pulmonary arteries. Am J Physiol. 1987;252(2 Pt 2):H434–8.

    PubMed  CAS  Google Scholar 

  52. Pearl RG, Maze M, Rosenthal MH. Pulmonary and systemic hemodynamic effects of central venous and left atrial sympathomimetic drug administration in the dog. J Cardiothorac Anesth. 1987;1(1):29–35.

    Article  PubMed  CAS  Google Scholar 

  53. Roscher R, Ingemansson R, Algotsson L, Sjoberg T, Steen S. Effects of dopamine in lung-transplanted pigs at 32 degrees C. Acta Anaesthesiol Scand. 1999;43(7):715–21.

    Article  PubMed  CAS  Google Scholar 

  54. Kwak YL, Lee CS, Park YH, Hong YW. The effect of phenylephrine and norepinephrine in patients with chronic pulmonary hypertension. Anaesthesia. 2002;57(1):9–14.

    Article  PubMed  CAS  Google Scholar 

  55. Vlahakes GJ, Turley K, Hoffman JI. The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation. 1981;63(1):87–95.

    Article  PubMed  CAS  Google Scholar 

  56. Jin HK, Yang RH, Chen YF, Thornton RM, Jackson RM, Oparil S. Hemodynamic effects of arginine vasopressin in rats adapted to chronic hypoxia. J Appl Physiol. 1989;66(1):151–60.

    PubMed  CAS  Google Scholar 

  57. Leather HA, Segers P, Berends N, Vandermeersch E, Wouters PF. Effects of vasopressin on right ventricular function in an experimental model of acute pulmonary hypertension. Crit Care Med. 2002;30(11):2548–52.

    Article  PubMed  CAS  Google Scholar 

  58. Tayama E, Ueda T, Shojima T, et al. Arginine vasopressin is an ideal drug after cardiac surgery for the management of low systemic vascular resistant hypotension concomitant with pulmonary hypertension. Interact Cardiovasc Thorac Surg. 2007;6(6):715–9.

    Article  PubMed  Google Scholar 

  59. Price LC, Forrest P, Sodhi V, et al. Use of vasopressin after Caesarean section in idiopathic pulmonary arterial hypertension. Br J Anaesth. 2007;99(4):552–5.

    Article  PubMed  CAS  Google Scholar 

  60. Michael JR, Barton RG, Saffle JR, et al. Inhaled nitric oxide versus conventional therapy: effect on oxygenation in ARDS [see comments]. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1372–80.

    PubMed  CAS  Google Scholar 

  61. Troncy E, Collet JP, Shapiro S, et al. Inhaled nitric oxide in acute respiratory distress syndrome: a pilot randomized controlled study. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1483–8.

    PubMed  CAS  Google Scholar 

  62. The Neonatal Inhaled Nitric Oxide Study Group (NINOS). Inhaled nitric oxide and hypoxic respiratory failure in infants with congenital diaphragmatic hernia. Pediatrics. 1997;99(6):838–45.

    Article  Google Scholar 

  63. Roberts Jr JD, Fineman JR, Morin III FC, et al. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The Inhaled Nitric Oxide Study Group. N Engl J Med. 1997;336(9):605–10.

    Article  PubMed  CAS  Google Scholar 

  64. Solina AR, Ginsberg SH, Papp D, et al. Dose response to nitric oxide in adult cardiac surgery patients. J Clin Anesth. 2001;13(4):281–6.

    Article  PubMed  CAS  Google Scholar 

  65. Meyer KC, Love RB, Zimmerman JJ. The therapeutic potential of nitric oxide in lung transplantation. Chest. 1998;113(5):1360–71.

    Article  PubMed  CAS  Google Scholar 

  66. Paniagua MJ, Crespo-Leiro MG, Rodriguez JA, et al. Usefulness of nitric oxide inhalation for management of right ventricular failure after heart transplantation in patients with pretransplant pulmonary hypertension. Transplant Proc. 1999;31(6):2505–6.

    Article  PubMed  CAS  Google Scholar 

  67. Ardehali A, Hughes K, Sadeghi A, et al. Inhaled nitric oxide for pulmonary hypertension after heart transplantation. Transplantation. 2001;72(4):638–41.

    Article  PubMed  CAS  Google Scholar 

  68. Mosquera I, Crespo-Leiro MG, Tabuyo T, et al. Pulmonary hypertension and right ventricular failure after heart transplantation: usefulness of nitric oxide. Transplant Proc. 2002;34(1):166–7.

