Skip to main content

Genomics-Based Opportunities in Apricot

  • Chapter
Genetics and Genomics of Rosaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 6))

Apricot (Prunus armeniaca L.) is in many ways similar to peach. The two crops share common physical traits, such as highly familiar fruit forms, that point to their common center of origin and remarkably collinear genomes. At first glance, it may seem somewhat redundant to include a chapter on apricot adjacent to a substantial discussion of peach. However, while similar to peach, apricot features many important distinctions. Apricot has a discrete cultural history, its dissemination throughout Asia and Europe is unique, and the challenges faced by apricot breeders and growers discriminate it from other stonefruits. Unlike peach most apricot cultivars are not self compatible. Apricot varieties are much more diverse and they are more abundant in arid regions such as the Middle East. These facets justify an independent treatment of apricot in any discussion of rosaceous crop genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad R, Potter D, Southwick SM (2004) Identification and characterization of plum and pluot cultivars by microsatellite markers. Journal of Horticultural Science & Biotechnology 79: 164–169

    Google Scholar 

  • Alburquerque N, Egea J, Perez-Tornero O, Burgos L (2002) Genotyping apricot cultivars for self-(in)compatibility by means of RNases associated with S alleles. Plant Breeding 121:343–347

    Article  CAS  Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arus P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theoretical and Applied Genetics 106:819–825

    CAS  PubMed  Google Scholar 

  • Arumaganathan K, Earle ED (1991) Nulcear DNA content of some important plant species. Plant Molecular Biology Reporter 9:208–218

    Article  Google Scholar 

  • Asma BM, Ozturk K (2005) Analysis of morphological, pomological and yield characteristics of some apricot germplasm in Turkey. Genetic Resources and Crop Evolution 52:305–313

    Article  Google Scholar 

  • Badenes ML, Asins MJ, Carbonell EA, Glacer G (1996) Genetic diversity in apricot, Prunus armeniaca, aimed at improving resistance to plum pox virus. Plant Breeding 115:133–139

    Article  CAS  Google Scholar 

  • Badenes ML, Martinez-Calvo J, Llacer G (1998) Analysis of apricot germplasm from the European ecogeographical group. Euphytica 102:93–99

    Article  Google Scholar 

  • Bailey CH, Hough LF (1975) Apricots. In: Janick J, Moore JN (eds) Advances in Fruit Breeding. Purdue University Press, Lafayette, IN

    Google Scholar 

  • Bailey LH (1916) Prunus. Mount Pleasant Press, J. Horace McFarland Co., Harrisburg, PA

    Google Scholar 

  • Belkhadir Y, Subramaniam R, Dangl JL (2004) Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol 7:391–399

    Article  CAS  PubMed  Google Scholar 

  • Boriss H, Brunke H, Kreith M (2006) Commodity Profile: Apricots. In: Center AI (ed), University of California, Berkeley, CA, p 6

    Google Scholar 

  • Burgos L, Alburquerque N (2003) Ethylene inhibitors and low kanamycin concentrations improve adventitious regeneration from apricot leaves. Plant Cell Reports 21:1167–1174

    Article  CAS  PubMed  Google Scholar 

  • Burgos L, Egea J, Guerriero R, Viti R, Monteleone P, Audergon JM (1997) The self-compatibility trait of the main apricot cultivars and new selections from breeding programmes. Journal of Horticultural Science 72:147–154

    Google Scholar 

  • Burgos L, Perez-Tornero O, Ballester J, Olmos E (1998) Detection and inheritance of stylar ribonucleases associated with incompatibility alleles in apricot. Sex Plant Reprod 11:153–158

    Article  CAS  Google Scholar 

  • Byrne DH (1989) Inheritance of 5 isozyme loci in apricot. Hortscience 24:1015–1016

    Google Scholar 

  • Byrne DH, Littleton TG (1989) Characterization of isozyme variability in apricots. Journal of the American Society for Horticultural Science 114:674–678

    Google Scholar 

  • Candresse T, Cambra M, Dallot S, Lanneau M, Asensio M, Gorris MT, Revers F, Macquaire G, Olmos A, Boscia D, Quiot JB, Dunez J (1998) Comparison of monoclonal antibodies and polymerase chain reaction assays for the typing of isolates belonging to the D and M serotypes of plum pox potyvirus. Phytopathology 88:198–204

