Skip to main content

The cystic fibrosis transmembrane conductance regulator and its function in epithelial transport

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 137

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 137))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP, Boyd AE, González G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA (1995) Cloning of the beta cell high-affinity sulfonylurea receptor: A regulator of insulin secretion. Science 268:423–426

    PubMed  Google Scholar 

  2. Aleu J, Ivorra I, Lejarreta M, Gonzalez-Ros JM, Morales A, Ferragut JA (1997) Functional incorporation of P-glycoprotein into Xenopus oocyte plasma membrane fails to elicit a swelling-evoked conductance. Biochem Biophys Res Commun 237:407–412

    Article  PubMed  Google Scholar 

  3. Allert N, Leipziger J, Greger R (1992) cAMP and Ca2+ act co-operatively on the Cl conductance of HT29 cells. Pflügers Arch 421:403–405

    Article  Google Scholar 

  4. Anderson MP, Berger HA, Rich DP, Gregory RJ, Smith AE, Welsh MJ (1991) Nucleoside triphosphates are required to open the CFTR chloride channel. Cell 67:775–784

    Article  PubMed  Google Scholar 

  5. Anderson MP, Gregory RJ, Thompson S, Souza DW, Sucharita P, Mulligan RC, Smith AE, Welsh MJ (1991) Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253:202–205

    PubMed  Google Scholar 

  6. Anderson MP, Sheppard DN, Berger HA, Welsh MJ (1992) Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia. Am J Physiol 263:L1–14

    PubMed  Google Scholar 

  7. Anderson MP, Welsh MJ (1991) Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc Natl Acad Sci 88:6003–6007

    PubMed  Google Scholar 

  8. Annereau JP, Wulbrand U, Vankeerberghen A, Cuppens H, Bontems F, Tummler B, Cassiman JJ, Stoven V (1997) A novel model for the first nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator. FEBS Lett 407:303–308

    Article  PubMed  Google Scholar 

  9. App EM, King M, Helfesrieder R, Kohler D, Matthys H (1990) Acute and long-term amiloride inhalation in cystic fibrosis lung disease. A rational approach to cystic fibrosis therapy. Am Rev Respir Dis 141:605–612

    PubMed  Google Scholar 

  10. Argent BE, Gray MA, Greenwell JR (1987) Secretin-regulated anion channel on the apical membrane of rat pancreatic duct cells in vitro. J Physiol 391:33P

    Google Scholar 

  11. Arispe N, Ma J, Jacobson KA, Pollard HB (1998) Direct Activation of Cystic Fibrosis Transmembrane Conductance Regulator Channels by 8-Cyclopentyl-1, 3-dipropylxanthine (CPX) and 1, 3-Diallyl-8-cyclohexylxanthine (DAX). J Biol Chem 273:5727–5734

    Article  PubMed  Google Scholar 

  12. Arispe N, Rojas E, Hartman J, Sorscher EJ, Pollard HB (1992) Intrinsic anion channel activity of the recombinant first nucleotide binding fold domain of the cystic fibrosis transmembrane regulator protein. Proc Natl Acad Sci 89:1539–1543

    PubMed  Google Scholar 

  13. Awayda MS, Ismailov II, Berdiev BK, Fuller CM, Benos DJ (1996) Protein kinase regulation of a cloned epithelial Na+ channel. J Gen Physiol 108:49–65

    Article  PubMed  Google Scholar 

  14. Ballard ST, Fountain JD, Inglis SK, Corboz MR, Taylor AE (1995) Chloride secretion across distal airway epithelium: relationship to submucosal gland distribution. Am J Physiol 268:L526–L531

    PubMed  Google Scholar 

  15. Ballke EH, Wiersbitzky S, Mahner B, König A (1992) The effect of N-acetylcysteine (Mucosolvin) on the transmural potential difference of the mucosa in children. Pediatrie und Grenzgebiete 31:97–101

    Google Scholar 

  16. Barasch J, Kiss B, Prince A, Saiman L, Gruenert DC, Al-Awqati Q (1991) Defective acidification of intracellular organelles in cystic fibrosis. Nature 352:70–73

    Article  PubMed  Google Scholar 

  17. Barbry P, Hofman P (1997) Molecular biology of Na+ absorption. Am J Physiol 273:G571–G585

    PubMed  Google Scholar 

  18. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) KvlQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium channel. Nature 384:78–80

    Google Scholar 

  19. Baukrowitz T, Hwang T-C, Nairn AC, Gadsby DC (1994) Coupling of CFTR Cl channel gating to an ATP hydrolysis cycle. Neuron 12:473–482

    Article  PubMed  Google Scholar 

  20. Bear CE, Li C, Kartner N, Bridges RJ, Jensen TJ, Ramjeesingh M, Riordan JR (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68:809–818

    Article  PubMed  Google Scholar 

  21. Beck S, Kühr J, v. Schütz V, Röstermund T, Seydewitz H, Brandis M, Greger R, Kunzelmann K (1998) Correlation of CF-phenotype, CFTR-Cl currents and expression of CFTR-mRNA. Ped Pulmonology (in press)

    Google Scholar 

  22. Becq F, Hamon Y, Bajetto A, Gola M, Verrier B, Chimini G (1997) ABC1, an ATP binding cassette transporter required for phagocytosis of apoptotic cells, generates a regulated anion flux after expression in Xenopus laevis oocytes. J Biol Chem 272:2695–2699

    Article  PubMed  Google Scholar 

  23. Becq F, Jensen TJ, Chang X-B, Savoia A, Rommens JM, Tsui L-C, Buchwald M, Riordan JR, Hanrahan JW (1994) Phosphatase inhibitors activate normal and defective CFTR chloride channels. Proc Natl Acad Sci USA 91:9160–9164

    PubMed  Google Scholar 

  24. Becq F, Verrier B, Chang XB, Riordan JR, Hanrahan JW (1996) cAMP-and Ca2+ — independent activation of cystic fibrosis transmembrane conductance regulator channels by phenylimidazothiazole drugs. J Biol Chem 271:16171–16179

    Article  PubMed  Google Scholar 

  25. Bell CL, Quinton PM (1993) Regulation of CFTR Cl conductance in secretion by cellular energy levels. Am J Physiol 264:C925–C931

    PubMed  Google Scholar 

  26. Bennett WD, Olivier KN, Zeman KL, Hohneker KW, Boucher RC, Knowles MR (1996) Effect of uridine 5′-triphosphate plus amiloride on mucociliary clearance in adult cystic fibrosis. Am J Respir Crit Care Med 153:1796–1801

    PubMed  Google Scholar 

  27. Benos DJ, Cunningham S, Baker RR, Beason KB, Oh Y, Smith PR (1992) Molecular characteristics of amiloride-sensitive sodium channels. Rev Physiol Biochem Pharmacol 120:32–113

    Google Scholar 

  28. Berdiev BK, Prat AG, Cantiello HF, Ausiello DA, Fuller CM, Jovov B, Benos DJ, Ismailov II (1996) Regulation of epithelial sodium channels by short actin filaments. J Biol Chem 271:17704–17710

    Article  PubMed  Google Scholar 

  29. Berschneider HM, Knowles MR, Azizkhan RG, Boucher RC, Tobey NA, Orlando RC, Powell DW (1988) Altered intestinal chloride transport in cystic fibrosis. FASEB J 2:2625–2629

    PubMed  Google Scholar 

  30. Bhaskar KR, Turner BS, Grubman SA, Jefferson DM, LaMont JT (1998) Dysregulation of proteoglycan production by intrahepatic biliary epithelial cells bearing defective deltaF508 cystic fibrosis transmembrane conductance regulator. Hepatology 27:7–14

    Article  PubMed  Google Scholar 

  31. Bianchet MA, Ko YH, Amzel LM, Pedersen PL (1997) Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology: structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR). J Bioenerg Biomembr 29:503–524

    Article  PubMed  Google Scholar 

  32. Bijman J, Frömter E (1986) Direct demonstration of high transepithelial chloride-conductance in normal human sweat duct which is absent in cystic fibrosis. Pflügers Arch 407:123–127

    Article  Google Scholar 

  33. Biwersi J, Emans N, Verkman AS (1996) Cystic fibrosis transmembarne conductance regulator activation stimulates endosome fusion in vivo. Proc Natl Acad Sci 93:12484–12489

    Article  PubMed  Google Scholar 

  34. Biwersi J, Verkman AS (1994) Functional CFTR in endosomal compartment of CFTR-expressing fibroblasts and T84 cells. Am J Physiol 266:C149–C156

    PubMed  Google Scholar 

  35. Bleich M, Briel M, Busch AE, Lang H-J, Gerlach U, Greger R, Kunzelmann K (1997) KvLQT channels are inhibited by the K+ channel blocker 293B. Pflügers Arch 434:499–501

    Article  Google Scholar 

  36. Boockfor FR, Morris RA, DeSimone DC, Hunt DM, Walsh KB (1998) Sertoli cell expression of the cystic fibrosis transmembrane conductance regulator. Am J Physiol 274:C922–C930

    PubMed  Google Scholar 

  37. Boucher RC, Cotton CU, Gatzy JT, Knowles MR, Yankaskas JR (1988) Evidence for reduced Cl and increased Na+ permeability in cystic fibrosis human primary cell cultures. J Physiol 405:77–103

    PubMed  Google Scholar 

  38. Boucher RC, Knowles MR, Stutts MJ, Gatzy JT (1983) Epithelial dysfunction in cystic fibrosis lung disease. Lung 161:1–17

    Google Scholar 

  39. Boucher RC, Stutts MJ, Knowles MR, Cantley L, Gatzy JT (1986) Na+ transport in cystic fibrosis respiratory epithelia. J Clin Invest 78:1245–1252

    PubMed  Google Scholar 

  40. Böhme M, Diener M, Rummel W (1991) Calcium-and cyclic-AMP-mediated secretory responses in isolated colonic crypts. Pflügers Arch 419:144–151

    Article  Google Scholar 

  41. Bradbury NA, Cohn JA, Venglarik CJ, Bridges RJ (1994) Biochemical and Biophysical identification of cystic fibrosis transmembrane conductance regulator chloride channels as components of endocytic clathrin coated vesicle. J Biol Chem 269:8296–8302

    PubMed  Google Scholar 

  42. Bradbury NA, Jilling T, Gabor B, Sorscher EJ, Bridges RJ, Kirk KL (1992) Regulation of plasma membrane recycling by CFTR. Science 256:530–531

    PubMed  Google Scholar 

  43. Breuer W, Slotki IN, Ausiello DA, Cabantchik IZ (1993) Induction of multidrug resistance downregulates the expression of CFTR in colon epithelial cells. Am J Physiol 265:C1711–C1715

    PubMed  Google Scholar 

  44. Briel M, Greger R, Kunzelmann K (1998) Cl transport by CFTR contributes to the inhibition of epithelial Na+ channels in Xenopus ooyctes coexpressing CFTR and ENaC. J Physiol (Lond) 508.3:825–836

    Article  PubMed  Google Scholar 

  45. Bubien JK, Jope RS, Warnock DG (1994) G-proteins modulate amiloride — sensitive sodium channels. J Biol Chem 269:17780–17783

    PubMed  Google Scholar 

  46. Burch LH, Talbot CR, Knowles MR, Canessa CM, Rossier BC, Boucher RC (1995) Relative expression of the human epithelial Na+ channel subunits in normal and cystic fibrosis airways. Am J Physiol 269:C511–C518

    PubMed  Google Scholar 

  47. Burg MB, Stoner L, Cardinal J, Green N (1973) Furosemide effect on isolated perfused tubules. Am J Physiol 225:119–124

    PubMed  Google Scholar 

  48. Busch AE, Busch GL, Ford E, Suessbrich H, Lang HJ, Greger R, Kunzelmann K, Attali B, Stühmer W (1997) The role of the IsK protein in the specific pharmacological properties of the IKs channel complex. Br J Pharmacol 122:187–189

    Article  PubMed  Google Scholar 

  49. Canessa CM (1996) What is new about the structure of the epithelial Na+ channel? NIPS 11:195–201

    Google Scholar 

  50. Canessa CM, Horisberger JD, Rossier BC (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467–470

    Article  PubMed  Google Scholar 

  51. Canessa CM, Schild L, Buell G, Thorens B, Gautschl I, Horisberger JD, Rossier BC (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467

    Article  PubMed  Google Scholar 

  52. Cantiello HF, Jackson GR, Jr., Grosman CF, Prat AG, Borkan SC, Wang Y, Reisin IL, O'Riordan CR, Ausiello DA (1998) Electrodiffusional ATP movement through the cystic fibrosis transmembrane conductance regulator. Am J Physiol 274:C799–809

    PubMed  Google Scholar 

  53. Cantiello HF, Stow JL, Adriana GP, Ausiello DA (1991) Actin filaments regulate epithelial Na+ channel activity. Am J Physiol 261:C882–C888

    PubMed  Google Scholar 

  54. Capurro C, Coutry N, Bonvalet JP, Escoubet B, Garty H, Farman N (1997) Specific expression and regulation of CHIF in kidney and colon. Ann N Y Acad Sci 834:562–564

    PubMed  Google Scholar 

  55. Carson MR, Welsh MJ (1995) Structural and functional similarities between the nucleotide-binding domains of CFTR and GTP-binding proteins. Biophys J 69:2443–2448

    PubMed  Google Scholar 

  56. Chalfant ML, Civan JM, Peterson-Yantorno K, DiBona DR, O'Brien TG, Civan MM (1996) Regulation of epithelial Na+ permeability by protein kinase C is tissue specific. J Membrane Biol 152:207–215

    Article  Google Scholar 

  57. Chang X-B, Hou YX, Jensen TJ, Riordan JR (1994) Mapping of cystic fibrosis transmembrane conductance regulator membrane topology by glycosylation site insertion. J Biol Chem 269:18572–18575

