Maximal Digital Straight Segments and Convergence of Discrete Geometric Estimators

  • François de Vieilleville
  • Jacques-Olivier Lachaud
  • Fabien Feschet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3540)


Discrete geometric estimators approach geometric quantities on digitized shapes without any knowledge of the continuous shape. A classical yet difficult problem is to show that an estimator asymptotically converges toward the true geometric quantity as the resolution increases. We study here the convergence of local estimators based on Digital Straight Segment (DSS) recognition. It is closely linked to the asymptotic growth of maximal DSS, for which we show bounds both about their number and sizes. These results not only give better insights about digitized curves but indicate that curvature estimators based on local DSS recognition are not likely to converge. We indeed invalidate an hypothesis which was essential in the only known convergence theorem of a discrete curvature estimator. The proof involves results from arithmetic properties of digital lines, digital convexity, combinatorics, continued fractions and random polytopes.


Asymptotic Convergence Curvature Estimator Maximal Segment Left Factor Supporting Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Balog, A., Bárány, I.: On the convex hull of the integer points in a disc. In: SCG 1991: Proceedings of the seventh annual symposium on Computational geometry, pp. 162–165. ACM Press, New York (1991)CrossRefGoogle Scholar
  2. 2.
    Berstel, J., De Luca, A.: Sturmian words, lyndon words and trees. Theoret. Comput. Sci. 178(1-2), 171–203 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Coeurjolly, D.: Algorithmique et géométrie pour la caractérisation des courbes et des surfaces. PhD thesis, Universit’́e Lyon 2, Décembre (2002)Google Scholar
  4. 4.
    Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. on Pattern Anal. and Machine Intell. 26(2), 252–257 (2004)CrossRefGoogle Scholar
  5. 5.
    Kim, C.E.: Digital convexity, straightness, and convex polygons. IEEE Trans. on Pattern Anal. and Machine Intell. 6(6), 618–626 (1982)CrossRefGoogle Scholar
  6. 6.
    Lachaud, J.-O., de Vieilleville, F., Feschet, F.: Maximal digital straight segments and convergence of discrete geometric estimators. Research Report 1350-05, LaBRI, University Bordeaux 1, Talence, France (2005)Google Scholar
  7. 7.
    Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: application to the curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Feschet, F., Tougne, L.: On the Min DSS Problem of Closed Discrete Curves. In: Del Lungo, A., Di Gesù, V., Kuba, A. (eds.) IWCIA. Electonic Notes in Discrete Math., vol. 12. Elsevier, Amsterdam (2003)Google Scholar
  9. 9.
    Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 4th edn. Oxford University Press, Oxford (1960)zbMATHGoogle Scholar
  10. 10.
    Hayes, A.S., Larman, D.C.: The vertices of the knapsack polytope. Discrete Applied Mathematics 6, 135–138 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Klette, R., Žunić, J.: Multigrid convergence of calculated features in image analysis. Journal of Mathematical Imaging and Vision 13, 173–191 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kovalevsky, V., Fuchs, S.: Theoretical and experimental analysis of the accuracy of perimeter estimates. In: Förster, R. (ed.) Proc. Robust Computer Vision, pp. 218–242 (1992)Google Scholar
  13. 13.
    Lachaud, J.-O.: On the convergence of some local geometric estimators on digitized curves. Research Report 1347-05, LaBRI, University Bordeaux 1, Talence, France (2005)Google Scholar
  14. 14.
    Lachaud, J.-O., Vialard, A., de Vieilleville, F.: Analysis and comparative evaluation of discrete tangent estimators (To appear). In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 240–251. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Réveillès, J.-P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’etat, Université Louis Pasteur, Strasbourg (1991)Google Scholar
  16. 16.
    Shevchenko, V.N.: On the number of extreme points in linear programming. Kibernetika 2, 133–134 (1981) (In russian)MathSciNetGoogle Scholar
  17. 17.
    Voss, K.: Discrete Images, Objects, and Functions in ℤn. Springer, Heidelberg (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • François de Vieilleville
    • 1
  • Jacques-Olivier Lachaud
    • 1
  • Fabien Feschet
    • 2
  1. 1.LaBRIUniv. Bordeaux 1TalenceFrance
  2. 2.LLAIC1IUT Clermont-FerrandAubière CedexFrance

Personalised recommendations