    Article  CAS  PubMed  Google Scholar 

  • Capote N, Monzo C, Urbaneja A, Perez-Panades J, Carbonell E, Ravelonandro M, Scorza R, Cambra M (2007) Risk assessment of the field release of transgenic European plums susceptible and resistant to plum pox virus. Itea-Informacion Tecnica Economica Agraria 103: 156–167

    Google Scholar 

  • Chuda Y, Ono H, Ohnishi-Kameyama M, Matsumoto K, Nagata T, Kikuchi Y (1999) Mumefural, citric acid derivative improving blood fluidity from fruit-juice concentrate of Japanese apricot (Prunus mume Sieb. et Zucc). Journal of Agricultural and Food Chemistry 47: 828–831

    Article  CAS  PubMed  Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterisation and cross-species amplification in Prunus. Theoretical and Applied Genetics 99:65–72

    Article  CAS  Google Scholar 

  • de Vicente MC, Truco MJ, Egea J, Burgos L, Arus P (1998) RFLP variability in apricot (Prunus armeniaca L.). Plant Breeding 117:153–158

    Article  Google Scholar 

  • Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theoretical and Applied Genetics 106:912–922

    CAS  PubMed  Google Scholar 

  • Dicenta F, Audergon JM (1998) Inheritance of resistance to plum pox potyvirus (PPV) in ‘Stella’ apricot seedlings. Plant Breeding 117:579–581

    Article  Google Scholar 

  • Dicenta F, Martinez-Gomez P, Burgos L, Egea J (2000) Inheritance of resistance to plum pox potyvirus (PPV) in apricot, Prunus armeniaca. Plant Breeding 119:161–164

    Article  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proceedings of the National Academy of Sciences of the United States of America 101:9891–9896

    Article  CAS  PubMed  Google Scholar 

  • Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, Testolin R (2007) Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genetics & Genomes 3:239–249

    Article  Google Scholar 

  • Entani T, Iwano M, Shiba H, Che FS, Isogai A, Takayama S (2003) Comparative analysis of the self-incompatibility (S–) locus region of Prunus mume: identification of a pollen-expressed F-box gene with allelic diversity. Genes to Cells 8:203–213

    Article  CAS  PubMed  Google Scholar 

  • Faust M, Suranyi D, Nyujto F (1998) Origin and dissemination of apricot. In: Janick J (ed) Horticultural Reviews. Wiley-Interscience, p 336

    Google Scholar 

  • Fuchs E, Gruntzig M, Ernst I (2001) Comparison of apricot genotypes with different resistance level to plum pox virus (PPV). Acta Hortic 550:103–106

    Google Scholar 

  • Gao ZH, Shen ZJ, Han ZH, Fang JG, Zhang YM, Zhang Z (2004) Microsatellite markers and genetic diversity in Japanese apricot (Prunus mume). Hortscience 39:1571–1574

    CAS  Google Scholar 

  • Goffreda JC, Scopel AL, Fiola JA (1995) Indole butyric-acid induces regeneration of phenotypically normal apricot (Prunus-armeniaca L) plants from immature embryos. Plant Growth Regulation 17:41–46

    CAS  Google Scholar 

  • Guillet Bellanger I, Audergon J (2001) Inheritance of the stark early orange apricot cultivar resistance to plum pox virus. Acta Hortic 550:111–116

    Google Scholar 

  • Hagen LS, Chaib J, Fady B, Decroocq V, Bouchet JP, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Molecular Ecology Notes 4:742–745

    Article  CAS  Google Scholar 

  • Hagen LS, Khadari B, Lambert P, Audergon JM (2002) Genetic diversity in apricot revealed by AFLP markers: species and cultivar comparisons. Theoretical and Applied Genetics 105: 298–305

    Article  CAS  PubMed  Google Scholar 

  • Halasz J, Hegedus A, Herman R, Stefanovits-Banyai E, Pedryc A (2005) New self-incompatibility alleles in apricot (Prunus armeniaca L.) revealed by stylar ribonuclease assay and S-PCR analysis. Euphytica 145:57–66