    PubMed  Google Scholar 

  58. Chang X-B, Tabcharani JA, Hou Y-X, Jensen TJ, Kartner N, Alon N, Hanrahan JW, Riordan JR (1993) Protein kinase A (PKA) still activates CFTR chloride channels after mutagenesis of all 10 PKA consensus phosphorylation sites. J Biol Chem 268:11304–11311

    PubMed  Google Scholar 

  59. Chao AC, de Sauvage FJ, Dong YJ, Wagner JA, Goeddel DV, Gardner P (1994) Activation of intestinal CFTR Cl channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase. EMBO J 13:1065–1072

    PubMed  Google Scholar 

  60. Chen HJ, Schulman H, Gardner P (1989) A cAMP-regulated chloride channel in lymphocytes that is affected in cystic fibrosis. Science 243:657–660

    PubMed  Google Scholar 

  61. Cheng PW, Boat TF, Cranfill K, Yankaskas JR, Boucher RC (1989) Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis. J Clin Invest 84:68–72

    PubMed  Google Scholar 

  62. Cheng SH, Rich DP, Marshall J, Gregory RJ, Welsh MJ, Smith AE (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66:1027–1036

    Article  PubMed  Google Scholar 

  63. Cheung M, Akabas MH (1997) Locating the anion-selectivity filter of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. J Gen Physiol 109:289–299

    Article  PubMed  Google Scholar 

  64. Chiang CE, Chen SA, Chang MS, Lin CI, Luk HN (1997) Genistein directly induces cardiac CFTR chloride current by a tyrosine kinase-independent and protein kinase A-independent pathway in guinea pig ventricular myocytes. Biochem Biophys Res Commun 235:74–78

    Article  PubMed  Google Scholar 

  65. Chraibi A, Vallet V, Firsov D, Hess SK, Horisberger JD (1998) Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes. J Gen Physiol 111:127–138

    Article  PubMed  Google Scholar 

  66. Clarke LL, Boucher RC (1992) Chloride secretory response to extracellular ATP in human normal and cystic fibrosis nasal epithelia. Am J Physiol 263:C348–C356

    PubMed  Google Scholar 

  67. Clarke LL, Chinet TC, Boucher RC (1997) Extracellular ATP stimulates K+ secretion across cultured human airway epithelium. Am J Physiol 272:L1084–L1091

    PubMed  Google Scholar 

  68. Clarke LL, Grubb BR, Gabriel SE, Smithies O, Koller BH, Boucher RC (1992) Defective epithelial chloride transport in a gene-targeted mouse model of cystic fibrosis. Science 257:1125–1128

    PubMed  Google Scholar 

  69. Clarke LL, Grubb BR, Yankaskas JR, Cotton CU, McKenzie A, Boucher RC (1994) Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level didease in cftr (-/-) mice. Proc Natl Acad Sci 91:479–483

    PubMed  Google Scholar 

  70. Clarke LL, Harline MC (1996) CFTR is required for cAMP inhibition of intestinal Na+ absorption in a cystic fibrosis mouse model. Am J Physiol 270:G259–G267

    PubMed  Google Scholar 

  71. Clarke LL, Harline MC (1998) Dual role of CFTR in cAMP-stimulated HCO 3 secretion across murine duodenum. Am J Physiol 274:G718–G726

    PubMed  Google Scholar 

  72. Cliff WH, Frizzell RA (1990) Separate Cl conductances activated by cAMP and Ca2+ in Cl-secreting epithelial cells. Proc Natl Acad Sci 87:4956–4960

    PubMed  Google Scholar 

  73. Cohen BE, Lee, Jacobson KA, Kim YC, Huang Z, Sorscher EJ, Pollard HB (1997) 8-cyclopentyl-1, 3-dipropylxanthine and other xanthines differentially bind to the wild-type and deltaF508 mutant first nucleotide binding fold (NBF-1) domains of the cystic fibrosis transmembrane conductance regulator. Biochemistry 36:6455–6461

    Article  PubMed  Google Scholar 

  74. Colledge WH, Abella BS, Southern KW, Ratcliff RA, Jiang C, Cheng SH, MacVinish LJ, Anderson JR, Cuthbert AW, Evans MJ (1995) Generation and characterization of a deltaF508 cystic fibrosis mouse model. Nature genetics 10:445–452

    Article  PubMed  Google Scholar 

  75. Colombo B, Turconi P, Daffonchio L, Fedele G, Omini C, Cremaschi D (1994) Stimulation of Cl-secretion by the mucoactive drug S-carboxymethylcysteinelysine salt in the isolated rabbit trachea. Eur Respir J 7:1622–1628

    Article  PubMed  Google Scholar 

  76. Cotten JF, Ostedgaard LS, Carson MR, Welsh MJ (1996) Effect of cystic fibrosis-associated mutations in the fourth intracellular loop of cystic fibrosis transmembrane conductance regulator. J Biol Chem 271:21279–21284

    Article  PubMed  Google Scholar 

  77. Cotton CU, Stutts MJ, Knowles MR, Gatzy JT, Boucher RC (1987) Abnormal apical cell membrane in cystic fibrosis respiratory epithelium. J Clin Invest 79:80–85

    PubMed  Google Scholar 

  78. Cowley EA, Wang CG, Gosselin D, Radzioch D, Eidelman DH (1997) Mucociliary clearance in cystic fibrosis knockout mice infected with Pseudomonas aeruginosa. Eur Respir J 10:2312–2318

    Article  PubMed  Google Scholar 

  79. Crawford I, Maloney PC, Zeitlin PL, Guggino WB, Hyde SC, Turley H, Gatter KC, Harris A, Higgins CF (1991) Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc Natl Acad Sci 88:9262–9266

    PubMed  Google Scholar 

  80. Cunningham SA, Awayda MS, Bubien JK, Ismailov II, Arrate MP, Berdiev BK, Benos DJ, Fuller CM (1995) Cloning of an epithelial chloride channel from bovine trachea. J Biol Chem 270:31016–31026

    Article  PubMed  Google Scholar 

  81. Custer M, Spindler B, Verrey F, Murer H, Biber J (1997) Identification of a new gene product (diphor-1) regulated by dietary phosphate. Am J Physiol 273:F801–F806

    PubMed  Google Scholar 

  82. Cuthbert AW, Halstead J, Ratcliff R, Colledge WH, Evans MJ (1995) The genetic advantage hypothesis in cystic fibrosis heterozygotes: a murine study. J Physiol (Lond) 482:449–454

    PubMed  Google Scholar 

  83. Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, Crystal RG, Pavirani A, Lecocq J-P, Lazdunski M (1992) Altered chloride ion channel kinetics associated with the deltaF508 cystic fibrosis mutation. Nature 354:526–528

    Article  Google Scholar 

  84. Daniels DL, Cohen AR, Anderson JM, Brunger AT (1998) Crystal structure of the hCASK PDZ domain reveals the structural basis of class II PDZ domain target recognition. Nat Struct Biol 5:317–325

    Article  PubMed  Google Scholar 

  85. Davies JC, Stern M, Dewar A, Caplen NJ, Munkonge FM, Pitt T, Sorgi F, Huang L, Bush A, Geddes DM, Alton EW (1997) CFTR gene transfer reduces the binding of Pseudomonas aeruginosa to cystic fibrosis respiratory epithelium. Am J Respir Cell Mol Biol 16:657–663

    PubMed  Google Scholar 

  86. De Lisle RC, Petitt M, Huff J, Isom KS, Agbas A (1997) MUCLIN expression in the cystic fibrosis transmembrane conductance regulator knockout mouse. Gastroenterology 113:521–532

    Article  PubMed  Google Scholar 

  87. Deachapunya C, O'Grady SM (1998) Regulation of chloride secretion across porcine endometrial epithelial cells by prostaglandin E2. J Physiol (Lond) 508:31–47

    PubMed  Google Scholar 

  88. Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358:761–764

    Article  PubMed  Google Scholar 

  89. Devor DC, Singh AK, Bridges RJ, Frizzell RA (1997) Psoralens: novel modulators of Cl secretion. Am J Physiol 272:C976–C988

    PubMed  Google Scholar 

  90. Devor DC, Singh AK, Frizzell RA, Bridges RJ (1996) Modulation of Cl secretion by benzimidazolones. I. Direct activation of a Ca2+-dependent K+ channel. Am J Physiol 271:L775–L784

    PubMed  Google Scholar 

  91. Dinudom A, Harvey KF, Komwatana P, Young JA, Kumar S, Cook DI (1998) Nedd4 mediates control of an epithelial Na+ channel in salivary duct cells by cytosolic Na+. Proc Natl Acad Sci USA 95:7169–7173

    Article  PubMed  Google Scholar 

  92. Dinudom A, Komwatana P, Young JA, Cook DI (1995) Control of the amiloride-sensitive Na+ current in mouse salivary ducts by intracellular anions is mediated by a G protein. J Physiol 487:549–555

    PubMed  Google Scholar 

  93. Dinudom A, Komwatana P, Young JA, Cook DI (1995) A forskolin-activated Cl-current in mouse mandibular duct cells. Am J Physiol 268:G806–812

    PubMed  Google Scholar 

  94. Dinudom A, Young JA, Cook DI (1993) Na+ and Cl conductances are controlled by cytosolic Cl concentration in the intralobular duct cells of mouse mandibular glands. J Membrane Biol 135:289–295

    Article  Google Scholar 

  95. Dobbs LG, Gonzalez R, Matthay MA, Carter EP, Allen L, Verkman AS (1998) Highly water-permeable type I alveolar epithelial cells confer high water permeability between the airspace and vasculature in rat lung. Proc Natl Acad Sci USA 95:2991–2996

    Article  PubMed  Google Scholar 

  96. Dong YJ, Chao AC, Kouyama K, Hsu YP, Bocian RC, Moss RB, Gardner P (1995) Activation of CFTR chloride current by nitric oxide in human T lymphocytes. EMBO J 14:2700–2707

    PubMed  Google Scholar 

  97. Dosanjh A, Lencer W, Brown D, Ausiello DA, Stow JL (1994) Heterologous expression of deltaF508 CFTR results in decreased sialylation of membrane glycoconjugates. Am J Physiol 266:C360–C366

    PubMed  Google Scholar 

  98. Drumm ML, Pope HA, Cliff WH, Rommens JM, Marvin SA, Tsui L-C, Collins FS, Frizzell RA, Wilson JM (1990) Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 62:1227–1233

    Article  PubMed  Google Scholar 

  99. Drumm ML, Wilkinson DJ, Smit LS, Worrell RT, Strong TV, Frizzell RA, Dawson DC, Collins FS (1991) Chloride conductance expressed by deltaF508 and other mutant CFTRs in Xenopus oocytes. Science 254:1797–1799

    PubMed  Google Scholar 

  100. Duan D, Winter C, Cowley S, Hume JR, Horowitz B (1997) Molecular identification of a volume-regulated chloride channel. Nature 390:417–421

    Article  PubMed  Google Scholar 

  101. Dupuit F, Kalin N, Brezillon S, Hinnrasky J, Tümmler B, Puchelle E (1995) CFTR and differentiation markers expression in non-CF and delta F-508 homozygous CF nasal epithelium. J Clin Invest 96:1601–1611

    PubMed  Google Scholar 

  102. Durand J, Durand-Arczynska W, Haab P (1981) Volume flow, hydraulic conductivity and electrical properties across bovine tracheal epithelium in vitro: effect of histamine. Pflügers Arch 392:40–45

    Article  Google Scholar 

  103. Ecke D, Bleich M, Greger R (1996) The amiloride inhibitable Na+ conductance of rat colonic crypt cells is suppressed by forskolin. Pflügers Arch 431:984–986

    Article  Google Scholar 

  104. Egan ME, Flotte T, Afione S, Solow R, Zeitlin PL, Carter BJ, Guggino WB (1992) Defective regulation of outwardly rectifying Cl-channels by protein kinase A corrected by insertion of CFTR. Nature 358:581–584

    Article  PubMed  Google Scholar 

  105. Engelhardt JF, Yankaskas JR, Ernst SA, Yang Y, Marino CR, Boucher RC, Cohn JA, Wilson JM (1992) Submucosal glands are the predominant site of CTR expression in the human bronchus. Nature genetics 2:240–248

    Article  PubMed  Google Scholar 

  106. Fanen P, Labarthe R, Garnier F, Benharouga M, Goossens M, Edelman A (1997) Cystic fibrosis phenotype associated with pancreatic insufficiency does not always reflect the cAMP-dependent chloride conductive pathway defect. Analysis of C225R-CFTR and R1066C-CFTR. J Biol Chem 272:30563–30566

    Article  PubMed  Google Scholar 

  107. Finkbeiner WE, Shen B-Q, Widdicombe JH (1994) Chloride secretion and function of serous and mucous cells of human airway glands. Am J Physiol 267:L206–L210

    PubMed  Google Scholar 

  108. Firsov D, Gautschi I, Merillat AM, Rossier BC, Schild L (1998) The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J 17:344–352

    Article  PubMed  Google Scholar 

  109. Fischer H, Clauss W (1990) Regulation of Na+ channels in frog lung epithelium: a target tissue for aldosteron action. Pflügers Arch 416:62–67

    Article  Google Scholar 

  110. Fischer H, Illek B, Machen TE (1995) The actin filament disrupter cytochalasin D activates the recombinant cystic fibrosis transmembrane conductance regulator Cl-channel in mouse 3T3 fibroblasts. J Physiol (Lond) 489:745–754

    PubMed  Google Scholar 

  111. Fischer H, Illek B, Machen TE (1998) Regulation of CFTR by protein phosphatase 2B and protein kinase C. Pflugers Arch 436:175–181

    Article  PubMed  Google Scholar 

  112. Fischer H, Kreusel K-M, Illek B, Machen TE, Hegel U, Clauss W (1992) The outwardly rectifying Cl channel is not involved in cAMP-mediated Cl secretion in HT29 cells: evidence for a very-low-conductance Cl channel. Pflügers Arch 422:159–167

    Article  Google Scholar 

  113. Frizzell RA, Rechkemmer GR, Shoemaker RL (1986) Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science 233:558–560