    Article  PubMed  CAS  Google Scholar 

  69. Mahajan A, Shabanie A, Varshney SM, Marijic J, Sopher MJ. Inhaled nitric oxide in the preoperative evaluation of pulmonary hypertension in heart transplant candidates. J Cardiothorac Vasc Anesth. 2007;21(1):51–6.

    Article  PubMed  CAS  Google Scholar 

  70. Date H, Triantafillou AN, Trulock EP, Pohl MS, Cooper JD, Patterson GA. Inhaled nitric oxide reduces human lung allograft dysfunction. J Thorac Cardiovasc Surg. 1996;111(5):913–9.

    Article  PubMed  CAS  Google Scholar 

  71. Yamashita H, Akamine S, Sumida Y, et al. Inhaled nitric oxide attenuates apoptosis in ischemia-reperfusion injury of the rabbit lung. Ann Thorac Surg. 2004;78(1):292–7.

    Article  PubMed  Google Scholar 

  72. Meade MO, Granton JT, Matte-Martyn A, et al. A randomized trial of inhaled nitric oxide to prevent ischemia-reperfusion injury after lung transplantation. Am J Respir Crit Care Med. 2003;167(11):1483–9.

    Article  PubMed  Google Scholar 

  73. Wilson WC, Kapelanski DP, Benumof JL, Newhart II JW, Johnson FW, Channick RN. Inhaled nitric oxide (40 ppm) during one-lung ventilation, in the lateral decubitus position, does not decrease pulmonary vascular resistance or improve oxygenation in normal patients. J Cardiothorac Vasc Anesth. 1997;11(2):172–6.

    Article  PubMed  CAS  Google Scholar 

  74. Ismail-Zade IA, Vuylsteke A, Ghosh S, Latimer RD. Inhaled nitric oxide and one-lung ventilation in the lateral decubitus position. J Cardiothorac Vasc Anesth. 1997;11(7):926–7.

    Article  PubMed  CAS  Google Scholar 

  75. Rocca GD, Coccia C, Pompei L, et al. Hemodynamic and oxygenation changes of combined therapy with inhaled nitric oxide and inhaled aerosolized prostacyclin. J Cardiothorac Vasc Anesth. 2001;15(2):224–7.

    Article  PubMed  CAS  Google Scholar 

  76. Moncada S, Higgs EA. Prostaglandins in the pathogenesis and prevention of vascular disease. Blood Rev. 1987;1(2):141–5.

    Article  PubMed  CAS  Google Scholar 

  77. Vane JR, Botting RM. Pharmacodynamic profile of prostacyclin. Am J Cardiol. 1995;75(3):3A–10.

    Article  PubMed  CAS  Google Scholar 

  78. McLaughlin VV, Gaine SP, Barst RJ, et al. Efficacy and safety of treprostinil: an epoprostenol analog for primary pulmonary hypertension. J Cardiovasc Pharmacol. 2003;41(2):293–9.

    Article  PubMed  CAS  Google Scholar 

  79. Voswinckel R, Reichenberger F, Enke B, et al. Acute effects of the combination of sildenafil and inhaled treprostinil on haemodynamics and gas exchange in pulmonary hypertension. Pulm Pharmacol Ther. 2008;21(5):824–32.

    Article  PubMed  CAS  Google Scholar 

  80. Hoeper MM, Schwarze M, Ehlerding S, et al. Long-term treatment of primary pulmonary hypertension with aerosolized iloprost a prostacyclin analogue. N Engl J Med. 2000;342(25):1866–70.

    Article  PubMed  CAS  Google Scholar 

  81. Olschewski H, Simonneau G, Galie N, et al. Inhaled iloprost for severe pulmonary hypertension. N Engl J Med. 2002;347(5):322–9.

    Article  PubMed  CAS  Google Scholar 

  82. Fiser SM, Cope JT, Kron IL, et al. Aerosolized prostacyclin (epoprostenol) as an alternative to inhaled nitric oxide for patients with reperfusion injury after lung transplantation. J Thorac Cardiovasc Surg. 2001;121(5):981–2.

    Article  PubMed  CAS  Google Scholar 

  83. Langer F, Wendler O, Wilhelm W, Tscholl D, Schafers HJ. Treatment of a case of acute right heart failure by inhalation of iloprost, a long-acting prostacyclin analogue. Eur J Anaesthesiol. 2001;18(11):770–3.

    PubMed  CAS  Google Scholar 

  84. Langer F, Wilhelm W, Lausberg H, Schafers HJ. Iloprost and selective pulmonary vasodilation. Clinical results of intraoperative and postoperative inhalation of iloprost. Anaesthesist. 2004;53(8):753–8.