    Article  CAS  Google Scholar 

  • He TM, Chen XS, Xu Z, Gao JS, Lin PJ, Liu W, Liang Q, Wu Y (2007) Using SSR markers to determine the population genetic structure of wild apricot (Prunus armeniaca L.) in the Ily Valley of West China. Genetic Resources and Crop Evolution 54:563–572

    Article  CAS  Google Scholar 

  • Hily JM, Scorza R, Malinowski T, Zawadzka B, Ravelonandro M (2004) Stability of gene silencing-based resistance to plum pox virus in transgenic plum (Prunus domestica L.) under field conditions. Transgenic Research 13:427–436

    Article  CAS  PubMed  Google Scholar 

  • Hurtado MA, Romero C, Vilanova S, Abbott AG, Llacer G, Badenes ML (2002) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.), and mapping of PPV (sharka) resistance. Theoretical and Applied Genetics 105:182–191

    Article  CAS  PubMed  Google Scholar 

  • Joobeur T, Viruel MA, de Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arus P (1998) Construction of a saturated linkage map for Prunus using an almond x peach F-2 progeny. Theoretical and Applied Genetics 97:1034–1041

    Article  CAS  Google Scholar 

  • Karayiannis I, Thomidis T, Tsaftaris A (2008) Inheritance of resistance to plum pox virus in apricot (Prunus armeniaca L.). Tree Genetics & Genomes 4:143–148

    Article  Google Scholar 

  • Kita M, Kato M, Ban Y, Honda C, Yaegaki H, Ikoma Y, Moriguchi T (2007) Carotenoid accumulation in Japanese apricot (Prunus mume Siebold & Zucc.): molecular analysis of carotenogenic gene expression and ethylene regulation. Journal of Agricultural Food Chemistry 55: 3414–3420

    Article  CAS  Google Scholar 

  • Kostina KF (1936) (Russian) The Apricot. The Bulletin of Applied Botany, Genetics and Breeding, Supplement 83. Lenin Academy of Agricultural Sciences, Institute of Plant Industry, Leningrad, Russia

    Google Scholar 

  • Kostina KF (1969) The use of varietal resources of apricots for breeding. Trud Nikit Bot Sad 40:45–63

    Google Scholar 

  • Krichen L, Martins JMS, Lambert P, Daaloul A, Trifi-Farah N, Marrakchi M, Audergon JM (2008) Using AFLP markers for the analysis of the genetic diversity of apricot cultivars in Tunisia. Journal of the American Society for Horticultural Science 133:204–212

    Google Scholar 

  • Krichen L, Mnejja M, Arus P, Marrakchi M, Trifi-Farah N (2006) Use of microsatellite polymorphisms to develop an identification key for Tunisian apricots. Genetic Resources and Crop Evolution 53:1699–1706

    Article  Google Scholar 

  • Lalli DA, Abbott AG, Zhebentyayeva TN, Badenes ML, Damsteegt V, Polak J, Krska B, Salava J (2008) A genetic linkage map for an apricot (Prunus armeniaca L.) BC1 population mapping plum pox virus resistance. Tree Genetics & Genomes 4:481–493

    Article  Google Scholar 

  • Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theoretical and Applied Genetics 111: 1504–1513

    Article  CAS  PubMed  Google Scholar 

  • Lambert P, Dicenta F, Rubio M, Audergon JM (2007) QTL analysis of resistance to sharka disease in the apricot (Prunus armeniaca L.) Polonais’ x ‘Stark Early Orange’ F1 progeny. Tree Genetics & Genomes 3:299–309

    Article  Google Scholar 

  • Layne REC, Bailey LH, Hough LF (1996) Apricots. In: Janick J, Moore JN (eds) Fruit Breeding. J. Wiley and Sons, New York, pp 79–111

    Google Scholar 

  • Ledbetter CA (2008) Apricots. In: J.F. H (ed) Temperate Fruit Crop Breeding. Springer, New York, pp 39–82

    Chapter  Google Scholar 

  • Lopes MS, Sefc KM, Laimer M, Machado AD (2002) Identification of microsatellite loci in apricot. Molecular Ecology Notes 2:24–26

    Article  CAS  Google Scholar 

  • Maghuly F, Fernandez EB, Zelger R, Marschall K, Katinger H, Laimer M (2006) Genetic differentiation of apricot (Prunus armeniaca L.) cultivars with markers. European Journal of Horticultural Science 71:129–134