    PubMed  Google Scholar 

  114. Fuller CM, Benos DJ (1992) CFTR! Am J Physiol 263:C267–C286

    PubMed  Google Scholar 

  115. Gabriel SE, Clarke LL, Boucher RC, Stutts MJ (1993) CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship. Nature 363:263–268

    Article  PubMed  Google Scholar 

  116. Gadsby DC, Nagel G, Hwang T-C (1995) The CFTR chloride channel of mammalian heart. Annu Rev Physiol 57:387–416

    Article  PubMed  Google Scholar 

  117. Garty H, Palmer LG (1997) Epithelial sodium channels: Function, structure and regulation. Physiol Rev 77:359–396

    PubMed  Google Scholar 

  118. Gluck D, Kelly S, Al-Awqati Q (1982) The proton translocating ATPase responsible for urinary acidification. J Biol Chem 257(16):9230–9233

    PubMed  Google Scholar 

  119. Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88:553–560

    Article  PubMed  Google Scholar 

  120. Goodchild, M.C. and Dodge, J.A. Cystic fibrosis: manual of diagnosis and management, Biddles Ltd of Guilford:Surrey, 1986. Ed. 2nd

    Google Scholar 

  121. Gosselin D, Stevenson MM, Cowley EA, Griesenbach U, Eidelman DH, Boule M, Tam MF, Kent G, Skamene E, Tsui L-C, Radzioch D (1998) Impaired ability of Cftr knockout mice to control lung infection with Pseudomonas aeruginosa [In Process Citation]. Am J Respir Crit Care Med 157:1253–1262

    PubMed  Google Scholar 

  122. Gottesman MM, Pastan I (1988) Resistance to multiple chemotherapeutic agents in human cancer cells. Trends Pharmacol Sci 9:54–58

    Article  PubMed  Google Scholar 

  123. Gottlieb RA, Dosanjh A (1996) Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells: possible relevance to cystic fibrosis. Proc Natl Acad Sci USA 93:3587–3591

    Article  PubMed  Google Scholar 

  124. Gray MA, Winpenny JP, Porteous DJ, Dorin JR, Argent BE (1994) CFTR and calcium-activated chloride currents in pancreatic duct cells of a transgenic CF mouse. Am J Physiol 266:C213–C221

    PubMed  Google Scholar 

  125. Greger R, Bleich M, Leipziger J, Ecke D, Mall M, Kunzelmann K (1997) Regulation of ion transport in colonic crypts. NIPS 12:62–66

    Google Scholar 

  126. Greger R, Kunzelmann K (1989) Chloride transporting epithelia. In: Kinne R. (ed) Basic Principles in Transport. Comp. Physiol. Basel, Karger, pp 84–114

    Google Scholar 

  127. Greger R, Kunzelmann K, Gerlach L (1990) Mechanisms of chloride transport in secretory epithelia. Ann New York Acad Sci 574:403–415

    Google Scholar 

  128. Greger R, Mall M, Bleich M, Ecke D, Warth R, Riedemann N, Kunzelmann K (1996) Regulation of epithelial ion channels by the cystic fibrosis transmembrane conductance regulator (CFTR). J Mol Med 74:527–534

    Article  PubMed  Google Scholar 

  129. Greger R, Nitschke RB, Lohrmann E, Burhoff I, Hropot M, Englert HC, Lang HJ (1991) Effects of arylaminobenzoate-type chloride channel blockers on equivalent short-circuit current in rabbit colon. Pflügers Arch 419:190–196

    Article  Google Scholar 

  130. Greger R, Schlatter E (1984) Mechanism of NaCl secretion in rectal gland tubules of spiny dogfish (Squalus acanthias). I. Experiments in isolated in vitro perfused rectal gland tubules. Pflügers Arch 402:63–75

    Article  Google Scholar 

  131. Gribkoff VK, Champigny G, Barbry P, Dworetzky SI, Meanwell NA, Lazdunski M (1994) The substituted benzimidazolone NS004 is an opener of the cystic fibrosis chloride channel. J Biol Chem 269:10983–10986

    PubMed  Google Scholar 

  132. Grubb BR, Boucher RC (1997) Enhanced colonic Na+ absorption in cystic fibrosis mice versus normal mice. Am J Physiol 272:G393–G400

    PubMed  Google Scholar 

  133. Grubb BR, Gabriel SE (1997) Intestinal physiology and pathology in genetargeted mouse models of cystic fibrosis. Am J Physiol 273:G258–G266

    PubMed  Google Scholar 

  134. Grubb BR, Schiretz FR, Boucher RC (1997) Volume transport across tracheal and bronchial airway epithelia in a tubular culture system. Am J Physiol 273:C21–C29

    PubMed  Google Scholar 

  135. Grubb BR, Vick RN, Boucher RC (1994) Hyperabsorbtion of Na+ and raised Ca2+ mediated Cl secretion in nasal epithelia of CF mice. Am J Physiol 266:C1478–C1483

    PubMed  Google Scholar 

  136. Grubman SA, Fang SL, Mulberg AE, Perrone RD, Rogers LC, Lee DW, Armentano D, Murray SL, Dorkin HL, Cheng SH (1995) Correction of the cystic fibrosis defect by gene complementation in human intrahepatic biliary epithelial cell lines. Gastroenterology 108:584–592

    Article  PubMed  Google Scholar 

  137. Gruis DB, Price EM (1997) The nucleotide binding folds of the cystic fibrosis transmembrane conductance regulator are extracellularly accessible. Biochemistry 36:7739–7745

    Article  PubMed  Google Scholar 

  138. Grunder S, Thiemann A, Pusch M, Jentsch TJ (1992) Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360:759–762

    Article  PubMed  Google Scholar 

  139. Grygorczyk R, Hanrahan JW (1997) CFTR-independent ATP release from epithelial cells triggered by mechanical stimuli. Am J Physiol 272:C1058–C1066

    PubMed  Google Scholar 

  140. Grygorczyk R, Tabcharani JA, Hanrahan JW (1996) CFTR channels expressed in CHO cells do not have detectable ATP conductance. J Membrane Biol 151:139–148

    Article  Google Scholar 

  141. Guay-Broder C, Jacobson KA, Barony S, Cabantchik ZI, Guggino WB, Zeitlin PL, Turner RJ, Vergara L, Eidelman O, Pollard HB (1995) A1 receptor antagonist 8-cyclopentyl-1, 3-dipropylxanthine selectively activates chloride efflux from human epithelial and mouse fibroblast cell lines expressing the cystic fibrosis transmembrane conductance regulator deltaF508 mutation. Biochemist 34:9079–9087

    Article  Google Scholar 

  142. Gunderson KL, Kopito RR (1995) Conformational states of CFTR associated with channel gating: The role of ATP binding and hydrolysis. Cell 82:231–239

    Article  PubMed  Google Scholar 

  143. Hall RA, Premont RT, Chow CW, Blitzer JT, Pitcher JA, Claing A, Stoffel RH, Barak LS, Shenolikar S, Weinman EJ, Grinstein S, Lefkowitz RJ (1998) The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 392:626–630

    Article  PubMed  Google Scholar 

  144. Hansen CP, Roch B, Kunzelmann K, Kubitz R, Greger R (1993) Small and intermediate conductance chloride channels in HT29 cells. Pflügers Arch 424:456–464

    Article  Google Scholar 

  145. Hardcastle J, Hardcastle PT, Taylor CJ, Goldhill J (1991) Failure of cholinergic stimulation to induce a secretory response from the rectal mucosa in cystic fibrosis. Gut 32:1035–1039

    PubMed  Google Scholar 

  146. Hasegawa H, Skach W, Baker O, Calayag MC, Lingappa V, Verkman AS (1992) A multifunctional aqueous channel formed by CFTR. Science 258:1477–1479

    PubMed  Google Scholar 

  147. Hayslett JP, Gögelein H, Kunzelmann K, Greger R (1987) Characteristics of apical chloride channels in human colon cells (HT29). Pflügers Arch 410:487–494

    Article  Google Scholar 

  148. Hill WG, Harper GS, Rozaklis T, Boucher RC, Hopwood JJ (1997) Organ-specific over-sulfation of glycosaminoglycans and altered extracellular matrix in a mouse model of cystic fibrosis. Biochem Mol Med 62:113–122

    Article  PubMed  Google Scholar 

  149. Hipper A, Mall M, Greger R, Kunzelmann K (1995) Mutations in the putative pore forming domain of CFTR do not change anion selectivity of the cAMP activated Cl conductance. FEBS Lett 374:312–316

    Article  PubMed  Google Scholar 

  150. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38

    Article  PubMed  Google Scholar 

  151. Hofmann T, Stutts MJ, Ziersch A, RUckes C, Weber WM, Knowles MR, Lindemann H, Boucher RC (1998) Effects of topically delivered benzamil and amiloride on nasal potential difference in cystic fibrosis. Am J Respir Crit Care Med 157:1844–1849

    PubMed  Google Scholar 

  152. Hogan DL, Crombie DL, Isenberg JI, Svendsen P, Schaffalitzky de Muckadell OB, Ainsworth MA (1997) Acid-stimulated duodenal bicarbonate secretion involves a CFTR-mediated transport pathway in mice. Gastroenterology 113:533–541

    Article  PubMed  Google Scholar 

  153. Hogan DL, Crombie DL, Isenberg JI, Svendsen P, Schaffalitzky de Muckadell OB, Ainsworth MA (1997) CFTR mediates cAMP-and Ca2+ − activated duodenal epithelial HCO3 secretion. Am J Physiol 272:G872–688

    PubMed  Google Scholar 

  154. Howard M, Frizzell RA, Bedwell DM (1996) Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations [see comments]. Nat Med 2:467–469

    Article  PubMed  Google Scholar 

  155. Howard M, Jilling T, DuVall M, Frizzell RA (1996) cAMP-regulated trafficking of epitope-tagged CFTR. Kidney Int 49:1642–1648

    PubMed  Google Scholar 

  156. Hug MJ, Thiele IE, Greger R (1997) The role of exocytosis in the activation of the chloride conductance in Chinese hamster ovary cells (CHO) stably expressing CFTR. Pflügers Arch 434:779–784

    Article  Google Scholar 

  157. Hug T, Koslowsky T, Ecke D, Greger R, Kunzelmann K (1995) Actin-dependent activation of ion conductances in bronchial epithelial cells. Pflügers Arch 429:682–690

    Article  Google Scholar 

  158. Hwang T-C, Lu L, Zeitlin PL, Gruenert DC, Huganir R, Guggino WB (1989) Cl Channels in CF: Lack of activation by protein kinase C and cAMP — dependent protein kinase. Science 244:1351–1353

    PubMed  Google Scholar 

  159. Hwang T-C, Nagel G, Nairn AC, Gadsby DC (1994) Regulation of the gating of cystic fibrosis transmembrane conductance regulator Cl channels by phosphorylation and ATP hydrolysis. Proc Natl Acad Sci USA 91:4698–4702

    PubMed  Google Scholar 

  160. Hwang T-C, Wang F, Yang IC, Reenstra WW (1997) Genistein potentiates wild-type and delta F508-CFTR channel activity. Am J Physiol 273:C988–C998

    PubMed  Google Scholar 

  161. Illek B, Fischer H, Santos GF, Widdicombe JH, Machen TE, Reenstra WW (1995) cAMP-independent activation of CFTR Cl channels by the tyrosine kinase inhibitor genistein. Am J Physiol 268:C886–C893

    PubMed  Google Scholar 

  162. Illek B, Yankaskas JR, Machen TE (1997) cAMP and genistein stimulate HCO 3 conductance through CFTR in human airway epithelia. Am J Physiol 272:L752–L761

    PubMed  Google Scholar 

  163. Imundo L, Barasch J, Prince A, Al-Awqati Q (1995) Cystic fibrosis epithelial cells have a receptor for pathogenic bacteria on their apical surface [published erratum appears in Proc Natl Acad Sci USA 1995 Nov 21;92(24):11322]. Proc Natl Acad Sci USA 92:3019–3023

    PubMed  Google Scholar 

  164. Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S (1997) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272:20782–20786

    Article  PubMed  Google Scholar 

  165. Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S (1998) Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun 244:268–274

    Article  PubMed  Google Scholar 

  166. Ishibashi K, Kuwahara M, Kageyama Y, Tohsaka A, Marumo F, Sasaki S (1997) Cloning and functional expression of a second new aquaporin aboundantly expressed in testis. Biochem Biophys Res Commun 237:714–718

    Article  PubMed  Google Scholar 

  167. Ishida-Takahashi A, Otani H, Takahashi C, Washizuka T, Tsuji K, Noda M, Horie M, Sasayama S (1998) Cystic fibrosis transmembrane conductance regulator mediates sulphonylurea block of the inwardly rectifying K+ channel Kir6.1. J Physiol (Lond) 508:23–30

    PubMed  Google Scholar 

  168. Ismailov II, Awayda MS, Jovov B, Berdiev BK, Fuller CM, Dedman JR, Kaetzel MA, Benos DJ (1996) Regulation of epithelial sodium channels by the cystic fibrosis transmembrane conductance regulator. J Biol Chem 271:4725–4732

    Article  PubMed  Google Scholar 

  169. Ismailov II, Berdiev BK, Shlyonsky VG, Fuller CM, Prat AG, Jovov B, Cantiello HF, Ausiello DA, Benos DJ (1997) Role of actin in regulation of epithelial sodium channels by CFTR. Am J Physiol 272:C1077–C1086

    PubMed  Google Scholar 

  170. Ismailov II, Jovov B, Fuller CM, Berdiev BK, Keeton DA, Benos DJ (1996) G-protein regulation of outwardly rectified epithelial chloride channels incorporated into planar bilayer membranes. J Biol Chem 271:4776–4780

    Article  PubMed  Google Scholar 

  171. Isomoto S, Kondo C, Yamada M, Matsumoto S, Higashiguchi O, Horio Y, Matsuzawa Y, Kurachi Y (1996) A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. J Biol Chem 271:24321–24324

    Article  PubMed  Google Scholar 

  172. Jacobson KA, Guay-Broder C, van Galen PJ, Gallo-Rodriguez C, Melman N, Jacobson MA, Eidelman O, Pollard HB (1995) Stimulation by alkylxanthines of chloride efflux in CFPAC-1 cells does not involve A1 adenosine receptors. Biochemistry 34:9088–9095

    Article  PubMed  Google Scholar 

  173. Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:13–20

    Article  PubMed  Google Scholar 

  174. Jentsch TJ (1996) Chloride channels: a molecular perspective. Curr Opin Neurobiol 6:303–310

    Article  PubMed  Google Scholar 

  175. Jia Y, Mathews CJ, Hanrahan JW (1997) Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A. J Biol Chem 272:4978–4984

    Article  PubMed  Google Scholar 

  176. Jiang C, Finkbeiner WE, Widdicombe JH, Miller SS (1997) Fluid transport across cultures of human tracheal glands is altered in cystic fibrosis. J Physiol (Lond) 501:637–647

    Article  PubMed  Google Scholar 

  177. Johnson LG, Dickman KG, Moore KL, Mandel LJ, Boucher RC (1993) Enhanced Na+ transport in an air-liquid interface culture system. Am J Physiol 264:L560–L565

    PubMed  Google Scholar 

  178. Jovov B, Ismailov II, Benos DJ (1995) Cystic fibrosis transmembrane conductance regulator is required for protein kinase A activation of an outwardly rectified anion channel purified from bovine tracheal epithelia. J Biol Chem 270:1521–1528

    Article  PubMed  Google Scholar 

  179. Jovov B, Ismailov II, Berdiev BK, Fuller CM, Sorscher EJ, Dedman JR, Kaetzel MA, Benos DJ (1995) Interaction between cystic fibrosis transmembrane conductance regulator and outwardly rectified chloride channels. J Biol Chem 270:29194–29200

    Article  PubMed  Google Scholar 

  180. Kamosinska B, Radomski MW, Duszyk M, Radomski A, Man SF (1997) Nitric oxide activates chloride currents in human lung epithelial cells. Am J Physiol 272:L1098–L1104

    PubMed  Google Scholar 

  181. Kansen M, Keulemans J, Hoogeveen AT, Scholte B, Vaandrager AB, van der Kamp AW, Sinaasappel M, Bot AG, De Jonge HR, Bijman J (1992) Regulation of chloride transport in cultured normal and cystic fibrosis kerationcytes. Biochim Biophys Acta 1139:49–56

    PubMed  Google Scholar 

  182. Kartner N, Augustinas T, Jensen TJ, Naismith AL, Riordan JR (1992) Mislocalization of deltaF508 CFTR in cystic fibrosis sweat gland. Nature genetics 1:321–327

    Article  PubMed  Google Scholar 

  183. Kartner N, Hanrahan JW, Jensen TJ, Naismith AL, Sun S, Ackerley A, Reyes EF, Tsui L-C, Rommens JM, Bear CE, Riordan JR (1991) Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance. Cell 64:681–691

    Article  PubMed  Google Scholar 

  184. Kelley TJ, al-Nakkash L, Drumm ML (1995) CFTR-mediated chloride permeability is regulated by type III phosphodiesterases in airway epithelial cells. Am J Respir Cell Mol Biol 13:657–664

    PubMed  Google Scholar 

  185. Kelley TJ, al-Nakkash L, Drumm ML (1997) C-type natriuretic peptide increases chloride permeability in normal and cystic fibrosis airway cells. Am J Respir Cell Mol Biol 16:464–470

    PubMed  Google Scholar 

  186. Kelley TJ, Drumm ML (1997) Nitric oxide — dependent regulation of amiloride sensitive sodium absorption in murine airway epithelial cells. Ped Pulmonol Supp 14:78

    Google Scholar 

  187. Kent G, Iles R, Bear CE, Huan LJ, Griesenbach U, McKerlie C, Frndova H, Ackerley C, Gosselin D, Radzioch D, O'Brodovich H, Tsui L-C, Buchwald M, Tanswell AK (1997) Lung disease in mice with cystic fibrosis. J Clin Invest 100:3060–3069

    PubMed  Google Scholar 

  188. Kerem B, Rommens M, Buchanan J, Markiewicz D, Cox T, Aravinda C, Buchwald M, Tsui L-C (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    PubMed  Google Scholar 

  189. King LS, Agre P (1996) Pathophysiology of the aquaporin water channels. Ann Rev Physiol 58:619–648

    Article  Google Scholar 

  190. King LS, Nielsen S, Agre P (1997) Aquaporins in complex tissues. I. Developmental patterns in respiratory and glandular tissues of rat. Am J Physiol 273:C1541–C1548

    PubMed  Google Scholar 

  191. Knauf H (1972) The minimum requirements for the maintenance of active sodium transport across the isolated salivary duct epithelium of the rabbit. Pflügers Arch 333:326–336

    Article  Google Scholar 

  192. Knowles MR, Olivier KN, Hohneker KW, Robinson J, Bennett WD, Boucher RC (1995) Pharmacologic treatment of abnormal ion transport in the airway epithelium in cystic fibrosis. Chest 107:71S–76S

    PubMed  Google Scholar 

  193. Knowles MR, Robinson JM, Wood RE, Pue CA, Mentz WM, Wager GC, Gatzy JT, Boucher RC (1997) Ion composition of airway surface liquid of patients with cystic fibrosis as compared with normal and disease-control subjects. J Clin Invest 100:2588–2595

    PubMed  Google Scholar 

  194. Knowles MR, Stutts MJ, Spock A, Fischer N, Gatzy JT, Boucher RC (1983) Abnormal Ion Permeation Though Cystic Fibrosis Respiratory Epithelium. Science 221:1067–1070

    PubMed  Google Scholar 

  195. Ko YH, Delannoy M, Pedersen PL (1997) Cystic fibrosis transmembrane conductance regulator: the first nucleotide binding fold targets the membrane with retention of its ATP binding function. Biochemistry 36:5053–5064

    Article  PubMed  Google Scholar 

  196. Ko YH, Delannoy M, Pedersen PL (1997) Cystic fibrosis, lung infections, and a human tracheal antimicrobial peptide (hTAP). FEBS Lett 405:200–208

    Article  PubMed  Google Scholar 

  197. Ko YH, Pedersen PL (1995) The first nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator can function as an active AT-Pase. J Biol Chem 270:22093–22096

    Article  PubMed  Google Scholar 

  198. Ko YH, Thomas PJ, Delannoy MR, Pedersen PL (1993) The cystic fibrosis transmembrane conductance regulator. Overexpression, purification, and characterization of wild type and delta F508 mutant forms of the first nucleotide binding fold in fusion with the maltose-binding protein. J Biol Chem 268:24330–24338

    PubMed  Google Scholar 

  199. Koefoed-Johnsen V, Ussing HH (1958) The nature of frog skin potential. Acta physiol Scand 42:298–308

    PubMed  Google Scholar 

  200. Komwatana P, Dinudom A, Young JA, Cook DI (1996) Cytosolic Na+ controls an epithelial Na+ channel via Go guanine nucleotide-binding regulatory protein. Proc Natl Acad Sci USA 93:8107–8111

    Article  PubMed  Google Scholar 

  201. Komwatana P, Dinudom A, Young JA, Cook DI (1996) Control of the amiloride-sensitive Na+ current in salivary duct cells by extracellular sodium. J Membr Biol 150:133–141

    Article  PubMed  Google Scholar 

  202. Kopelman H, Corey M, Gaskin K, Durie P, Weizman Z, Forstner G (1988) Impaired chloride secretion, as well as bicarbonate secretion, underlies the fluid secretory defect in the cystic fibrosis pancreas. Gastroenterology 95:349–355

    PubMed  Google Scholar 

  203. Kopelman H, Durie P, Gaskin KJ, Weizmann Z, Forstner G (1985) Pancreatic fluid secretion and protein hyperconcentration in cystic fibrosis. N Engl J Med 312:329–334

    PubMed  Google Scholar 

  204. Kopelman H, Ferretti E, Gauthier C, Goodyer PR (1995) Rabbit pancreatic acini express CFTR as a cAMP-activated chloride efflux pathway. Am J Physiol 269:C626–C631

    PubMed  Google Scholar 

  205. Koster HPG, Hartog A, VanOs CH, Bindels RJM (1996) Inhibition of Na+ and Ca2+ reabsorption by purinoceptors requires PKC but not Ca2+ signaling. Am J Physiol 270:F53–F60

    PubMed  Google Scholar 

  206. Koyama Y, Yamamoto T, Kondo D, Funaki H, Yaoita E, Kawasaki K, Sato N, Hatakeyama K, Kihara I (1997) Molecular cloning of a new aquaporin from rat pancreas and liver. J Biol Chem 272:30329–30333

    Article  PubMed  Google Scholar 

  207. Köckerling A, Fromm M (1993) Origin of cAMP-dependent Cl secretion from both crypts and surface epithelia of rat intestine. Am J Physiol 264:C1294–C1301

    PubMed  Google Scholar 

  208. Köckerling A, Sorgenfrei D, Fromm M (1993) Electrogenic Na+ absorption of rat distal colon is confined to surface epithelium: a voltage-scanning study. Am J Physiol 264:C1285–C1293

    PubMed  Google Scholar 

  209. Köttgen M, Busch AE, Hug MJ, Greger R, Kunzelmann K (1996) N-acetyl-L-cysteine and derivatives activate Cl conductances in epithelial cells. Pflügers Arch 431:499–555

    Google Scholar 

  210. Krick W, Disser J, Hazama A, Burckhardt G, Frömter E (1991) Evidence for a cytosolic inhibitor of epithelial chloride channels. Pflügers Arch 418:491–499

    Article  Google Scholar 

  211. Krick W, Disser J, Rabe A, Frömter E, Hansen CP, Roch B, Kunzelmann K, Greger R, Fehlhaber, Burckhardt G (1995) Characterization of cytosolic Cl channel inhibitors by size exclusion chromatography. Cell Physiol Biochem 5:259–268

    Google Scholar 

  212. Kubitz R, Warth R, Kunzelmann K, Grolik M, Greger R (1992) Small conductance Cl channels induced by cAMP, Ca2+, and hypotonicity in HT29 cells: ion selectivity, additivity and stilbene sensitivity. Pflügers Arch 421:447–454

    Article  Google Scholar 

  213. Kunzelmann K, Allert N, Kubitz R, Breuer WV, Cabantchik ZI, Normann C, Schumann S, Leipziger J, Greger R (1994) Forskolin-and PMA-pretreatment alter the acute electrical response of HT29 cells to cAMP, ATP, neurotensin, ionomycin and hypotonic cell swelling. Pflügers Arch 428:76–83

    Article  Google Scholar 

  214. Kunzelmann K, Briel M, Schreiber R, Ricken S, Nitschke R, Greger R (1998) No evidence for direct activation of CFTR by 8-cyclopentyl-1, 3-dipropylxanthine (CPX). Cell Physiol Biochem 8:185–193

    Article  PubMed  Google Scholar 

  215. Kunzelmann K, Greger R (1997) CFTR, a regulator of ion channels. Nova Acta Leopoldina 75:85–98

    Google Scholar 

  216. Kunzelmann K, Grolik M, Kubitz R, Greger R (1992) cAMP dependent activation of small conductance Cl channels in HT29 colon carcinoma cells. Pflügers Arch 421:230–237

    Article  Google Scholar 

  217. Kunzelmann K, Kathöfer S, Greger R (1995) Na+ and Cl conductances in airway epithelial cells: Increased Na+ conductance in cystic fibrosis. Pflügers Arch 431:1–9

    Article  Google Scholar 

  218. Kunzelmann K, Kathöfer S, Hipper A, Gruenert DC, Greger R (1996) Culture-dependent expression of Na+ conductances in airway epithelial cells. Pflügers Arch 431:578–586

    Article  Google Scholar 

  219. Kunzelmann K, Kiser G, Schreiber R, Riordan JR (1997) Inhibition of epithelial sodium currents by intracellular domains of the cystic fibrosis transmembrane conductance regulator. FEBS Letters 400:341–344

    Article  PubMed  Google Scholar 

  220. Kunzelmann K, Mall M, Briel M, Hipper A, Nitschke R, Ricken S, Greger R (1997) The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Cl conductance in Xenopus ooyctes. Pflügers Arch 434:178–181

    Article  Google Scholar 

  221. Kunzelmann K, Pavenstädt H, Greger R (1989) Properties and regulation of chloride channels in cystic fibrosis and normal airway epithelial cells. Pflügers Arch 415:172–182

    Article  Google Scholar 

  222. Kunzelmann K, Slotki IN, Klein P, Koslowsky T, Ausiello DA, Greger R, Cabantchik ZI (1994) Effects of P-glycoprotein expression on cyclic AMP and volume activated ion fluxes and conductances in HT29 colon carcinoma cells. J Cell Physiol 161:393–406

    Article  PubMed  Google Scholar 

  223. Kunzelmann K, Tilmann M, Hansen CP, Greger R (1991) Inhibition of epithelial chloride channels by cytosol. Pflügers Arch 418:479–490

    Article  Google Scholar 

  224. Kuriyama H, Kawamoto S, Ishida N, Ohno I, Mita S, Matsuzawa Y, Matsubara K, Okubo K (1997) Molecular cloning and expression of a novel human aquaporin from adipose tissue with glycerol permeability. Biochem Biophys Res Commun 241:53–58

    Article  PubMed  Google Scholar 

  225. Kuver R, Ramesh N, Lau S, Savard C, Lee SP, Osborne WR (1994) Constitutive mucin secretion linked to CFTR expression. Biochem Biophys Res Commun 203:1457–1462

    Article  PubMed  Google Scholar 

  226. Langridge-Smith JE (1985) Na+-absorption and Cl secretion in bovine tracheal epithelium may take place in different cells. J Physiol 237:61P

    Google Scholar 

  227. Larsen EH, Price EM, Gabriel SE, Stutts MJ, Boucher RC (1996) Clusters of Cl channels in CFTR-expressing Sf9 cells switch spontaneously between slow and fast gating modes. Pflugers Arch 432:528–537

    Article  PubMed  Google Scholar 

  228. Lazarowski ER, Homolya L, Boucher RC, Harden TK (1997) Direct demonstration of mechanically induced release of cellular UTP and its implication for uridine nucleotide receptor activation. J Biol Chem 272:24348–24354

    Article  PubMed  Google Scholar 

  229. Lazarowski ER, Paradiso AM, Watt WC, Harden TK, Boucher RC (1997) UDP activates a mucosal-restricted receptor on human nasal epithelial cells that is distinct from the P2Y2 receptor. Proc Natl Acad Sci USA 94:2599–2603

    Article  PubMed  Google Scholar 

  230. Lehrich RW, Aller SG, Webster P, Marino CR, Forrest JN (1998) Vasoactive intestinal peptide, forskolin, and genistein increase apical CFTR trafficking in the rectal gland of the spiny dogfish, squalus acanthias. Acute regulation of CFTR trafficking in an intact epithelium. J Clin Invest 101:737–745

    PubMed  Google Scholar 

  231. Lei DC, Kunzelmann K, Koslowsky T, Yezzi MJ, Escobar LC, Xu ZD, Rommens JM, Tsui L-C, Tykocinski M, Gruenert DC (1995) Episomal expression of wilde-type CFTR corrects cAMP-dependent chloride transport in respiratory epithelial cells. Gene Therapy 3:427–436

    Google Scholar 

  232. Letz B, Korbmacher C (1997) cAMP stimulates CFTR-like Cl channels and inhibits amiloride-sensitive Na+ channels in mouse CCD cells. Am J Physiol 272:C657–C666

    PubMed  Google Scholar 

  233. Leung AY, Wong PY, Yankaskas JR, Boucher RC (1996) cAMP-but not Ca2+ — regulated Cl conductance is lacking in cystic fibrosis mice epididymides and seminal vesicles. Am J Physiol 271:C188–C193

    PubMed  Google Scholar 

  234. Leung AY, Wong PYD, Gabriel SE, Yankaskas JR, Boucher RC (1995) cAMP-but not Ca2+-regulated Cl conductance in the oviduct is defective in mouse model of cystic fibrosis. Am J Physiol 268:C708–C712

    PubMed  Google Scholar 

  235. Li C, Ramjeesingh M, Bear CE (1996) Purified cystic fibrosis transmembrane conductance regulator (CFTR) does not function as an ATP-channel. J Biol Chem 271:11623–11626

    Article  PubMed  Google Scholar 

  236. Li C, Ramjeesingh M, Reyes E, Jensen TJ, Chang X-B, Rommens JA, Bear CE (1993) The cystic fibrosis mutation (deltaF508) does not influence the chloride channel activity of CFTR. Nature genetics 3:311–316

    Article  PubMed  Google Scholar 

  237. Li C, Ramjeesingh M, Wang W, Garami E, Hewryk M, Lee D, Rommens JM, Galley K, Bear CE (1996) ATPase activity of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 271:28463–28468

    Article  PubMed  Google Scholar 

  238. Li D, Wang D, Majumdar S, Jany B, Durham SR, Cottrell J, Caplen N, Geddes DM, Alton EW, Jeffery PK (1997) Localization and up-regulation of mucin (MUC2) gene expression in human nasal biopsies of patients with cystic fibrosis. J Pathol 181:305–310

    Article  PubMed  Google Scholar 

  239. Li M, McCann JD, Liedtke CM, Nairn AC, Greengard P, Welsh MJ (1988) Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature 331:358–360

    Article  PubMed  Google Scholar 

  240. Ling BN, Zuckerman JB, Lin C, Harte BJ, McNulty KA, Smith PR, Gomez LM, Worrell RT, Eaton DC, Kleyman TR (1997) Expression of the cystic fibrosis phenotype in a renal amphibian epithelial cell line. J Biol Chem 272:594–600

    Article  PubMed  Google Scholar 

  241. Linsdell P, Hanrahan JW (1996) Disulphonic stilbene block of cystic fibrosis transmembrane conductance regulator Cl channels expressed in a mammalian cell line and its regulation by a critical pore residue. J Physiol (Lond) 496:687–693

    PubMed  Google Scholar 

  242. Linsdell P, Hanrahan JW (1998) Adenosine Triphosphate-dependent Asymmetry of Anion Permeation in the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel. J Gen Physiol 111:601–614

    Article  PubMed  Google Scholar 

  243. Linsdell P, Tabcharani JA, Hanrahan JW (1997) Multi-Ion Mechanism for Ion Permeation and Block in the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel. J Cell Biol 110:365–377

    Google Scholar 

  244. Lohrmann E, Burhoff I, Nitschke RB, Lang H-J, Mania D, Englert HC, Hropot M, Warth R, Rohm M, Bleich M, Greger R (1995) A new class of inhibitors of cAMP-mediated Cl secretion in rabbit colon, acting by the reduction of cAMP-activated K+ conductance. Pflügers Arch 429:517–530

    Article  Google Scholar 

  245. Loo DD, Zeuthen T, Chandy G, Wright EM (1996) Cotransport of water by the Na+/glucose cotransporter. Proc Natl Acad Sci USA 93:13367–13370

    Article  PubMed  Google Scholar 

  246. Loussouarn G, Charpentier F, Mohammad-Panah R, Kunzelmann K, Baro I, Escande D (1997) KvLQT1 potassium channel but not IsK is the molecular target for trans-6-cyano-4-(N-ethylsulfonyl-N-methylamino)-3-hydroxy-2, 2-dimethyl-chromane. Mol Pharmacol 52:1131–1136

    PubMed  Google Scholar 

  247. Loussouarn G, Demolombe S, Mohammad-Panah R, Escande D, Baró I (1996) Expression of CFTR controls cAMP-dependent activation of epithelial K+ currents. Am J Physiol 271:C1565–C1573

    PubMed  Google Scholar 

  248. Lukacs GL, Abdalla M, Kartner N, Riordan JR, Grinstein S (1994) Conformational maturation of CFTR but its mutant counterpart (deltaF508) occurs in the endoplasmic reticulum and requires ATP. EMBO J 13:6076–6086

    PubMed  Google Scholar 

  249. Lukacs GL, Segal G, Kartner N, Grinstein S, Zhang F (1997) Constitutive internalization of cystic fibrosis transmembrane conductance regulator occurs via clathrin-dependent endocytosis and is regulated by protein phosphorylation. Biochem J 328:353–361

    PubMed  Google Scholar 

  250. Ma J, Zhao J,Drumm ML, Xie J, Davis PB (1997) Function of the R domain in the cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem 272:28133–28141

    Article  PubMed  Google Scholar 

  251. Ma T, Yang B, Umenishi F, Verkman AS (1997) Closely spaced tandem arrangement of AQP2, AQP5, and AQP6 genes in a 27-kilobase segment at chromosome locus 12q13. Genomics 43:387–389

    Article  PubMed  Google Scholar 

  252. Ma T, Yang B, Verkman AS (1997) Cloning of a novel water and ureapermeable aquaporin from mouse expressed strongly in colon, placenta, liver, and heart. Biochem Biophys Res Commun 240:324–328

    Article  PubMed  Google Scholar 

  253. Mall M, Bleich M, Greger R, Schreiber R, Kunzelmann K (1998) The amiloride inhibitable Na+ conductance is reduced by CFTR in normal but not in CF airways. J Clin Invest 102:15–21

    PubMed  Google Scholar 

  254. Mall M, Bleich M, Greger R, Schürlein M, Kühr J, Seydewitz HH, Brandis M, Kunzelmann K (1998) Cholinergic dependent ion secretion in human colon requires co-activation by cAMP. Am J Physiol (in press)

    Google Scholar 

  255. Mall M, Hipper A, Greger R, Kunzelmann K (1996) Wilde type but not deltaF508 CFTR inhibits Na+ conductance when coexpressed in Xenopus oocytes. FEBS 381:47–52

    Article  Google Scholar 

  256. Mall M, Kunzelmann K, Hipper A, Busch AE, Greger R (1996) cAMP stimulation of CFTR expressing xenopus oocytes activates a chromanol inhibitable K+ conductance. Pflügers Arch 432:516–522

    Article  Google Scholar 

  257. Manavalan P, Dearborn DG, McPherson JM, Smith AE (1995) Sequence homologies between nucleotide binding regions of CFTR and G-proteins suggest structural and functional similarities. FEBS Lett 366:87–91

    Article  PubMed  Google Scholar 

  258. Mansoura MK, Smith SS, Choi AD, Richards NW, Strong TV, Drumm ML, Collins FS, Dawson DC (1998) Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore. Biophys J 74:1320–1332

    PubMed  Google Scholar 

  259. Marty A, Tan YP, Trautmann A (1984) Three types of calcium-dependent channel in rat lacrimal glands. J Physiol 357:293–325

    PubMed  Google Scholar 

  260. Mason SJ, Paradiso AM, Boucher RC (1991) Regulation of transepithelial ion transport and intracellular calcium by extracellular ATP in human normal and cystic fibrosis airway epithelium. Br J Pharmacol 103:1649–1656

    PubMed  Google Scholar 

  261. Mathews CJ, Tabcharani JA, Chang XB, Jensen TJ, Riordan JR, Hanrahan JW (1998) Dibasic protein kinase A sites regulate bursting rate and nucleotide sensitivity of the cystic fibrosis transmembrane conductance regulator chloride channel. J Physiol (Lond) 508:365–377

    Article  PubMed  Google Scholar 

  262. Matthews RP, McKnight GS (1996) Characterization of the cAMP response element of the cystic fibrosis transmembrane conductance regulator gene promoter. J Biol Chem 271:31869–31877

    Article  PubMed  Google Scholar 

  263. May A, Puoti A, Gaeggeler HP, Horisberger JD, Rossier BC (1997) Early effect of aldosterone on the rate of synthesis of the epithelial sodium channel alpha subunit in A6 renal cells. J Am Soc Nephrol 8:1813–1822

    PubMed  Google Scholar 

  264. McDonald TV, Nghiem PT, Gardner P, Martens CL (1992) Human lymphocytes transcribe the cystic fibrosis transmembrane conductance regulator gene and exhibit CF-defective cAMP-regulated chloride current. J Biol Chem 267:3242–3248

    PubMed  Google Scholar 

  265. McGrath JP, Varshavsky A (1989) The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein. Nature 340:400–404

    Article  PubMed  Google Scholar 

  266. McNicholas CM, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME (1996) Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proc Natl Acad Sci USA 93:8083–8088

    Article  PubMed  Google Scholar 

  267. McNicholas CM, Nason MW, Jr., Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME (1997) A functional CFTR-NBF1 is required for ROMK2-CFTR interaction. Am J Physiol 273:F843–F848

    PubMed  Google Scholar 

  268. Meinild A, Klaerke DA, Loo DD, Wright EM, Zeuthen T (1998) The human Na+-glucose cotransporter is a molecular water pump. J Physiol (Lond) 508:15–21

    PubMed  Google Scholar 

  269. Mergey M, Lemnaouar M, Veissiere D, Perricaudet M, Gruenert DC, Picard J, Capeau J, Brahimi-Horn MC, Paul A (1995) CFTR gene transfer corrects defective glycoconjugate secretion in human CF epithelial tracheal cells. Am J Physiol 269:L855–L864

    PubMed  Google Scholar 

  270. Meyer G, Doppierio S, Daffonchio L, Cremaschi D (1997) S-carbocysteinelysine salt monohydrate and cAMP cause non-additive activation of the cystic fibrosis transmembrane regulator channel in human respiratory epithelium. FEBS Lett 404:11–14

    Article  PubMed  Google Scholar 

  271. Montserrat C, Merten M, Figarella C (1996) Defective ATP-dependent mucin secretion by cystic fibrosis pancreatic epithelial cells. FEBS Lett 393:264–268

    Article  PubMed  Google Scholar 

  272. Moon S, Singh M, Krouse ME, Wine JJ (1997) Calcium-stimulated Cl secretion in Calu-3 human airway cells requires CFTR. Am J Physiol 273:L1208–L1219

    PubMed  Google Scholar 

  273. Moon S, Singh M, Krouse ME, Wine JJ (1997) Calcium-stimulated Cl secretion in Calu-3 human airway cells requires CFTR. Ped Pulmonology S14:270 (Abstract)

    Google Scholar 

  274. Morales MM, Carroll TP, Morita T, Schwiebert EM, Devuyst O, Wilson PD, Lopes AG, Stanton BA, Dietz HC, Cutting GR, Guggino WB (1996) Both the wild type and a functional isoform of CFTR are expressed in kidney. Am J Physiol 270:F1038–F1048

    PubMed  Google Scholar 

  275. Muimo R, Banner SJ, Marshall LJ, Mehta A (1998) Nucleoside diphosphate kinase and Cl-sensitive protein phosphorylation in apical membranes from ovine airway epithelium. Am J Respir Cell Mol Biol 18:270–278

    PubMed  Google Scholar 

  276. Mun EC, Mayol JM, Riegler M, O'Brien TC, Farokhzad OC, Song JC, Pothoulakis C, Hrnjez BJ, Matthews JB (1998) Levamisole inhibits intestinal Cl secretion via basolateral K+ channel blockade. Gastroenterology 114:1257–1267

    PubMed  Google Scholar 

  277. Nadel JA, Widdicombe JH, Peatfield AC (1986) Regulation of airway secretions, ion transport, and water movement. Handbook of Physiology. Respiratory troct 419–445

    Google Scholar 

  278. Naren AP, Nelson DJ, Xie W, Jovov B, Pevsner J, Bennett MK, Benos DJ, Quick MW, Kirk KL (1997) Regulation of CFTR chloride channels by syntaxin and Munc18 isoforms. Nature 390:302–305

    Article  PubMed  Google Scholar 

  279. Neville DCA, Rozanas CR, Tulk BM, Townsend RR, Verkman AS (1998) Expression and characterization of the NBD1-R domain region of CFTR: evidence for subunit-subunit interactions. Biochemistry 37:2401–2409

    Article  PubMed  Google Scholar 

  280. Nielsen S, King LS, Christensen BM, Agre P (1997) Aquaporins in complex tissues. II. Subcellular distribution in respiratory and glandular tissues of rat. Am J Physiol 273:C1549–C1561

    PubMed  Google Scholar 

  281. Nishimoto I, Okamoto T, Matsuura Y, Takahashi S, Murayama Y, Ogata E (1993) Alzheimer amyloid protein precursor complexes with brain GTP-binding protein G(o). Nature 362:75–79

    Article  PubMed  Google Scholar 

  282. Novak I, Greger R (1988) Properties of the luminal membrane of isolated perfused rat pancreatic ducts. Pflügers Arch 411:546–553

    Article  Google Scholar 

  283. Novak I, Schlatter E, Greger R (1986) Electrophysiological studies of isolated perfused ducts of rat pancreas. Pfluegers Arch 406:R51

    Google Scholar 

  284. O'Loughlin EV, Hunt DM, Gaskin KJ, Stiel D, Bruzuszcak IM, Martin HC, Bambach C, Smith R (1991) Abnormal epithelial transport in cystic fibrosis jejunum. Am J Physiol 260:G758–G763

    PubMed  Google Scholar 

  285. Oblatt-Montal M, Reddy GL, Iwamoto T, Tomich JM, Montal M (1994) Identification of an ion channel-forming motif in the primary structure of CFTR, the cystic fibrosis chloride channel. Proc Natl Acad Sci USA 91:1495–1499

    PubMed  Google Scholar 

  286. Okamoto T, Murayama Y, Hayashi Y, Inagaki M, Ogata E, Nishimoto I (1991) Identification of a Gs activator region of the beta 2-adrenergic receptor that is autoregulated via protein kinase A-dependent phosphorylation. Cell 67:723–730

    Article  PubMed  Google Scholar 

  287. Overholt JL, Saulino A, Drumm ML, Harvey RD (1995) Rectification of whole cell cystic fibrosis transmembrane conductance regulator chloride current. Am J Physiol 268:C636–C646

    PubMed  Google Scholar 

  288. Parr CE, Sullivan DM, Paradiso AM, Lazarowski ER, Burch LH, Olsen JC, Erb L, Weisman GA, Boucher RC, Turner JT (1994) Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy [published erratum appears in Proc Natl Acad Sci USA 1994 Dec 20;91 (26):13067]. Proc Natl Acad Sci USA 91:3275–3279

    PubMed  Google Scholar 

  289. Pasyk EA, Foskett JK (1997) Cystic fibrosis transmembrane conductance regulator-associated ATP and adenosine 3′-phosphate 5′-phosphosulfate channels in endoplasmic reticulum and plasma membranes. J Biol Chem 272:7746–7751

    Article  PubMed  Google Scholar 

  290. Pereira MM, Dormer RL, McPherson MA (1995) Mucin secretion mediated by the cystic fibrosis gene protein, CFTR. Biochem Soc Trans 23:532S

    Google Scholar 

  291. Peters RH, French PJ, van Doorninck JH, Lamblin G, Ratcliff R, Evans MJ, Colledge WH, Bijman J, Scholte BJ (1996) CFTR expression and mucin secretion in cultured mouse gallbladder epithelial cells. Am J Physiol 271:G1074–G1083

    PubMed  Google Scholar 

  292. Pier GB, Grout M, Zaidi T, Meluleni G, Mueschenborn SS, Banting G, Ratcliff R, Evans MJ, Colledge WH (1998) Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 393:79–82

    Article  PubMed  Google Scholar 

  293. Pier GB, Grout M, Zaidi TS (1997) Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc Natl Acad Sci USA 94:12088–12093

    Article  PubMed  Google Scholar 

  294. Poulsen JH, Fischer H, Illek B, Machen TE (1994) Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 91:5340–5344

    PubMed  Google Scholar 

  295. Poulsen JH, Machen TE (1996) HCO 3 — dependent pHi regulation in tracheal epithelial cells. Pflügers Arch 432:546–554

    Article  Google Scholar 

  296. Prat AG, Xiao Y-F, Ausiello DA, Cantiello HF (1995) cAMP independent regulation of CFTR by the actin cytoskeleton. Am J Physiol 268:C1552–C1561

    PubMed  Google Scholar 

  297. Prince LS, Workman RB, Marchase RB (1994) Rapid endocytosis of the cystic fibrosis transmembrane conductance regulator chloride channel. Proc Natl Acad Sci USA 91:5192–5196

    PubMed  Google Scholar 

  298. Quinton PM (1990) Cystic fibrosis: a disease in electrolyte transport. FASEB J 4:2709–2717

    PubMed  Google Scholar 

  299. Quinton PM (1994) Human genetics. What is good about cystic fibrosis? Curr Biol 4:742–743

    Article  PubMed  Google Scholar 

  300. Quinton PM, Reddy MM (1992) Control of CFTR chloride conductance by ATP levels through non-hydrolytic binding. Nature 360:79–84

    Article  PubMed  Google Scholar 

  301. Rabe A, Disser J, Frömter E (1995) Cl channel inhibition by glibenclamide is not specific for CFTR-type Cl channel. Pflügers Arch 429:659–662

    Article  Google Scholar 

  302. Randak C, Neth P, Auerswald EA, Eckerskorn C, Assfalg-Machleidt I, Machleidt W (1997) A recombinant polypeptide model of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator functions as an active ATPase, GTPase and adenylate kinase. FEBS Lett 410:180–186

    Article  PubMed  Google Scholar 

  303. Rasola A, Galietta LJV, Gruenert DC, Romeo G (1994) Volume-sensitive chloride currents in four epithelial cell lines are not directly correlated to the expression of the MDR-1 gene. J Biol Chem 269:1432–1436

    PubMed  Google Scholar 

  304. Ratcliff R, Evans MJ, Cuthbert AW, MacVinish LJ, Foster D, Anderson JR, Colledge WH (1993) Production of a severe cystic fibrosis mutation in mice by gene targeting. Nature genetics 4:35–41

    Article  PubMed  Google Scholar 

  305. Reddy MM, Bell CL, Quinton PM (1997) Cystic fibrosis affects specific cell type in sweat gland secretory coil. Am J Physiol 273:C426–C433

    PubMed  Google Scholar 

  306. Reddy MM, Quinton PM (1992) cAMP activation of CF — affected Cl conductance in both cell membranes of an absorptive epithelium. J Membr Biol 130:49–62

    PubMed  Google Scholar 

  307. Reddy MM, Quinton PM (1996) Deactivation of CFTR — Cl conductance by endogenous phosphatases in the native sweat duct. Am J Physiol 270:C474–C480

    PubMed  Google Scholar 

  308. Reddy MM, Quinton PM (1996) Hydrolytic and nonhydrolytic interactions in the ATP regulation of CFTR Cl-conductance. Am J Physiol 271:C35–42

    PubMed  Google Scholar 

  309. Reddy MM, Quinton PM, Haws C, Wine JJ, Grygorczyk R, Tabcharani JA, Hanrahan JW, Gunderson KL, Kopito RR (1996) Failure of the cystic fibrosis transmembrane conductance regulator to conduct ATP. Science 271:1876–1878

    PubMed  Google Scholar 

  310. Reenstra WW (1993) Inhibition of cAMP-and Ca2+ dependent Cl secretion by phorbol esters: inhibition of basolateral K+ channels. Am J Physiol 264:C161–C168

    PubMed  Google Scholar 

  311. Reinlib L, Jefferson DJ, Marini FC, Donowitz M (1992) Abnormal secretagogue — induced intracellular free Ca2+ regulation in cystic fibrosis nasal epithelial cells. Proc Natl Acad Sci USA 89:2955–2959

    PubMed  Google Scholar 

  312. Reisin IL, Prat AG, Abraham EH, Amara JF, Gregory RJ, Ausiello DA, Cantiello HF (1994) The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J Biol Chem 269:20584–20591

    PubMed  Google Scholar 

  313. Reynaert I, Van der Schueren B, De Geest G, Cassiman JJ (1997) Non-apical CFTR expression in adult human vas deferens epithelium. Ped Pulmonol Supp 14

    Google Scholar 

  314. Rich DP, Anderson MP, Gregory RJ, Cheng SH, Paul S, Jefferson DM, McCann JD, Klinger KW, Smith AE, Welsh MJ (1990) Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347:358–363

    Article  PubMed  Google Scholar 

  315. Ricken S, Leipziger J, Greger R (1998) Simultaneous measurements of cytosolic and mitochondrial Ca2+ transients in HT29 cells. J Biol Chem (in press)

    Google Scholar 

  316. Riordan JR (1993) The cystic fibrosis transmembrane conductance regulator. Annu Rev Physiol 55:609–630

    Article  PubMed  Google Scholar 

  317. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Plavsic SLN, Chou J, Drumm ML, Iannuzzi CM, Collins FS, Tsui L-C (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1072

    PubMed  Google Scholar 

  318. Robertson MA, Foskett JK (1994) Na+ transport pathways in secretory acinar cells: membrane cross talk mediated by [Cl]i. Am J Physiol 267:C146–C156

    PubMed  Google Scholar 

  319. Romey G, Attali B, Chouabe C, Abitbol I, Guillemare E, Barhanin J, Lazdunski M (1997) Molecular mechanism and functional significance of the MinK control of the KvLQT1 channel activity. J Biol Chem 272:16713–16716

    Article  PubMed  Google Scholar 

  320. Rommens JM, Iannuzzi BK, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, Zsiga M, Buchwald M, Riordan JR, Tsui L-C, Collins FS (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065

    PubMed  Google Scholar 

  321. Root KV, Engelhardt JF, Post M, Wilson JW, Van Dyke RW (1994) CFTR does not alter acidification of L cell endosomes. Biochem Biophys Res Commun 205:396–401

    Article  PubMed  Google Scholar 

  322. Rossier BC (1997) Lose salt and gain a friend! A tribute to Gerhard Giebisch. Wien Klin Wochenschr 109:504–506

    PubMed  Google Scholar 

  323. Rotoli BM, Bussolati O, Asta VD, Hoffmann EK, Cabrini G, Gazzola GC (1996) CFTR expression in C127 cells is associated with enhanced cell shrinkage and ATP extrusion in Cl free medium. Biochem and Biophys Res Com 227:755–761

    Article  Google Scholar 

  324. Rotoli BM, Bussolati O, Sironi M, Cabrini G, Gazzola GC (1994) CFTR protein is involved in the efflux of neutral amino acids. Biochem and Biophys Res Com 204:653–658

    Article  Google Scholar 

  325. Rozmahel R, Wilschanski MA, Matin A, Plyte S, Oliver M, Auerbach W, Moore A, Forstner J, Durie P, Nadeau J, Bear CE, Tsui L-C (1996) Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor. Nature genetics 12:280–287

    Article  PubMed  Google Scholar 

  326. Rubenstein RC, Egan ME, Zeitlin PL (1997) In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing deltaF508-CFTR. J Clin Invest 100:2457–2465

    PubMed  Google Scholar 

  327. Rubenstein RC, Zeitlin PL (1998) A pilot clinical trial of oral sodium 4-phenylbutyrate (Buphenyl) in deltaF508-homozygous cystic fibrosis patients: partial restoration of nasal epithelial CFTR function. Am J Respir Crit Care Med 157:484–490

    PubMed  Google Scholar 

  328. Ruknudin A, Schulze DH, Sullivan SK, Lederer WJ, Welling PA (1998) Novel subunit composition of a renal epithelial KATP channel. J Biol Chem 273:14165–14171

    Article  PubMed  Google Scholar 

  329. Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Ann Rev Physiol 46:455–472

    Article  Google Scholar 

  330. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of KVLQT1 and minK (IsK) to form cardiac IKs potassium channel. Nature 384:80–83

    Article  PubMed  Google Scholar 

  331. Santos GF, Reenstra WW (1994) Activation of the cystic fibrosis transmembrane regulator by cyclic AMP is not correlated with inhibition of endocytosis. Biochim Biophys Acta 1195:96–102

    PubMed  Google Scholar 

  332. Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR (1996) Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem 271:635–638

    Article  PubMed  Google Scholar 

  333. Schild L, Canessa CM, Shimkets RA, Gautschl I, Lifton RP, Rossier BC (1995) A mutation in the epithelial sodium channel causing Liddle disease increases channel activity in the Xenopus laevis oocyte expression system. Proc Natl Acad Sci 92:5699–5703

    PubMed  Google Scholar 

  334. Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC (1996) Identification of a PY motif in the epithelial Na+ channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J 15:2381–2387

    PubMed  Google Scholar 

  335. Schoumacher RA, Shoemaker RL, Halm DR, Tallant EA, Wallace RW, Frizzell RA (1987) Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature 330:752–754

    Article  PubMed  Google Scholar 

  336. Schreiber R, Greger R, Kunzelmann K (1997) Cystic fibrosis transmembrane conductance regulator activates water conductance in Xenopus oocytes. Pflügers Arch 434:841–847

    Article  Google Scholar 

  337. Schreiber R, Greger R, Kunzelmann K (1997) CFTR regulates endogenous water permeability in Xenopus oocytes. Pflügers Arch 433S6:P568

    Google Scholar 

  338. Schreiber R, Greger R, Ricken S, Nitschke R, Kunzelmann K (1998) CFTR activates water permeability in human bronchial epithelial cells. Pflügers Arch 435:S1:P11 (Abstract)

    Google Scholar 

  339. Schultheiss G, Diener M (1997) Regulation of apical and basolateral K+ conductances in rat colon. Br J Pharmacol 122:87–94

    Article  PubMed  Google Scholar 

  340. Schultz BD, Bridges RJ, Frizzell RA (1996) Lack of conventional ATPase properties in CFTR chloride channel gating. J Biol Chem 151:63–75

    Google Scholar 

  341. Schultz BD, Venglarik CJ, Bridges RJ, Frizzell RA (1996) Regulation of CFTR Cl channel gating by ADP and ATP analogues. J Gen Physiol 105:329–361

    Article  Google Scholar 

  342. Schulz IJ, Frömter E (1968) Mikropunktionsuntersuchungen an Schweissdrüsen von Mukoviszidosepatienten und gesunden Versuchspersonen. In: Mukoviszidose Windorfer H, Stephan U (eds) Georg Thieme Verlag, Stuttgart, pp 12–21

    Google Scholar 

  343. Schwiebert EM, Cid-Soto LP, Stafford D, Carter M, Blaisdell CJ, Zeitlin PL, Guggino WB, Cutting GR (1998) Analysis of ClC-2 channels as an alternative pathway for chloride conduction in cystic fibrosis airway cells. Proc Natl Acad Sci USA 95:3879–3884

    Article  PubMed  Google Scholar 

  344. Schwiebert EM, Egan ME, Hwang T-H, Fulmer SB, Allen SS, Cutting GR, Guggino WB (1995) CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81:1063–1073

    Article  PubMed  Google Scholar 

  345. Schwiebert EM, Flotte T, Cutting GR, Guggino WB (1994) Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents. Am J Physiol 266:C1464–C1477

    PubMed  Google Scholar 

  346. Schwiebert EM, Morales MM, Devidas S, Egan ME, Guggino WB (1998) Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 95:2674–2679

    Article  PubMed  Google Scholar 

  347. Schwiebert EM, Morales MM, Devidas S, Egan ME, Guggino WB (1998) Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 95:2674–2679

    Article  PubMed  Google Scholar 

  348. Seibert FS, Jia Y, Mathews CJ, Hanrahan JW, Riordan JR, Loo TW, Clarke DM (1997) Disease-associated mutations in cytoplasmic loops 1 and 2 of cystic fibrosis transmembrane conductance regulator impede processing or opening of the channel. Biochemistry 36:11966–11974

    Article  PubMed  Google Scholar 

  349. Seibert FS, Linsdell P, Loo TW, Hanrahan JW, Clarke DM, Riordan JR (1996) Disease-associated mutations in the fourth cytoplasmic loop of cystic fibrosis transmembrane conductance regulator compromise biosynthetic processing and chloride channel activity. J Biol Chem 271:15139–15145

    Article  PubMed  Google Scholar 

  350. Seibert FS, Linsdell P, Loo TW, Hanrahan JW, Riordan JR, Clarke DM (1996) Cytoplasmic loop three of cystic fibrosis transmembrane conductance regulator contributes to regulation of chloride channel activity. J Biol Chem 271:27493–27499

    Article  PubMed  Google Scholar 

  351. Seidler U, Blumenstein I, Kretz A, Viellard-Baron D, Rossmann H, Colledge WH, Evans M, Ratcliff R, Gregor M (1997) A functional CFTR protein is required for mouse intestinal cAMP-, cGMP-and Ca2+-dependent HCO3 secretion. J Physiol (Lond) 505:411–423

    Article  PubMed  Google Scholar 

  352. Seksek O, Biwersi J, Verkman AS (1996) Evidence against defective trans-Golgi acidification in cystic fibrosis. J Biol Chem 271:15542–15548

    Article  PubMed  Google Scholar 

  353. Shapiro M, Matthews J, Hecht G, Delp C, Madara JL (1991) Stabilization of Factin prevents cAMP-elicited Cl secretion in T84 cells. J Clin Invest 87:1903–1909

    PubMed  Google Scholar 

  354. Shen B-Q, Mrsny RJ, Finkbeiner WE, Widdicombe JH (1995) Role of CFTR in chloride secretion across human tracheal epithelium. Am J Physiol 269:L561–L566

    PubMed  Google Scholar 

  355. Sheppard DN, Rich DP, Ostedgaard LS, Gregory RJ, Smith AE, Welsh MJ (1993) Mutations in CFTR associated with mild-disease-form Cl channels with altered pore properties. Nature 362:160–164

    Article  PubMed  Google Scholar 

  356. Sheppard DN, Travis SM, Ishihara H, Welsh MJ (1996) Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. J Biol Chem 271:14995–15001

    Article  PubMed  Google Scholar 

  357. Shimizu KD, Rebek J, Jr. (1995) Synthesis and assembly of self-complementary calix[4]arenes. Proc Natl Acad Sci USA 92:12403–12407

    PubMed  Google Scholar 

  358. Shimkets RA, Lifton RP, Canessa CM (1997) The activity of the epithelial sodium channel is regulated by clathrin-mediated endocytosis. J Biol Chem 272:25537–25541

    Article  PubMed  Google Scholar 

  359. Shimkets RA, Lifton RP, Canessa CM (1998) In vivo phosphorylation of the epithelial sodium channel. Proc Natl Acad Sci USA 95:3301–3305

    Article  PubMed  Google Scholar 

  360. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR, Jr., Ulick S, Milora RV, Findling JW (1994) Liddle's syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 79:407–414

    Article  PubMed  Google Scholar 

  361. Singh AK, Devor DC, Illek B, Schultz BD, Bridges RJ (1996) Does ORCC contribute to transepithelial Cl secretion? Ped Pulmonol Supp 13

    Google Scholar 

  362. Smith JJ, Karp PH, Welsh MJ (1994) Defective fluid transport by cystic fibrosis airway epithelia. J Clin Invest 93:1307–1311

    PubMed  Google Scholar 

  363. Smith JJ, Travis SM, Greenberg EP, Welsh MJ (1996) Erratum. Cell 87 Nr. 2

    Google Scholar 

  364. Smith JJ, Travis SM, Greenberg EP, Welsh MJ (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85:229–236

    Article  PubMed  Google Scholar 

  365. Smith JJ, Welsh MJ (1992) cAMP stimulates bicarbonate secretion across normal, but not cystic fibrosis airway epithelia. J Clin Invest 89:1148–1153

    PubMed  Google Scholar 

  366. Snyder PM, Cheng C, Prince LS, Rogers JC, Welsh MJ (1998) Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J Biol Chem 273:681–684

    Article  PubMed  Google Scholar 

  367. Sorensen JB, Larsen EH (1998) Patch clamp on the luminal membrane of exocrine gland acini from frog skin (Rana esculenta) reveals the presence of cystic fibrosis transmebrane conductance regulator-like Cl channels activated by cyclic AMP. J Gen Physiol 112:19–31

    Article  PubMed  Google Scholar 

  368. Spilmont C, Hinnrasky J, Zahm JM, Jacquot J, Puchelle E, Kuhry JG (1996) CFTR is involved in membrane endocytosis but not in fluid-phase and receptor-mediated endocytosis in human respiratory epithelial cells. Biochem Biophys Res Commun 227:182–188

    Article  PubMed  Google Scholar 

  369. Spindler B, Mastroberardino L, Custer M, Verrey F (1997) Characterization of early aldosterone-induced RNAs identified in A6 kidney epithelia. Pflügers Arch 434:323–331

    Article  Google Scholar 

  370. Stanton BA (1997) Cystic fibrosis transmembrane conductance regulator (CFTR) and renal function. Wien Klin Wochenschr 109:457–464

    PubMed  Google Scholar 

  371. Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L, Rotin D (1997) Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J 16:6325–6336

    Article  PubMed  Google Scholar 

  372. Steagall WK, Kelley TJ, Marsick RJ, Drumm ML (1998) Type II protein kinase A regulates CFTR in airway, pancreatic, and intestinal cells. Am J Physiol 274:C819–26

    PubMed  Google Scholar 

  373. Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC (1995) CFTR as a cAMP-dependent regulator of sodium channels. Science Vol.269:847–850

    PubMed  Google Scholar 

  374. Stutts MJ, Chinet TC, Mason SJ, Fullton JM, Clarke LL, Boucher RC (1992) Regulation of Cl channels in normal and cystic fibrosis airway epithelial cells by extracellular ATP. Proc Natl Acad Sci USA 89:1621–1625

    PubMed  Google Scholar 

  375. Stutts MJ, Fitz JG, Paradiso AM, Boucher RC (1994) Multiple modes of regulation of airway epithelial chloride secretion by ATP. Am J Physiol 267:C1442–C1451

    PubMed  Google Scholar 

  376. Stutts MJ, Rossier BC, Boucher RC (1997) Cystic fibrosis transmembrane conductance regulator inverts protein kinase A-mediated regulation of epithelial sodium channel kinetics. J Biol Chem 272:14037–14040

    Article  PubMed  Google Scholar 

  377. Stutzin A, Eguiguren AL, Montes N, Sepulveda FV (1998) Modulation by extracellular and intracellular iodide of volume-activated Cl-current in HeLa cells. Pflugers Arch 436:152–154

    Article  PubMed  Google Scholar 

  378. Sugita M, Yue Y, Foskett JK (1998) CFTR Cl channel and CFTR-associated ATP channel: distinct pores regulated by common gates. EMBO J 17:898–908

    Article  PubMed  Google Scholar 

  379. Szczypka MS, Wemmie JA, Moye-Rowley WS, Thiele DJ (1994) A yeast metal protein similar to human CFTR and multidrug resistance-associated protein. J Biol Chem 269:22853–22857

    PubMed  Google Scholar 

  380. Tabcharani JA, Chang X-B, Riordan JR, Hanrahan JW (1991) Phosphorylation-regulated Cl channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352:628–631

    Article  PubMed  Google Scholar 

  381. Tabcharani JA, Chang X-B, Riordan JR, Hanrahan JW (1992) The cystic fibrosis transmembrane conductance regulator chloride channel. Iodide block and permeation. Biophys J 62:1–4

    Google Scholar 

  382. Tabcharani JA, Rommens JM, Hou Y-X, Chang X-B, Tsui L-C, Riordan JR, Hanrahan JW (1993) Multi-ion pore behaviour in the CFTR chloride channel. Nature 366:79–82

    Article  PubMed  Google Scholar 

  383. Tai KK, Goldstein SA (1998) The conduction pore of a cardiac potassium channel. Nature 391:605–608

    Article  PubMed  Google Scholar 

  384. Takahasi A, Watkins SC, Howard M, Frizzell RA (1996) CFTR-dependent membrane insertion is linked to stimulation of the CFTR Cl channel. Am J Physiol 271:C1887–C1894

    PubMed  Google Scholar 

  385. Tao T, Xie J, Drumm ML, Zhao J, Davis PB, Ma J (1996) Slow conversions among subconductance states of cystic fibrosis transmembrane conductance regulator chloride channel. Biophys J 70:743–763

    PubMed  Google Scholar 

  386. Tarran R, Gray MA, Evans MJ, Colledge WH, Ratcliff R, Argent BE (1998) Basal chloride currents in murine airway epithelial cells: modulation by CFTR. Am J Physiol 274:C904–C913

    PubMed  Google Scholar 

  387. Thiele IE, Hug MJ, Hübner M, Greger R (1998) Expression of cystic fibrosis transmembrane conductance regulator alters the response to hypotonic cell swelling and ATP of chinese hamster ovary cells. Cell Physiol Biochem 8:61–74

    Article  PubMed  Google Scholar 

  388. Tilly BC, Winter MC, Ostedgaard LS, O'Riordan C, Smith AE, Welsh MJ (1992) Cyclic AMP-dependent protein kinase activation of cystic fibrosis transmembrane conductance regulator chloride channels in planar lipid bilayers. J Biol Chem 267:9470–9473

    PubMed  Google Scholar 

  389. Tilmann M, Kunzelmann K, Fröbe U, Cabantchik ZI, Lang H-J, Englert HC, Greger R (1991) Different types of blockers of the intermediate conductance outwardly rectifying chloride channel (ICOR) in epithelia. Pflügers Arch 418:556–563

    Article  Google Scholar 

  390. Todd-Turla KM, Rusvai E, Naray-Fejes-Toth A, Fejes-Toth G (1996) CFTR expression in cortical collecting duct cells. Am J Physiol 270:F237–F244

    PubMed  Google Scholar 

  391. Travis SM, Berger HA, Welsh MJ (1997) Protein phosphatase 2C dephosphorylates and inactivates cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 94:11055–11060

    Article  PubMed  Google Scholar 

  392. Treharne KJ, Marshall LJ, Mehta A (1994) A novel chloride-dependent GTP-utilizing protein kinase in plasma membranes from human respiratory epithelium. Am J Physiol 267:L592–601

    PubMed  Google Scholar 

  393. Trezise AE, Linder CC, Grieger D, Thompson EW, Meunier H, Griswold MD, Buchwald M (1993) CFTR expression is regulated during both the cycle of the seminiferous epithelium and the oestrous cycle of rodents. Nat Genet 3:157–164

    Article  PubMed  Google Scholar 

  394. Trezise AE, Ratcliff R, Hawkins TE, Evans MJ, Freeman TC, Romano PR, Higgins CF, Colledge WH (1997) Co-ordinate regulation of the cystic fibrosis and multidrug resistance genes in cystic fibrosis knockout mice. Hum Mol Genet 6:527–537

    Article  PubMed  Google Scholar 

  395. Tsui L-C (1997) Genotype and phenotype in cystic fibrosis. Hospital practice 15:115–142

    Google Scholar 

  396. Tsunoda S, Sierralta J, Sun Y, Bodner R, Suzuki E, Becker A, Socolich M, Zuker CS (1997) A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388:243–249

    Article  PubMed  Google Scholar 

  397. Vaandrager AB, Tilly BC, Smolenski A, Schneider-Rasp S, Bot AGM, Edixhoven M, Scholte BJ, Jarchau T, Walter U, Lohmann SM, Poller WC, De Jonge HR (1997) cGMP stimulation of cystic fibrosis transmembrane conductance regulator Cl channels co-expressed with cGMP-dependent protein kinase type II but not type Ibeta. J Biol Chem 272:4195–4200

    Article  PubMed  Google Scholar 

  398. Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC (1997) An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389:607–610

    Article  PubMed  Google Scholar 

  399. Valverde MA, Bond TD, Hardy SP, Taylor JC, Higgins CF, Altamirano J, Alvarez-Leefmans FJ (1996) The multidrug resistance P-glycoprotein modulates cell regulatory volume decrease. EMBO J 15:4460–4468

    PubMed  Google Scholar 

  400. Valverde MA, Diaz M, Sepulveda FV, Gill DR, Hyde SC, Higgins CF (1992) Volume regulated chloride channels associated with the human multidrug resistance P-glycoprotein. Nature 355:830–833

    Article  PubMed  Google Scholar 

  401. Valverde MA, O'Briens JA, Sepulveda FV, Ratcliff RA, Evans MJ, Colledge WH (1995) Impaired cell volume regulation in intestinal crypt epithelia of cystic fibrosis. Proc Natl Acad Sci 92:9038–9041

    PubMed  Google Scholar 

  402. van Kuijck MA, van Aubel RA, Busch AE, Lang F, Russel FG, Bindels RJ, van Os CH, Deen PM (1996) Molecular cloning and expression of a cyclic AMP-activated chloride conductance regulator: a novel ATP-binding cassette transporter. Proc Natl Acad Sci USA 93:5401–5406

    Article  PubMed  Google Scholar 

  403. Vanoye CG, Altenberg GA, Reuss L (1997) P-glycoprotein is not a swelling-activated Cl channel; possible role as a Cl channel regulator. J Physiol (Lond) 502:249–258

    Article  PubMed  Google Scholar 

  404. Vasseur M, Cauzac M, Garcia I, Alvarado F (1992) Chloride transport in control and cystic fibrosis human skin fibroblast membrane vesicles. Biochim Biophys Acta 1139:41–48

    PubMed  Google Scholar 

  405. Veeze HJ, Halley DJ, Bijman J, De Jongste JC, De Jonge HR, Sinaasappel M (1994) Determinants of mild symptoms in cystic fibrosis patients — residual chloride secretion measured in rectal biopsies in relation to the genotype. J Clin Invest 93:461–466

    PubMed  Google Scholar 

  406. Veeze HJ, Sinaasappel M, Bijman J, Bouquet J, De Jonge HR (1991) Ion transport abnormalities in rectal suction biopsies from children with cystic fibrosis. Gastroenterology 101:398–403

    PubMed  Google Scholar 

  407. Viana F, Van Acker K, De Greef C, Eggermont J, Raeymaekers L, Droogmans G, Nilius B (1995) Drug-transport and volume-activated chloride channel functions in human erythroleukemia cells: relation to expression level of P-glycoprotein. J Membr Biol 145:87–98

    PubMed  Google Scholar 

  408. Wagner JA, Cozens AL, Schulman H, Gruenert DC, Stryer L, Gardner P (1991) Activation of chloride chanels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase. Nature 349:793–796

    Article  PubMed  Google Scholar 

  409. Wainwright BJ, Scambler PJ, Schmidtke J, Watson PA, Law H,-Y., Farrall M, Cooke HJ, Eiberg H, Williamson AJ (1985) Localization of cystic fibrosis locus to human chromosome 7cen-q22. Nature 318:384–385

    Article  PubMed  Google Scholar 

  410. Waldegger S, Bleich M, Barth P, Greger R, Lang F (1998) Cloning of KvLQT, SGK-1 and SGK-2 from the rectal gland of squalus acanthias. Pflügers Arch 435S1:P23 (Abstract)

    Google Scholar 

  411. Wang S, Raab RW, Schatz PJ, Guggino WB, Li M (1998) Peptide binding consensus of the NHE-RF-PDZ1 domain matches the C-terminal sequence of cystic fibrosis transmembrane conductance regulator (CFTR). FEBS Lett 427:103–108

    Article  PubMed  Google Scholar 

  412. Wangemann P, Di Stefano A, Wittner M, Englert HC, Lang H-J, Schlatter E, Greger R (1986) Cl-channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship. Pflügers Arch 407(Suppl 2):S128–S141

    Article  Google Scholar 

  413. Ward CL, Krouse ME, Gruenert DC, Kopito RR, Wine JJ (1991) Cystic fibrosis gene expression is not correlated with rectifying Cl channels. Proc Natl Acad Sci 88:5277–5281

    PubMed  Google Scholar 

  414. Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitinproteasome pathway. Cell 83:121–127

    Article  PubMed  Google Scholar 

  415. Warth R, Greger R (1993) The ion conductance of CFPAC-1 cells. Cell Physiol Biochem 3:2–16

    Google Scholar 

  416. Warth R, Riedemann N, Bleich M, Van Driessche W, Busch AE, Greger R (1996) The cAMP-regulated and 293B-inhibited K+ conductance of rat colonic crypt base cells. Pflügers Arch 432:81–88

    Article  Google Scholar 

  417. Watt WC, Lazarowski ER, Boucher RC (1998) Cystic Fibrosis Transmembrane Regulator-independent Release of ATP. Its implications for the regulation of p2y2 receptors in airway epithelia. J Biol Chem 273:14053–14058

    Article  PubMed  Google Scholar 

  418. Weaver JL, Aszalos A, McKinney L (1996) MDR1/P-glycoprotein function. II. Effect of hypotonicity and inhibitors on Cl efflux and volume regulation. Am J Physiol 270:C1453–C1460

    PubMed  Google Scholar 

  419. Wei LY, Hoffman MM, Roepe PD (1997) Altered pHi regulation in 3T3/CFTR clones and their chemotherapeutic drug-selected derivatives. Am J Physiol 272:C1642–C1653

    PubMed  Google Scholar 

  420. Wei LY, Stutts MJ, Hoffman MM, Roepe PD (1995) Overexpression of the cystic fibrosis transmembrane conductance regulator in NIH 3T3 cells lowers membrane potential and intracellular pH and confers a multidrug resistance phenotype. Biophys J 69:883–895

    PubMed  Google Scholar 

  421. Weinman EJ, Steplock D, Shenolikar S (1993) CAMP-mediated inhibition of the renal brush border membrane Na+-H+ exchanger requires a dissociable phosphoprotein cofactor. J Clin Invest 92:1781–1786

    PubMed  Google Scholar 

  422. Weinman EJ, Steplock D, Tate K, Hall RA, Spurney RF, Shenolikar S (1998) Structure-function of recombinant Na/H exchanger regulatory factor (NHERF). J Clin Invest 101:2199–2206

    PubMed  Google Scholar 

  423. Weinreich F, Wood PG, Riordan JR, Nagel G (1997) Direct action of genistein on CFTR. Pflügers Arch 434:484–491

    Article  Google Scholar 

  424. Welsh MJ (1986) An apical-membrane chloride channel in human tracheal epithelium. Science 232:1648–1649

    PubMed  Google Scholar 

  425. Welsh MJ (1987) Electrolyte transport by airway epithelia. Physiol Reviews 67:1143–1184

    Google Scholar 

  426. Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73:1251–1254

    Article  PubMed  Google Scholar 

  427. Welsh MJ, Smith PL, Fromm M, Frizzell RA (1982) Crypts are the site of intestinal fluid and electrolyte secretion. Science 218:1219–1221

    PubMed  Google Scholar 

  428. Whittembury G (1987) Channels for water flow in epithelia: characteristics and regulation. Acta Physiol Pharmacol Latinoam 37:555–563

    PubMed  Google Scholar 

  429. Widdicombe JH, Widdicombe JG (1995) Regulation of human airway surface liquid. Respir Physiol 99:3–12

    Article  PubMed  Google Scholar 

  430. Wilkinson DJ, Strong TV, Mansoura MK, Wood DL, Smith SS, Collins FS, Dawson DC (1997) CFTR activation: additive effects of stimulatory and inhibitory phosphorylation sites in the R domain. Am J Physiol 273:L127–L133

    Google Scholar 

  431. Willumsen NJ, Boucher RC (1989) Shunt resistance and ion permeabilities in normal and cystic fibrosis airway epithelia. Am J Physiol 256:C1054–C1063

    PubMed  Google Scholar 

  432. Willumsen NJ, Boucher RC (1989) Activation of an apical Cl Conductance by Ca ionophores in cystic fibrosis airway epithelia. Am J Physiol 256:C226–C233

    PubMed  Google Scholar 

  433. Willumsen NJ, Boucher RC (1992) Intracellular pH and its relationship to regulation of ion transport in normal and cystic fibrosis human nasal epithelia. J Physiol (Lond) 455:247–269

    PubMed  Google Scholar 

  434. Wilschanski MA, Rozmahel R, Beharry S, Kent G, Li C, Tsui L-C, Durie P, Bear CE (1996) In vivo measurements of ion transport in long-living CF mice. Biochem and Biophys Res Com 219:753–759

    Article  Google Scholar 

  435. Wilschanski MA, Zielenski J, Markiewicz D, Tsui L-C, Corey M, Levison H, Durie PR (1995) Correlation of sweat chloride concentration with classes of the cystic fibrosis transmembrane conductance regulator gene mutations. J Pediatr 127:705–710

    PubMed  Google Scholar 

  436. Winpenny JP, McAlroy HL, Gray MA, Argent BE (1995) Protein kinase C regulates the magnitude and stability of CFTR currents in pancreatic duct cells. Am J Physiol 268:C823–C828

    PubMed  Google Scholar 

  437. Winpenny JP, Verdon B, McAlroy HL, Colledge WH, Ratcliff R, Evans MJ, Gray MA, Argent BE (1995) Calcium-activated chloride conductance is not increased in pancreatic duct cells of CF mice. Pflügers Arch 430:26–33

    Article  Google Scholar 

  438. Winter MC, Welsh MJ (1997) Stimulation of CFTR activity by its phosphorylated R domain. Nature 389:294–296

    Article  PubMed  Google Scholar 

  439. Xia Y, Haws CM, Wine JJ (1997) Disruption of monolayer integrity enables activation of a cystic fibrosis “bypass” channel in human airway epithelia. Nat Med 3:802–805

    Article  PubMed  Google Scholar 

  440. Xia Y, Krouse ME, Fang RH, Wine JJ (1996) Swelling and Ca2+ — activated anion conductances in C127 epithelial cells expressing wt and deltaF508-CFTR. J Membr Biol 151:269–278

    Article  PubMed  Google Scholar 

  441. Xie J, Drumm ML, Ma J, Davis PB (1995) Intracellular loop between transmembrane segments IV and V of cystic fibrosis transmembrane conductance regulator is involved in regulation of chloride channel conductance state. J Biol Chem 270:28084–28091

    Article  PubMed  Google Scholar 

  442. Yamada M, Isomoto S, Matsumoto S, Kondo C, Shindo T, Horio Y, Kurachi Y (1997) Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel. J Physiol (Lond) 499:715–720

    PubMed  Google Scholar 

  443. Yamaya M, Finkbeiner WE, Chun SY, Widdicombe JH (1992) Differentiated structure and function of cultures from human tracheal epithelium. Am J Physiol 262:L713–L724

    PubMed  Google Scholar 

  444. Yamaya M, Finkbeiner WE, Widdicombe JH (1991) Altered ion transport by tracheal glands in cystic fibrosis. Am J Physiol 261:L491–L494

    PubMed  Google Scholar 

  445. Yamazaki J, Hume JR (1997) Inhibitory effects of glibenclamide on cystic fibrosis transmembrane regulator, swelling-activated, and Ca2+ — activated Cl channels in mammalian cardiac myocytes. Circ Res 81:101–109

    PubMed  Google Scholar 

  446. Yang WP, Levesque PC, Little WA, Conder ML, Shalaby FY, Blanar MA (1997) KvLQT1, a voltage-gated potassium channel responsible for human cardiac arrhythmias. Proc Natl Acad Sci USA 94:4017–4021

    Article  PubMed  Google Scholar 

  447. Yun CH, Oh S, Zizak M, Steplock D, Tsao S, Tse CM, Weinman EJ, Donowitz M (1997) cAMP-mediated inhibition of the epithelial brush border Na+/H+ exchanger, NHE3, requires an associated regulatory protein. Proc Natl Acad Sci USA 94:3010–3015

    Article  PubMed  Google Scholar 

  448. Zdebik A, Hug MJ, Greger R (1997) Chloride channels in the luminal membrane of rat pancreatic acini. Pflügers Arch 434:188–194

    Article  Google Scholar 

  449. Zegarra-Moran O, Sacco O, Romano L, Rossi GA, Galietta LJ (1997) Cl currents activated by extracellular nucleotides in human bronchial cells. J Membr Biol 156:297–305

    Article  PubMed  Google Scholar 

  450. Zeng W, Lee MG, Yan M, Diaz J, Benjamin I, Marino CR, Kopito RR, Freedman S, Cotton C, Muallem S, Thomas P (1997) Immuno and functional characterization of CFTR in submandibular and pancreatic acinar and duct cells. Am J Physiol 273:C442–C455

    PubMed  Google Scholar 

  451. Zeuthen T, Meinild AK, Klaerke DA, Loo DD, Wright EM, Belhage B, Litman T (1997) Water transport by the Na+/glucose cotransporter under isotonic conditions. Biol Cell 89:307–312

    Article  PubMed  Google Scholar 

  452. Zhang Y, Yankaskas JR, Wilson J, Engelhardt JF (1996) In vivo analysis of fluid transport in cystic fibrosis airway epithelia of bronchial xenografts. Am J Physiol 270:C1326–C1335

    PubMed  Google Scholar 

  453. Zhao J, Zerhusen B, Xie J, Drumm ML, Davis PB, Ma J (1996) Rectification of cystic fibrosis transmembrane conductance regulator chloride channel mediated by extracellular divalent cations. Biophys J 71:2458–2466

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this chapter

Cite this chapter

Kunzelmann, K. (1999). The cystic fibrosis transmembrane conductance regulator and its function in epithelial transport. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 137. Reviews of Physiology, Biochemistry and Pharmacology, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-65362-7_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-65362-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65362-2

  • Online ISBN: 978-3-540-49383-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics