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Abstract. Discrete geometric estimators approach geometric quantities
on digitized shapes without any knowledge of the continuous shape. A
classical yet difficult problem is to show that an estimator asymptot-
ically converges toward the true geometric quantity as the resolution
increases. We study here the convergence of local estimators based on
Digital Straight Segment (DSS) recognition. It is closely linked to the
asymptotic growth of maximal DSS, for which we show bounds both
about their number and sizes. These results not only give better insights
about digitized curves but indicate that curvature estimators based on
local DSS recognition are not likely to converge. We indeed invalidate
an hypothesis which was essential in the only known convergence the-
orem of a discrete curvature estimator. The proof involves results from
arithmetic properties of digital lines, digital convexity, combinatorics,
continued fractions and random polytopes.

1 Introduction

Estimating geometric features of shapes or curves solely on their digitization is
a classical problem in image analysis and pattern recognition. Some of the geo-
metric features are global: area, perimeter, moments. Others are local: tangents,
normals, curvature. Algorithms that performs this task on digitized objects are
called discrete geometric estimators. An interesting property these estimators
should have is to converge towards the continuous geometric measure as the
digitization resolution increases. However, few estimators have been proved to
be convergent. In all works, shapes are generally supposed to have a smooth
boundary and either to be convex or to have a finite number of inflexion points.
The shape perimeter estimation has for instance been tackled in [I2]. It proved
the convergence of a perimeter estimator based on curve segmentation by max-
imal DSS. The speed of convergence of several length estimators has also been
studied in []. Klette and Zuni¢ [I1] survey results about the convergence (and
the speed of convergence) of several global geometric estimators. They show that
discrete moments converge toward continuous moments.
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As far as we know, there is only one work that deals with the convergence
of local geometric estimators [3]. The symmetric tangent estimator appears to
be convergent subject to an hypothesis on the growth of DSS as the resolution
increases (see Conjecture [[). The same conjecture entails that a curvature es-
timator is convergent: it is based on DSS recognition and circumscribed circle
computation (see Definition [Hl).

In this paper, we relate the number and the lengths of DSS to the number
and lengths of edges of convex hulls of digitized shapes. Using arguments related
to digital convex polygons and a theorem induced by random polytopes theory
[1], we estimate the asymptotic behaviour of both quantities. We theoretically
show that maximal DSS do not follow the conjecture used in [3]. Experiments
confirm our result. The convergence theorem is thus not applicable to digital
curves. As a consequence, the existence of convergent digital curvature estimators
remains an open problem. The paper is organized as follows. First, we recall some
standard notions of digital geometry and combinatoric representation of digital
lines, i.e. patterns. The relations between maximal segments and edges of convex
digital polygons are then studied to get bounds on maximal segments lengths and
number. Finally, the asymptotic behaviour of maximal segments is deduced from
the asymptotic behaviour of convex digital polygons. The growth of some DSS
is thus proved to be too slow to ensure the convergence of curvature estimation.
This theoretical result is further confirmed by experiments. Some proofs are
omitted for limited space reason but may be found in [0].

2 Maximal Digital Straight Segments

We restrict our study to the geometry of 4-connected digital curves. A digital
object is a set of pixels and its boundary in R? is a collection of vertices and
edges. The boundary forms a 4-connected curve in the sense used in the present
paper. Our work may easily be adapted to 8-connected curves. In the paper, all
the reasoning are made in the first octant, but extends naturally to the whole
digital plane. A set of successive points of the digital curve from index A to B
by [CaCp| when no ambiguities are raised.

2.1 Standard Line, Digital Straight Segment, Maximal Segments

Definition 1. (Réveillés [15]) The set of points (x,y) of the digital plane veri-
fying p < ax —by < p+ |a| + |b|, with a, b and p integer numbers, is called the
standard line with slope a/b and shift p.

The standard lines are the 4-connected discrete lines. The quantity ax — by is
called the remainder of the line. The points whose remainder is p (resp. pu +
|a| + |b] — 1) are called upper (resp. lower) leaning points. The principal upper
and lower leaning points are defined as those with extremal x values. Finite
connected portions of digital lines define digital straight segment.

Maximal segments form the longest possible DSS in the curve. They are
essential when analyzing digital curves: they provide tangent estimations [7}[14],
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they are used for polygonizing the curve into the minimum number of segments
[8]. Any point belongs to at least one maximal segment.

2.2 Patterns and DSS

We here recall a few properties about patterns composing DSS and their close
relations with continued fractions. They constitute a powerful tool to describe
discrete lines with rational slopes [2,[9]. Since we are in the first octant, the slopes
are between 0 and 1.

Definition 2. Given a standard line (a,b, 1), we call pattern of characteristics
(a,b) the succession of Freeman moves between any two consecutive upper leaning
points. The Freeman moves between any two consecutive lower leaning points
define the reversed pattern, it is the previous word read from back to front.

A pattern (a,b) embedded anywhere in the digital plane is obviously a DSS
(a, b, u) for some u. Since a DSS contains at least either two upper or two lower
leaning points, a DSS (a, b, 1) contains at least one pattern or one reversed pattern
of characteristics (a, b).

Definition 3. We call simple continued fraction and we write:
z=a/b=[0,u1...,U;..., Up]

We call k-th convergent the simple continued fraction formed of the k + 1 first

partial quotients: zj, = Z—: = [0, u1,. .., uL.

There exists a recursive transformation for computing the pattern of a standard
line from the simple continued fraction of its slope [2]. We call E the mapping
from the set of positive rational number smaller than one onto Freeman-code’s
words defined as follows. First terms are stated as E(zp) = 0 and F(z;) = 0%'1
and others are expressed recursively:

E(22i41) = E(22;)"*""" E(22i-1) (1)
E(z2i) = E(22i—2)E(z2,-1)"* (2)

In the following, the complexity of a pattern is the depth of its decomposition
in simple continued fraction. We recall a few more relations:

PrQr—1 — Pr—1qr = (—1)"! (3)
(Prs qr) = Uk (Pr—1, @h—1) + (Pr—2, qp—2) 4)

We now focus on computing vector relations between leaning points (upper and
lower) inside a pattern. In the following we consider a DSS (a,b,0) in the first
octant starting at the origin and ending at its second lower leaning point (whose
coordinate along the z-axis is positive). We define a/b = z, = [0,u1, ..., uy)
for some n. Points will be called Uy,Ly, Us and Lo as shown in Fig. [l We can
state U1L; = ULy and U3 Uz = LiLy = (b,a). We recall that the Freeman
moves of [U1L1] are the same as those of [Uz Ly]. Furthermore [Cy, Cy,] form the
pattern (a,b) and [CL,CL,] form the reversed pattern (a,b).
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Fig.1. A DSS(a,b,0) with an odd complexity slope, taken between origin and its
second lower leaning point

Proposition 1. A pattern with an odd complexity (say n = 2i+ 1) is such that
UiL; = (u2i41—1)(q2i, p2i)+(q2i—1,p2i—1)+(1, =1) and Ly Uz = (g2;—1, p2;i+1).
Moreover the DSS [U1L1] has E(z9;)"*+1 1 as a left factor, and the DSS [L1Us]
has E(z9;,-1)"%* as a right factor.

Proposition 2. A pattern with an even complezity (say n = 2i) is such that
UiLy = (g2i—1+1,p2i-1—1) and L1 Uz = (u2;—1)(g2i—1, p2i—1)+(q2i—2, P2i—2)+
(—1,1). Moreover the DSS [U1L1] has E(z2;—2)"*=" as a left factor, and the DSS
[L1Us] has E(z9;-1)"*~1 as a right factor.

3 Properties of Maximal Segments for Convex Curves

segments and digital edges of convex shape digitization. If S is a subset of R?
its dilation by a real factor r is denoted by r - S. Let D,, be the digitization of
step 1/m : Dy, (S) = (m - S)NZ2. We call L' the length estimator based on the
city-block distance.

3.1 Convex Digital Polygon (CDP)

Definition 4. A convex digital polygon (CDP) I is a subset of the digital plane
equal to the digitization of its convex hull, i.e. I' = Di(conv(I")). Its vertices
(Vi)i=1..e form the minimal subset for which I' = D;(conv(Vi,...,V.)). The
points on the boundary of I' form a 4-connected contour. The number of vertices
(or edges) of I' is denoted by ne(I") and its perimeter by Per(I").

A CDP is also called a lattice convex polygon [I7]. An edge is the Euclidean
segment joining two consecutive vertices, and a digital edge is the discrete seg-
ment joining two consecutive vertices. It is clear that we have as many edges as
digital edges and as vertices. From characterizations of discrete convexity [5], we
clearly see that:
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Proposition 3. Fach digital edge of a CDP is either a pattern or a succession
of the same pattern whose slope is the one of the edge. In other words, both
vertices are upper leaning points of the digital edge.

We now recall one theorem concerning the asymptotic number of vertices
of CDP that are digitization of continuous shapes. It comes from asymptotic
properties of random polytopes.

Theorem 1. (Adapted from Balog, Bdrdny [1l]) If S is a plane convex body with
C3 boundary and positive curvature then D, (S) is a CDP and

c1(S)ms < ne(D(8)) < ea(S)ms

where the constants c1(S) and c2(S) depend on extremal bounds of the curvatures
along S. Hence for a disc ¢1 and co are absolute constants.

3.2 Links Between Maximal Segments and Edges of CDP

Maximal segments are DSS: between any two upper (resp. lower) leaning points
lays at least a lower (resp. upper) leaning point. The slope of a maximal segment
is then defined by two consecutive upper and/or lower leaning points. Digital
edges are patterns and their vertices are upper leaning points (from Proposi-
tion B]). Thus, vertices may be upper leaning points but never lower leaning
points of maximal segments. Moreover a maximal segment cannot be strictly
contained into a digital edge.

We call supporting edge, a digital edge whose two vertices define leftmost and
rightmost upper leaning points of a maximal segment.

Following lemma gives relations between maximal DSS and digital edges:

Lemma 1. (i) A supporting edge defines only one mazimal segment: it is the
only one containing the edge and it has the same slope. If a mazimal segment
contains two or more upper leaning points then there is a supporting edge
linking its leftmost and rightmost upper leaning points with the same slope.
If a mazimal segment contains three or more lower leaning points then it
contains a supporting edge.

(i) If a maximal segment is defined by only two consecutive lower leaning points
then its only upper leaning point is some vertex of the CDP by convexity.

Lengths of maximal segments and digital edges are tightly intertwined, as
shown by the two next propositions (Proposition [ follows from Proposition [l

and [2]).

Proposition 4. Let [ViVi11] be a supporting edge of slope § made of f patterns
(a,b) and let M S be the maximal segment associated with it (Lemmaldl). Their
lengths are linked by the inequality:

%Lﬁl(MS) < LY (ViVis) < £H(MS) < %cl(v,@v,ﬁl) 9 < 3L (ViViss)
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Proposition 5. Let MSy be a maximal segment in the configuration of
Lemma [ii, and so let Vi be the vertex that is its upper leaning point. The
length of the mazimal segment is upper bounded by:

,Cl(MSk/) <4 (ﬁl(Vk,ﬂ/k) + L:l(Vk;Vk;Jrl))

A similar result related to linear integer programming is in [I6]. It may also
be obtained by viewing standard lines as intersection of two knapsack polytopes
[10]. An elementary proof using pattern patterns is found in [6].

Theorem 2. Let E be a supporting edge whose slope has a complezity n, n > 2,
then the maximal segment containing E includes at most n other edges on each
side of E.

Corollary 1. The shortest pattern of a supporting edge for which its mazimal
segment may contain 2n + 1 digital edge is z, = [0,2,...,2]. If the DCP is
enclosed in a m x m grid, then the maximal number n of digital edges included
in one maximal segment is upper bounded as: n < log 4T";/log (1++2) —1.

Proof. The number L = [0,2,...,2,...] is a quadratic number equal to —1+ V2.
Its recursive characterization is U,, = 2U,,_1 + U,_o with Uy = 0 and U; = 1.

Solving it leads to U,, = ‘/Ti (1++v2)" — (1= +2)"). Hence asymptotically,
U, ~ %(1 + \/5)” and lim,, oo =22 = L

Un+1
The shortest edge of slope complexity n is clearly an n-th convergent of L.
To fit into an m x m grid, the complexity n is such that U,11 < m. We thus

obtain that n < log %/log (14++v2) - 1. ]

3.3 Asymptotic Number and Size of Maximal Segments

We assume in this section that the digital convex polygon I' is enclosed in a
m x m grid. We wish to compute a lower bound for the number of edges related
to at least one maximal segment. We show in Theorem ] that this number is
significant and increases at least as fast as the number of edges of the DCP
divided by logm. From this lower bound, we are able to find an upper bound
for the length of the smallest maximal segment of a DCP (Theorem H]). We first
label each vertex of the DCP as follows: (i) a 2-vertex is an upper leaning point
of a supporting edge, (ii) a I-vertex is an upper leaning point of some maximal
segment but is not a 2-vertex, (iii) 0-vertices are all the remaining vertices. The
number of i-vertices is denoted by n;. Given an orientation on the digital contour,
the number of edges going from an i-vertex to a j-vertex is denoted by 7.

Theorem 3. The numbers of supporting edges and 1-vertices of I' are related
to number of edges with

ne(I)

— 7 < 2 .
N(logm) — 1+ 2no (5)

There are thus at least ne(I")/2(logm) mazimal segments.
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Proof. From Theorem 2] and its Corollary [[I we know that a DSS hence a max-
imal segment cannot include more than 2(logm) edges. Hence there cannot
be more than 2(logm) O-vertices for one 1-vertex or for one 2-vertex. We get
noo < (n1 + n2)R2(logm). We develop the number of edges with each pos-
sible label: ne(F) = N9 + Ng2 + N2 + Nog + No1 + ngo + No1 + Nig + N1t
Since, ngz + n12 < nag, Ny + no1 < ngg and ngy + nig + n11 < 3ng, we get
ne (") < 3n2a+ngo+3n:. Noting that a 2-vertex cannot be isolated by definition
of supporting edges gives ng < 2n95. Once inserted in ngg < (n1 + na)2(logm)
and compared with n.(I"), we get the expected result. a

We now relate the DCP perimeter to the length of maximal segments.

Theorem 4. The length of the smallest mazimal segment of the DCP I is upper

bounded:
Per(I")

ne(I')

min £1(MS)) < 2(logm) (6)
Proof. We have Per(I') = Y-~ L'(E;). We now may expand the sum on sup-
porting edges (22-edges), on edges touching a 1-vertex, and on others. Edges
touching 1-vertices may be counted twice, therefore we divide by 2 their contri-
bution to the total length.

S LUE) =D LUEP) + %Zﬁl(E,?_l) + LY EF) (7)

n22

For the first term, each supporting edge indexed by j (a 22-edge) has an asso-
ciated maximal segment, say indexed by j’. From Proposition @l we know that
LY(E?*) > 3LY(MS}). For the second term, each 1-vertex indexed by k is an
upper leaning point of some maximal segment indexed by %&’. Proposition [l holds
and LY (E[L,) + LY(EL") > 1LY (M S)y). Substitutions in Eq. (@) bring:

1 1 1 .
Z[,l(El) > g Z[,l(MSj/) + gzﬁl(MSk’) > g(nl +2n22)H1llH£1(MSl)

n22

Inserting the lower bound of Theorem [ concludes. 0O

4 Asymptotic Properties of Shapes Digitized at
Increasing Resolutions

We may now turn to the main interest of the paper: studying the asymptotic
properties of discrete geometric estimators on digitized shapes. We therefore
consider a plane convex body S which is contained the square [0,1] x [0, 1]
(w.l.o.g.). Furthermore, we assume that its boundary v = 95 is C® with every-
where strictly positive curvature. This assumption is not very restrictive since
people are mostly interested in regular shapes. Furthermore, the results of this
section remains valid if the shape can be divided into a finite number of convex
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and concave parts; each one is then treated separately. The digitization of S with
step 1/m defines a digital convex polygon I'(m) inscribed in a m x m grid. We
first examine the asymptotic behavior of the maximal segments of I'(m), both
theoretically and experimentally. We then study the asymptotic convergence of
a discrete curvature estimator.

4.1 Asymptotic Behavior of Maximal Segments

The next theorem summarizes the asymptotic size of the smallest maximal seg-
ment wrt the grid size m.

Theorem 5. The length of the smallest mazimal segment of I'(m) has the fol-
lowing asymptotic upper bound:

min LYMS;(I'(m))) < 2(m!3logm) (8)

Proof. TheoremMgives for the DCP I'(m) the inequality min; £'(M S, (I"(m))) <
2(logm) %. Since I'(m) is convex included in the subset m xm of the digi-
tal plane, its perimeter Per(I’(m)) is upper bounded by 4m. On the other hand,
Theorem [0 indicates that its number of edges n.(I'(m)) is lower bounded by
c1(S)m?/3. Putting everything together gives min; £'(MS;(I'(m))) <

2(log m)cl(;)% which is once reduced what we wanted to show. O

Although there are points on a shape boundary around which maximal seg-
ments grow as fast as O(m'/2) (the critical points in [I3]), some of them do
not grow as fast. A closer look at the proofs of Theorem M shows that a sig-
nificant part of the maximal segments (at least £2(1/(logm))) has an average
length that grows no faster than 2(m'/3logm). This fact is confirmed with ex-
periments. Fig. 2l left, plots the size of maximal segments for a disk digitized
with increasing resolution. The average size is closer to m!/? than to m!/2.

4.2  Asymptotic Convergence of Discrete Geometric Estimators

A useful property that a discrete geometric estimator may have is to converge
toward the geometric quantity of the continuous shape boundary when the dig-
itization grid gets finer [3,[4L11].

We now recall the definition of a discrete curvature estimator based on DSS
recognition [3].

Definition 5. Let P be any point on a discrete contour, Q@ and R are the ex-
tremities of the longest DSS starting from P (called half-tangents). Then the
curvature estimator by circumcircle £(P) is the inverse of the radius of the cir-
cle circumscribed to P, @ and R, rescaled by the resolution m.

Experiments show that this estimator rather correctly estimates the curvature
of discrete circles on average (= 10% error). It is indeed better than any other
curvature estimators proposed in the litterature. Theorem B.4 of [3] demon-
strates the asymptotic convergence of this curvature estimator, subject to the
conjecture:
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Fig. 2. For both curves, the digitized shape is a disk of radius 1 and the abscissa is
the digitization resolution. Left: plot in log-space of the £1-size of maximal segments.
Right: plot of the mean and standard deviation of the absolute error of curvature
estimation, |# — 1| (expected curvature is 1)

Congjecture 1. [3] Half-tangents on digitized boundaries grow at a rate of 2(m'/?)
with the resolution m.

However, with our study of maximal segments, we can state that

Claim. Conjecture [ is not verified for digitizations of C3-curves with strictly
positive curvature. We cannot conclude on the asymptotic convergence of the
curvature estimator by circumcircle.

Proof. Tt is enough to note that half-tangents, being DSS, are included in max-
imal segments and may not be longer. Furthermore, since maximal segments
cover the whole digital contour, some half-tangents will be included in the small-
est maximal segments. Since the smallest maximal segments are no longer than
2(m/?logm) (Theorem [)), the length of some half-tangents has the same up-
per bound, which is smaller than 2(m'/?). O

The asymptotic convergence of a curvature estimator is thus still an open
problem. Furthermore, precise experimental evaluation of this estimator indi-
cates that it is most certainly not asymptotically convergent, although it is
actually on average one of the most stable discrete curvature estimator (see
Fig. 2 right). Former experimental evaluations of this estimator were averaging
the curvature estimates on all contour points. The convergence of the average of
all curvatures does not induce the convergence of the curvature at one point.

5 Conclusion

We show in this paper the relations between edges of convex hulls and maximal
segments in terms of number and sizes. We provide an asymptotical analysis of
the worst cases of both measures. A consequence of the study is the refutation
of an conjecture related to the asymptotic growth of maximal segments and
which was essential in proving the convergence of a curvature estimator based
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on DSS and circumcircles [3]. Our work also applied to digital tangents since
their convergence relies on the same conjecture. The existence of a convergent
discrete estimator of curvature based on DSS is thus still a challenging problem
and we are currently investigating it.

References

10.

11.

12.

13.

14.

15.

16.

17

. Antal Balog and Imre Bardny. On the convex hull of the integer points in a

disc. In SCG ’91: Proceedings of the seventh annual symposium on Computational
geometry, pages 162-165. ACM Press, 1991.

. J. Berstel and A. De Luca. Sturmian words, lyndon words and trees. Theoret.

Comput. Sci., 178(1-2):171-203, 1997.

D. Coeurjolly. Algorithmique et géométrie pour la caractérisation des courbes et
des surfaces. PhD thesis, Université Lyon 2, Décembre 2002.

D. Coeurjolly and R. Klette. A comparative evaluation of length estimators of digital
curves. IEEFE Trans. on Pattern Anal. and Machine Intell., 26(2):252-257, 2004.

. Chul E.Kim. Digital convexity, straightness, and convex polygons. [EEE Trans.

on Pattern Anal. and Machine Intell., 6(6):618-626, 1982.

J.-O. Lachaud F. de Vieilleville and F. Feschet. Maximal digital straight seg-
ments and convergence of discrete geometric estimators. Research Report 1350-05,
LaBRI, University Bordeaux 1, Talence, France, 2005.

F. Feschet and L. Tougne. Optimal time computation of the tangent of a discrete
curve: application to the curvature. In Discrete Geometry and Computer Imagery
(DGCI), volume 1568 of LNCS, pages 31-40. Springer Verlag, 1999.

F. Feschet. and L. Tougne. On the Min DSS Problem of Closed Discrete Curves. In
A. Del Lungo, V. Di Gesu, and A. Kuba, editors, IWCIA, volume 12 of FElectonic
Notes in Discrete Math. Elsevier, 2003.

G.H. Hardy and E.M. Wright. An introduction to the theory of numbers. Oxford
University Press, fourth edition, 1960.

A. S. Hayes and D. C. Larman. The vertices of the knapsack polytope. Discrete
Applied Mathematics, 6:135—138, 1983.

R. Klette and J. Zuni¢. Multigrid convergence of calculated features in image
analysis. Journal of Mathematical Imaging and Vision, 13:173-191, 2000.

V. Kovalevsky and S. Fuchs. Theoretical and experimental analysis of the accuracy
of perimeter estimates. In Forster and Ruwiedel, editors, Proc. Robust Computer
Vision, pages 218-242, 1992.

J.-O. Lachaud. On the convergence of some local geometric estimators on digitized
curves. Research Report 1347-05, LaBRI, University Bordeaux 1, Talence, France,
2005.

J.-O. Lachaud, A. Vialard, and F. de Vieilleville. Analysis and comparative evalu-
ation of discrete tangent estimators. In E. Andrés, G. Damiand, and P. Lienhardt,
editors, Proc. Int. Conf. Discrete Geometry for Computer Imagery (DGCI’2005),
Poitiers, France, LNCS. Springer, 2005. To appear.

J.-P. Réveilles. Géométrie discrete, calcul en nombres entiers et algorithmique.
These d’etat, Université Louis Pasteur, Strasbourg, 1991.

V. N. Shevchenko. On the number of extreme points in linear programming. Kiber-
netika, 2:133-134, 1981. In russian.

K. Voss. Discrete Images, Objects, and Functions in Z". Springer-Verlag, 1993.



	Introduction
	Maximal Digital Straight Segments
	Standard Line, Digital Straight Segment, Maximal Segments
	Patterns and DSS

	Properties of Maximal Segments for Convex Curves
	Convex Digital Polygon (CDP)
	Links Between Maximal Segments and Edges of CDP 
	Asymptotic Number and Size of Maximal Segments

	Asymptotic Properties of Shapes Digitized at Increasing Resolutions
	Asymptotic Behavior of Maximal Segments
	Asymptotic Convergence of Discrete Geometric Estimators

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