    CAS  Google Scholar 

  • Mariniello L, Sommella MG, Sorrentino A, Forlani M, Porta R (2002) Identification of Prunus armeniaca cultivars by RAPD and SCAR markers. Biotechnology Letters 24:749–755

    Article  CAS  Google Scholar 

  • Mbeguie-A-Mbeguie D, Chahine H, Gomez RM, Gouble B, Reich M, Audergon JM, Souty M, Albagnac G, Fils-Lycaon B (1999) Molecular cloning and expression of a cDNA encoding 1-aminocyclopropane-1-carboxylate (ACC) oxidase from apricot fruit (Prunus armeniaca). Physiologia Plantarum 105:294–303

    Article  CAS  Google Scholar 

  • Mbeguie-A-Mbeguie D, Gouble B, Gomez RM, Audergon JM, Albagnac G, Fils-Lycaon B (2002) Two expansin cDNAs from Prunus armeniaca expressed during fruit ripening are differently regulated by ethylene. Plant Physiology and Biochemistry 40:445–452

    Article  CAS  Google Scholar 

  • Messina R, Lain O, Marrazzo MT, Cipriani G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Molecular Ecology Notes 4:432–434

    Article  CAS  Google Scholar 

  • Mita S, Kirita C, Kato M, Hyodo H (1999) Expression of ACC synthase is enhanced earlier than that of ACC oxidase during fruit ripening of mume (Prunus mume). Physiologia Plantarum 107:319–328

    Article  CAS  Google Scholar 

  • Mita S, Nagai Y, Asai T (2006) Isolation of cDNA clones corresponding to genes differentially expressed in pericarp of mume (Prunus mume) in response to ripening, ethylene and wounding signals. Physiologia Plantarum 128:531–545

    Article  CAS  Google Scholar 

  • Negri P, Bassi D, Magnanini E, Rizzo M, Bartolozzi F (2008) Bitterness inheritance in apricot (P. armeniaca L.) seeds. Tree Genetics & Genomes in press

    Google Scholar 

  • Pashkoulov D, Givondov A, Yliev P (1995) Isozyme variability in plum (prunus-domestica), and its use for cultivar and interspecific hybrid identification. Biotechnology & Biotechnological Equipment 9:33–35

    Google Scholar 

  • Perez-Tornero O, Burgos L (2000) Different media requirements for micropropagation of apricot cultivars. Plant Cell Tissue and Organ Culture 63:133–141

    Article  Google Scholar 

  • Perez-Tornero O, Egea J, Olmos E, Burgos L (2001) Control of hyperhydricity in micropropagated apricot cultivars. In Vitro Cellular and Developmental Biology Plant 37:250–254

    Article  Google Scholar 

  • Perez-Tornero O, Egea J, Vanoostende A, Burgos L (2000) Assessment of factors affecting adventitious shoot regeneration from in vitro cultured leaves of apricot. Plant Sci 158:61–70

    Article  CAS  PubMed  Google Scholar 

  • Perezgonzales S (1992) Associations among morphological and phenological characters representing apricot Germplasm in central Mexico. Journal of the American Society for Horticultural Science 117:486–490

    Google Scholar 

  • Petri C, Alburquerque N, Burgos L (2005a) The effect of aminoglycoside antibiotics on the adventitious regeneration from apricot leaves and selection of nptII-transformed leaf tissues. Plant Cell Tissue Organ Cult 80:271–276

    Google Scholar 

  • Petri C, Alburquerque N, Garcia-Castillo S, Egea J, Burgos L (2004) Factors affecting gene transfer efficiency to apricot leaves during early Agrobacterium-mediated transformation steps. Journal of Horticultural Science & Biotechnology 79:704–712

    CAS  Google Scholar 

  • Petri C, Alburquerque N, Perez-Tornero O, Burgos L (2005b) Auxin pulses and a synergistic interaction between polyamines and ethylene inhibitors improve adventitious regeneration from apricot leaves and Agrobacterium-mediated transformation of leaf tissues. Plant Cell Tissue and Organ Culture 82:105–111

    Google Scholar 

  • Pieterse RE (1989) Regeneration of plants from callus and embryos of royal apricot. Plant Cell Tissue and Organ Culture 19:175–179

    Article  Google Scholar 

  • Polak J (1998) Relative concentration of plum pox virus in leaves and flowers of some Prunus species and cultivars. Acta Virologica 42:264–267

    CAS  PubMed  Google Scholar 

  • Ravelonandro M, Scorza R, Bachelier JC, Labonne G, Levy L, Damsteegt V, Callahan AM, Dunez J (1997) Resistance of transgenic Prunus domestica to plum pox virus infection. Plant Disease 81:1231–1235

    Article  CAS  Google Scholar 

  • Rehder A (1940) Manual of cultivated trees and shrubs hardy in North America exclusive of the subtropical and warmer temperate regions. Macmillan, New York

    Google Scholar 

  • Romero C, Pedryc A, Munoz V, Llacer G, Badenes ML (2003) Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46:244–252

    Article  CAS  PubMed  Google Scholar 

  • Rubio A, Ruiz D, Egea J, Martinez-Gomez P, Dicenta F (2008) Evaluation of apricot resistance to plum pox virus (sharka) in controlled greenhouse and natural field conditions. Scientia Horticulturae 116:176–179

    Article  Google Scholar 

  • Rubio M, Audergon JM, Martinez-Gomez P, Dicenta F (2007) Testing genetic control hypotheses for Plum pox virus (sharka) resistance in apricot. Scientia Horticulturae 112:361–365

    Article  CAS  Google Scholar 

  • Rubio M, Dicenta F, Martinez-Gomez P (2003) Susceptibility to sharka (Plum pox virus) in Prunus mandshurica x P-armeniaca seedlings. Plant Breeding 122:465–466

    Article  Google Scholar 

  • Salava J, Polak J, Krska B (2005) Oligogenic inheritance to plum pox virus in apricots. Czech Journal of Genetics Plant Breed 41:167–170

    Google Scholar 

  • Sanchez-Perez R, Martinez-Gomez P, Dicenta F, Egea J, Ruiz D (2006) Level and transmission of genetic heterozygosity in apricot (Prunus armeniaca L.) explored using simple sequence repeat markers. Genetic Resources and Crop Evolution 53:763–770

    Article  CAS  Google Scholar 

  • Sanchez-Perez R, Ruiz D, Dicenta F, Egea J, Martinez-Gomez P (2005) Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterization, protection, and genetic relationships. Scientia Horticulturae 103:305–315

    Article  CAS  Google Scholar 

  • Scorza R, Ravelonandro M, Callahan AM, Cordts JM, Fuchs M, Dunez J, Gonsalves D (1994) Transgenic plums (Prunus-domestica L) express the plum pox virus coat protein gene. Plant Cell Reports 14:18–22

    Article  CAS  Google Scholar 

  • Shimada T, Haji T, Yamaguchi M, Takeda T, Nomura K, Yoshida M (1994) Classification of mume (Prunus mume Sieb et Zucc) by RAPD assay. Journal of Japanese Society Horticultural Science 63:543–551

    Article  Google Scholar 

  • Soriano JM, Vera-Ruiz EM, Vilanova S, Martinez-Calvo J, Llacer G, Badenes ML, Romero C (2008) Identification and mapping of a locus conferring plum pox virus resistance in two apricot-improved linkage maps. Tree Genetics & Genomes 4:391–402

    Article  Google Scholar 

  • Soriano JM, Vilanova S, Romero C, Llacer G, Badenes M (2005) Characterization and mapping of NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L.). Theoretical and Applied Genetics 110:980–989

    Article  CAS  PubMed  Google Scholar 

  • Takeda T, Shimada T, Nomura K, Ozaki T, Haji T, Yamaguchi M, Yoshida M (1998) Classification of apricot varieties by RAPD analysis. Journal of Japanese Society Horticultural Science 67:21–27

    Article  CAS  Google Scholar 

  • Tao R, Habu T, Yamane H, Sugiura A (2002) Characterization and cDNA cloning for S-f-RNase, a molecular marker for self-compatibility, in Japanese apricot (Prunus mume). Journal of Japanese Society Horticultural Science 71:595–600

    Article  CAS  Google Scholar 

  • Tao R, Habu T, Yamane H, Sugiura A, Iwamoto K (2000) Molecular markers for self-compatibility in Japanese apricot (Prunus mume). Hortscience 35:1121–1123

    CAS  Google Scholar 

  • Toma S, Isac M, Balan V, Ivascu A (1998) Detection of plum pox virus by enzyme-linked immunosorbent assay in some apricot and peach varieties and hybrids in Romania. Acta Virologica 42:276–277

    CAS  PubMed  Google Scholar 

  • Uematsu C, Sasakuma T, Ogihara Y (1991) Phylogenetic-relationships in the stone fruit group of Prunus as revealed by restriction fragment analysis of chloroplast DNA. Japanese Journal of Genetics 66:59–69

    Article  CAS  PubMed  Google Scholar 

  • Ushijima K, Yamane H, Watari A, Kakehi E, Ikeda K, Hauck NR, Iezzoni AF, Tao RT (2004) The S haplotype-specific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P-mume. Plant Journal 39:573–586

    Article  CAS  PubMed  Google Scholar 

  • Utsunomiya H, Takekoshi S, Gato N, Utatsu H, Motley ED, Eguchi K, Fitzgerald TG, Mifune M, Frank GD, Eguchi S (2002) Fruit-juice concentrate of Asian plum inhibits growth signals of vascular smooth muscle cells induced by angiotensin II. Life Sciences 72:659–667

    Article  CAS  PubMed  Google Scholar 

  • Utsunomiya H, Yamakawa T, Kamei J, Kadonosono K, Tanaka SI (2005) Anti-hyperglycemic effects of plum in a rat model of obesity and type 2 diabetes, Wistar fatty rat. Biomedical Research-Tokyo 26:193–200

    Article  CAS  PubMed  Google Scholar 

  • Vavilov NI (1992) The phyto-geographical basis for plant breeding. In: Dorofeyev VF (ed) Origin and Geography of Cultivated Plants. Cambridge University Press, Cambridge, pp 316–366

    Google Scholar 

  • Vilanova S, Romero C, Abbott AG, Llacer G, Badenes ML (2003a) An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility traits. Theoretical and Applied Genetics 107:239–247

    Google Scholar 

  • Vilanova S, Romero C, Abernathy D, Abbott AG, Burgos L, Llacer G, Badenes ML (2003b) Construction and application of a bacterial artificial chromosome (BAC) library of Prunus armeniaca L. for the identification of clones linked to the self-incompatibility locus. Molecular Genetics and Genomics 269:685–691

    Google Scholar 

  • Vilanova S, Soriano JM, Lalli DA, Romero C, Abbott AG, Llacer G, Badenes ML (2006) Development of SSR markers located in the G1 linkage group of apricot (Prunus armeniaca L.) using a bacterial artificial chromosome library. Molecular Ecology Notes 6:789–791

    Article  CAS  Google Scholar 

  • Yaegaki H, Shimada T, Moriguchi T, Hayama H, Haji T, Yamaguchi M (2001) Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot (Prunus mume Sieb. et Zucc.). Sex Plant Reproduction 13:251–257

    Article  CAS  Google Scholar 

  • Yamane H, Ushijima K, Sassa H, Tao R (2003) The use of the S haplotype-specific F-box protein gene, SFB as a molecular marker for S-haplotypes and self-compatibility in Japanese apricot (Prunus mume). Theoretical and Applied Genetics 107:1357–1361

    Article  CAS  PubMed  Google Scholar 

  • Zhebentyayeva TN, Reighard GL, Gorina VM, Abbott AG (2003) Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theoretical and Applied Genetics 106:435–444

    CAS  PubMed  Google Scholar 

  • Zhebentyayeva TN, Reighard GL, Lalli D, Gorina VM, Krska B, Abbott AG (2008) Origin of resistance to plum pox virus in Apricot: what new AFLP and targeted SSR data analyses tell. Tree Genetics & Genomes 4:403–417

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Folta, K.M., Gardiner, S.E. (2009). Genomics-Based Opportunities in Apricot. In: Folta, K.M., Gardiner, S.E. (eds) Genetics and Genomics of Rosaceae. Plant Genetics and Genomics: Crops and Models, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77491-6_15

Download citation

Publish with us

Policies and ethics