    Article  PubMed  CAS  Google Scholar 

  85. Sablotzki A, Hentschel T, Gruenig E, et al. Hemodynamic effects of inhaled aerosolized iloprost and inhaled nitric oxide in heart transplant candidates with elevated pulmonary vascular resistance. Eur J Cardiothorac Surg. 2002;22(5):746–52.

    Article  PubMed  Google Scholar 

  86. Wensel R, Opitz C, Ewert R, Bruch L, Kleber F. Effects of iloprost inhalation on exercise capacity and ventilatory efficiency in patients with primary pulmonary hypertension. Circulation. 2000;101(20):2388–92.

    PubMed  CAS  Google Scholar 

  87. Wittwer T, Franke UF, Fehrenbach A, et al. Donor pretreatment using the aerosolized prostacyclin analogue iloprost optimizes post-ischemic function of non-heart beating donor lungs. J Heart Lung Transplant. 2005;24(4):371–8.

    Article  PubMed  Google Scholar 

  88. Rex S, Schaelte G, Metzelder S, et al. Inhaled iloprost to control pulmonary artery hypertension in patients undergoing mitral valve surgery: a prospective, randomized-controlled trial. Acta Anaesthesiol Scand. 2008;52(1):65–72.

    Article  PubMed  CAS  Google Scholar 

  89. Khan TA, Schnickel G, Ross D, et al. A prospective, randomized, crossover pilot study of inhaled nitric oxide versus inhaled prostacyclin in heart transplant and lung transplant recipients. J Thorac Cardiovasc Surg. 2009;138(6):1417–24.

    Article  PubMed  CAS  Google Scholar 

  90. Bund M, Henzler D, Walz R, Rossaint R, Piepenbrock S. Cardiopulmonary effects of intravenous prostaglandin E1 during experimental one-lung ventilation. Thorac Cardiovasc Surg. 2006;54(5):341–7.

    Article  PubMed  CAS  Google Scholar 

  91. Bund M, Henzler D, Walz R, Rossaint R, Piepenbrock S, Kuhlen R. Aerosolized and intravenous prostacyclin during one-lung ventilation. Hemodynamic and pulmonary effects. Anaesthesist. 2004;53(7):612–20.

    Article  PubMed  CAS  Google Scholar 

  92. Nielsen VG. Nitric oxide decreases coagulation protein function in rabbits as assessed by thromboelastography. Anesth Analg. 2001;92(2):320–3.

    Article  PubMed  CAS  Google Scholar 

  93. Haraldsson A, Kieler-Jensen N, Wadenvik H, Ricksten SE. Inhaled prostacyclin and platelet function after cardiac surgery and cardiopulmonary bypass. Intensive Care Med. 2000;26(2):188–94.

    Article  PubMed  CAS  Google Scholar 

  94. Hill LL, De Wet CJ, Jacobsohn E, Leighton BL, Tymkew H. Peripartum substitution of inhaled for intravenous prostacyclin in  a patient with primary pulmonary hypertension. Anesthesiology. 2004;100(6):1603–5.

    Article  PubMed  Google Scholar 

  95. Buckley MS, Feldman JP. Nebulized milrinone use in a pulmonary hypertensive crisis. Pharmacotherapy. 2007;27(12):1763–6.

    Article  PubMed  CAS  Google Scholar 

  96. Lamarche Y, Perrault LP, Maltais S, Tetreault K, Lambert J, Denault AY. Preliminary experience with inhaled milrinone in cardiac surgery. Eur J Cardiothorac Surg. 2007;31(6):1081–7.

    Article  PubMed  Google Scholar 

  97. Urdaneta F, Lobato EB, Beaver T, et al. Treating pulmonary hypertension post cardiopulmonary bypass in pigs: milrinone vs. sildenafil analog. Perfusion. 2008;23(2):117–25.

    Article  PubMed  CAS  Google Scholar 

  98. Haraldsson SA, Kieler-Jensen N, Ricksten SE. The additive pulmonary vasodilatory effects of inhaled prostacyclin and inhaled milrinone in postcardiac surgical patients with pulmonary hypertension. Anesth Analg. 2001;93(6):1439–45.

    Article  CAS  Google Scholar 

  99. Lakshminrusimha S, Porta NF, Farrow KN, et al. Milrinone enhances relaxation to prostacyclin and iloprost in pulmonary arteries isolated from lambs with persistent pulmonary hypertension of the newborn. Pediatr Crit Care Med. 2009;10(1):106–12.

    Article  PubMed  Google Scholar 

  100. Ghofrani HA, Voswinckel R, Reichenberger F, et al. Differences in hemodynamic and oxygenation responses to three different phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension: a randomized prospective study. J Am Coll Cardiol. 2004;44(7):1488–96.

    PubMed  CAS  Google Scholar 

  101. Michelakis E, Tymchak W, Lien D, Webster L, Hashimoto K, Archer S. Oral sildenafil is an effective and specific pulmonary vasodilator in patients with pulmonary arterial hypertension: comparison with inhaled nitric oxide. Circulation. 2002;105(20):2398–403.

    Article  PubMed  CAS  Google Scholar 

  102. Wharton J, Strange JW, Moller GM, et al. Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am J Respir Crit Care Med. 2005;172(1):105–13.

    Article  PubMed  Google Scholar 

  103. Archer SL, Michelakis ED. Phosphodiesterase type 5 inhibitors for pulmonary arterial hypertension. N Engl J Med. 2009;361(19):1864–71.

    Article  PubMed  CAS  Google Scholar 

  104. Galie N, Brundage BH, Ghofrani HA, et al. Tadalafil therapy for pulmonary arterial hypertension. Circulation. 2009;119(22):2894–903.

    Article  PubMed  CAS  Google Scholar 

  105. Galie N, Ghofrani HA, Torbicki A, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005;353(20):2148–57.

    Article  PubMed  CAS  Google Scholar 

  106. Atz AM, Wessel DL. Sildenafil ameliorates effects of inhaled nitric oxide withdrawal. Anesthesiology. 1999;91(1):307–10.

    Article  PubMed  CAS  Google Scholar 

  107. Bigatello LM, Hess D, Dennehy KC, Medoff BD, Hurford WE. Sildenafil can increase the response to inhaled nitric oxide. Anesthesiology. 2000;92(6):1827–9.

    Article  PubMed  CAS  Google Scholar 

  108. Suntharalingam J, Treacy CM, Doughty NJ, et al. Long-term use of sildenafil in inoperable chronic thromboembolic pulmonary hypertension. Chest. 2008;134(2):229–36.

    Article  PubMed  CAS  Google Scholar 

  109. Boffini M, Sansone F, Ceresa F, et al. Role of oral sildenafil in the treatment of right ventricular dysfunction after heart transplantation. Transplant Proc. 2009;41(4):1353–6.

    Article  PubMed  CAS  Google Scholar 

  110. De Santo LS, Mastroianni C, Romano G, et al. Role of sildenafil in acute posttransplant right ventricular dysfunction: successful experience in 13 consecutive patients. Transplant Proc. 2008;40(6):2015–8.

    Article  PubMed  CAS  Google Scholar 

  111. Ghofrani HA, Schermuly RT, Rose F, et al. Sildenafil for long-term treatment of nonoperable chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med. 2003;167(8):1139–41.

    Article  PubMed  Google Scholar 

  112. Dias-Junior CA, Vieira TF, Moreno Jr H, Evora PR, Tanus-Santos JE. Sildenafil selectively inhibits acute pulmonary embolism-induced pulmonary hypertension. Pulm Pharmacol Ther. 2005;18(3):181–6.

    Article  PubMed  CAS  Google Scholar 

  113. Lewis GD, Shah R, Shahzad K, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007;116(14):1555–62.

    Article  PubMed  CAS  Google Scholar 

  114. Shim JK, Choi YS, Oh YJ, Kim DH, Hong YW, Kwak YL. Effect of oral sildenafil citrate on intraoperative hemodynamics in patients with pulmonary hypertension undergoing valvular heart surgery. J Thorac Cardiovasc Surg. 2006;132(6):1420–5.

    Article  PubMed  CAS  Google Scholar 

  115. Zakliczynski M, Maruszewski M, Pyka L, et al. Effectiveness and safety of treatment with sildenafil for secondary pulmonary hypertension in heart transplant candidates. Transplant Proc. 2007;39(9):2856–8.

    Article  PubMed  CAS  Google Scholar 

  116. Califf RM, Adams KF, McKenna WJ, et al. A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: The Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1997;134(1):44–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reimer, C., Granton, J. (2011). Pharmacology of the Pulmonary Circulation. In: Slinger, MD, FRCPC, P. (eds) Principles and Practice of Anesthesia for Thoracic Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0184-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0184-2_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0183-5

  • Online ISBN: 978-1-4419-0184-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics