Skip to main content
Log in

The minimum requirements for the maintenance of active sodium transport across the isolated salivary duct epithelium of the rabbit

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The main excretory duct of the rabbit submaxillary gland was isolated and studied in a lucite perfusion chamber. Measurements of transepithelial electrical potential difference (p.d.) and specific electrical wall resistance (R m) were performed and short-circuit-current (SCC) was determined under conditions of different test solutions placed at the blood side of the duct.

  1. 1.

    High molecular compounds such as albumin or dextran are required in the bathing medium to maintain transport function.

  2. 2.

    Active transport of sodium from the lumen to the interstitium can be maintained only when there is both pyruvate and acetate present in a bicarbonate Ringer's bathing medium. Isocitrate can substitute for pyruvate and acetate. SCC was found to be 1.7±0.2 mA/cm2 with the artificial bathing fluid as compared to 1.9±0.2 mA/cm2 with rabbit serum placed at the blood side of the duct.

  3. 3.

    In the absence of bicarbonate Na+ transport is reduced to 55±10% of control.

  4. 4.

    Potassium in a 4 mM concentration on the blood side proved to be indispensable for transport function. In the absence of interstitial potassium the Na+ conductance of the luminal cell membrane is reduced. Rubidium and cesium ions can partially substitute for potassium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bader, H., Sen, A. K.: (K+)-dependent acyl phosphatase as part of the (Na++K+)-dependent ATPase of cell membranes. Biochim. biophys. Acta (Amst.)118, 116–123 (1966).

    Google Scholar 

  2. Baumann, K., Burg, M. B.: Personal communication.

  3. Bentley, P. J.: The effects of ionic changes on water transfer across the isolated urinary bladder of the toad Bufo marinus. J. Endocr.18, 327–333 (1959).

    Google Scholar 

  4. Burg, M. B., Isaacson, L., Grantham, J., Orloff, J.: Electrical properties of isolated perfused rabbit renal tubules. Amer. J. Physiol.215, 788–794 (1968).

    Google Scholar 

  5. Civan, M. M., Frazier, H. S.: The site of the stimulatory action of vasopressin on sodium transport in toad bladder. J. gen. Physiol.51, 589 (1968).

    Google Scholar 

  6. Diamond, J. M.: The reabsorptive function of the gallbladder. J. Physiol. (Lond.)161, 442–473 (1962).

    Google Scholar 

  7. —: Transport of salt and water in rabbit and guinea pig gallbladder. J. gen. Physiol.48, 1–14 (1964).

    Google Scholar 

  8. Dietschy, J. M.: Water and solute movement across the wall of the everted rabbit gallbladder. Gastroenterology47, 395–408 (1964).

    Google Scholar 

  9. Falkenhagen, H.: Theorie der Elektrolyte. Stuttgart: Hirzel 1971.

    Google Scholar 

  10. Frank, K., Becker, M. C.: Microelectrodes for recording and stimulation. In: Physical Techniques in Biological Research Vol. V, p. 22. W. L. Nastuk, edit. New York: Academic Press 1964.

    Google Scholar 

  11. Gertz, K. H.: Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.276, 336–356 (1963).

    Google Scholar 

  12. Gonzales, C. F., Schamoo, Y. E., Brodsky, W. A.: The accelerating effect of serosal bicarbonate on sodium transport in the short-circuited turtle bladder. Biochim. biophys. Acta (Amst.)193, 403–418 (1969).

    Google Scholar 

  13. Györy, A. Z., Brendel, U., Kinne, R.: Effect of cardiac glycosides and ethacrynic acid on transepithelial Na transport and on isolated plasma membrane Na-K-ATPase in the rat. Pflügers Arch. (in press).

  14. Hays, R. M., Leaf, A.: The problem of clinical vasopressin resistance: in vitro studies. Ann. intern. Med.54, 700–709 (1961).

    Google Scholar 

  15. Herrera, F. C., Curran, P. F.: The effect of Ca and antidiuretic hormone on Na transport across frog skin. I. Examination of interrelationships between Ca and hormone. J. gen. Physiol.46, 999–1010 (1963).

    Google Scholar 

  16. Hierholzer, K., Wiederholt, M., Stolte, H.: Hemmung der Natriumresorption im proximalen und distalen Konvolut adrenalektomierter Ratten. Pflügers Arch. ges. physiol.291, 43–62 (1966).

    Google Scholar 

  17. Knauf, H.: The isolated salivary duct epithelium as a model for electrolyte transport studies. Pflügers Arch.333, 82–94 (1972).

    Google Scholar 

  18. —, Frömter, E.: Studies on the origin of the transepithelial electrical potential difference in salivary duct epithelium. In: Electrophysiology of Epithelial Cells, Giebisch, edit. Stuttgart-New York: Schattauer 1971.

    Google Scholar 

  19. Knauf, H., Frömter, E., Gebler, B.: The influence of inhibitors on the electrical properties of the isolated salivary duct epithelium. Proc. Intern. Union Physiol. Sci., Vol. IX, 916 R p. 310, XXV Intern. Congress, Munich 1971.

    Google Scholar 

  20. Knauf, H., Kinne-Saffran, E., Simon, B.: (in prep.).

  21. Koefoed-Johnsen, V., Ussing, H. H.: The nature of frog skin potential. Acta physiol. scand.42, 298–308 (1958).

    Google Scholar 

  22. Rumrich, G., Ullrich, K. J.: The minimum requirements for the maintenance of sodium chloride reabsorption in the proximal convolution of the mammalian kidney. J. Physiol. (Lond.)197, 69–70 P (1968).

    Google Scholar 

  23. Stein, J. H., Rector, F. C., Seldin, D. W.: The effect of acute metabolic acidosis on proximal tubular reabsorption in the rat. J. clin. Invest.47, R 277 (1968).

    Google Scholar 

  24. Taylor, R. E.: Cable theory. In: Physical Technique in Biological Research Vol. VI, pp. 219–262. W. L. Nastuk, edit. New-York-London: Acad. Press, 1967.

    Google Scholar 

  25. Ullrich, K. J.: Recent advances in nephrology, physiological aspects. Proc. 4th Intern. Congr. Nephrol. Stockholm 1969, Vol. 1, pp. 8–19. Basel-München-New York: Karger 1970.

    Google Scholar 

  26. —, Baldamus, C. A., Uhlich, E., Rumrich, G.: Einfluß von Calciumionen und antidiuretischem Hormon auf den transtubulären Natriumtransport in der Rattenniere. Pflügers Arch.310, 369–376 (1969).

    Google Scholar 

  27. Ussing, H. H.: The alkali metal ions in biology. In: Handbuch der experimentellen Pharmakologie. Berlin-Göttingen-Heidelberg: Springer 1960.

    Google Scholar 

  28. Windhager, E. E., Lewy, J. E., Spitzer, A.: Intrarenal control of proximal tubular reabsorption of sodium and water. Nephron6, 247–259 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With technical assistance of B. Gebler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knauf, H. The minimum requirements for the maintenance of active sodium transport across the isolated salivary duct epithelium of the rabbit. Pflugers Arch. 333, 326–336 (1972). https://doi.org/10.1007/BF00586212

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586212

Key words

Navigation